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Introduction
❖ Factorization of scales is a fundamental concept in HEP: 

‣ LHC cross section ~ σparton      PDFs

‣ basis for the resummation of large logarithmic corrections
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[Bauer et al. 2000, 2001; Beneke et al. 2002]

❖ Soft-collinear effective theory (SCET) 
provides a framework for studying 
factorization and resummation for 
processes involving light energetic 
particles using tools of effective field 
theory (EFT)



Introduction
❖ Conventional EFTs provide a systematic expansion in inverse 

powers of a large scale Q:

❖ Examples:            , χPT, HQET, NRQCD, SMEFT, …

❖ Extension to higher orders “straightforward if tedious”
‣ χPT: 2, 12, 117, 1959, 45171, 1170086, …

‣  SMEFT: 12, 3045, 1542, 44807, 90456, 2092441, …
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[Graf et al. 2020]

[Henning, Lu, Melia, Murayama 2015]
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Introduction
❖ SCET is more complicated in several aspects:

‣ operators contain non-local products of fields (unavoidable 
consequence of               but                 ),  need to introduce Wilson  
lines for gauge invariance

‣ Wilson coefficients depend on large momentum components in 
addition to heavy masses of particles integrated out 

‣ fields are split up in momentum modes (method of regions): 
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[Beneke, Smirnov 1997] 



Introduction
❖ SCET is more complicated in several aspects:

‣ hard modes are integrated out                                                         
(Wilson coefficients = hard matching coefficients)

‣ different collinear sectors appear decoupled in the effective 
Lagrangian except for soft interactions

‣ soft interactions can be decoupled by means of field redefinitions     
→ factorization theorems

‣ large logarithms can be resummed systematically by solving RGEs

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET                                                                                    4



❖ Typical SCET factorization theorem:

❖ Two common scale hierarchies:

Introduction

[Becher, MN 2010]

hard

collinear

ultrasoft
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Introduction
❖ Examples:

‣ threshold resummation for DIS, DY, Higgs, tt production, …

‣ pT resummation, jet vetoes, event shapes, jet substructure, …

‣ electroweak Sudakov resummation

‣ non-global logarithms, super-leading logarithms (ongoing work)

‣ high-order structure of IR divergences of scattering amplitudes, 
subtractions methods for NeLO fixed-order calculations (e.g. based 
on N-jettiness)

[many distinguished authors …; Becher, MN et al. 2006-2016]
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Introduction
❖ Extension to next-to-leading power? 

‣ generically (all known examples), find endpoint-divergent 
convolution integrals!

‣ upsets scale separation and breaks factorization

‣ prevents systematic resummation of large logarithms

‣ failure of standard OPE based on dimensional regularization and   
MS subtractions

❖ Questions usefulness of entire SCET framework!
‣ a hard problem; many groups world-wide work on this…

[Beneke et al., Moult et al., Stewart et al., MN et al. 2018-2020; …]
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First SCET factorization theorem 
at subleading power

Liu, MN: 1912.08818 (JHEP)
Liu, Mecaj, MN, Wang: 2009.04456 & 2009.06779

Liu, MN: 2003.03393 (JHEP)
Liu, Mecaj, MN, Wang, Fleming: 2005.03013 (JHEP)



A subleading-power observable
❖ Consider b-quark induced contribution to h→γγ decay 

amplitude (pseudo observable)
‣ this and related gg→h process may be relevant                                     

for high-precision Higgs studies, but here                                             
are considered for academic purposes mainly

‣ “sufficiently complicated but simple enough”

❖ Relevant modes are hard, collinear (n1 and n2) and soft, with 
SCET-2 scaling

❖ Scale hierarchy: 
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A subleading-power observable
❖ Same momentum regions appear in analysis of the Sudakov 

form factor (e.g. electroweak Sudakov resummation)
‣ standard factorization theorem without                                          

endpoint divergences:

‣ a single, leading-order SCET operator arises at O(λ2):

‣ crucial difference: soft quark can appear at subleading power
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A subleading-power observable
❖ Relevant momentum regions at 1-loop order:
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Figure 1: Leading regions of loop momenta (h: hard, c: n1-collinear, s: soft, hc: n1-hard-collinear,
hc: n2-hard-collinear) contributing to the decay amplitude. The convolution symbol ⌦ in the second
term means an integral over z.

integrated out) is matched onto SCET. In its simplest form, the factorization formula reads

Mb(h ! ��) = H(0)

1
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2
(z) h��| O(0)

2
(z) |hi + H(0)

3
h��| O(0)

3
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The three terms corresponding to di↵erent regions of loop momenta giving rise to leading
contributions to the decay amplitude Mb, as illustrated in Figure 1. The operator

O(0)

1
=

mb

e2

b

hA?µ

n1
A?

n2,µ
(2.2)

contains a Higgs field coupled to two collinear gauge fields describing photons moving along
opposite light-like directions n1 and n2 ⌘ n̄1. The canonical choice of the reference vectors
is nµ

1
= (1, 0, 0, 1) and nµ

2
= (1, 0, 0, �1). This operator descents from full-theory graphs in

which all internal momenta are hard, of order Mh. Next, the operator
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2
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?
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(2.3)

contains a Higgs field, an n2-collinear photon field and two n1-collinear b-quark fields, which
share the momentum k1 of the other photon. This operator is generated by full-theory graphs
in which a loop momentum is collinear with the photon direction n1 and carries virtuality
of order mb. The factor 2 in front of this contribution in (2.1) arises because there is an
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term means an integral over z.

integrated out) is matched onto SCET. In its simplest form, the factorization formula reads

Mb(h ! ��) = H(0)

1
h��| O(0)

1
|hi + 2

Z
1

0

dz H(0)

2
(z) h��| O(0)

2
(z) |hi + H(0)

3
h��| O(0)

3
|hi . (2.1)

The three terms corresponding to di↵erent regions of loop momenta giving rise to leading
contributions to the decay amplitude Mb, as illustrated in Figure 1. The operator

O(0)

1
=

mb

e2

b

hA?µ

n1
A?

n2,µ
(2.2)

contains a Higgs field coupled to two collinear gauge fields describing photons moving along
opposite light-like directions n1 and n2 ⌘ n̄1. The canonical choice of the reference vectors
is nµ

1
= (1, 0, 0, 1) and nµ

2
= (1, 0, 0, �1). This operator descents from full-theory graphs in

which all internal momenta are hard, of order Mh. Next, the operator

O(0)

2
(z) = h

h
X̄n1�

µ

?
/̄n1

2
�(z n̄1 · k1 + in̄1 · @)Xn1

i
A?

n2,µ
(2.3)

contains a Higgs field, an n2-collinear photon field and two n1-collinear b-quark fields, which
share the momentum k1 of the other photon. This operator is generated by full-theory graphs
in which a loop momentum is collinear with the photon direction n1 and carries virtuality
of order mb. The factor 2 in front of this contribution in (2.1) arises because there is an

4

analogous contribution with n1 and n2 interchanged. The symbols Aµ

n1
and Xn1 in the above

definitions denote e↵ective photon and b-quark fields defined in SCET (the so-called “gauge-
invariant building blocks” [2, 18]), which di↵er from the ordinary quantum fields Aµ and  in
that they contain collinear Wilson lines in their definition and that they obey the constraints
n̄1 · An1 = 0 and /n1Xn1 = 0. Note that the Feynman rule for the vector field Aµ contains a
factor of eb, which is the reason why we have divided by e2

b
in the definition of O1. The symbol

? on 4-vectors indicates the components orthogonal to the light-cone basis vectors n1 and n2.
Finally, the operator

O(0)

3
= T

n
h X̄n1Xn2 , i

Z
dDx L

(1/2)

q ⇠n1
(x), i

Z
dDy L

(1/2)

⇠n2q
(y)

o
+ h.c. (2.4)

contains the time-ordered product of the scalar Higgs current with two subleading-power terms
in the SCET Lagrangian [3], in which hard-collinear fields are coupled to a soft quark field.
It arises from full-theory graphs containing a soft quark propagator between the two photons,
with all momentum components of order mb. In terms of gauge-invariant building blocks, the
relevant subleading-power terms in the SCET Lagrangian read

L
(1/2)

q ⇠n1
(x) = q̄s(x�)

⇥
/A?
n1

(x) + /G?
n1

(x)
⇤
Xn1(x) ,

L
(1/2)

⇠n2q
(y) = X̄n2(y)

⇥
/A?
n2

(y) + /G?
n2

(y)
⇤
qs(y+) ,

(2.5)

where Gµ

n1
is the building block for the hard-collinear gluon field. In interactions of hard-

collinear fields with soft fields the soft field operators must be multipole expanded for consis-

tency [3, 19], and we denote xµ

� = (n̄1 · x) n
µ
1
2

and yµ

+ = (n̄2 · y) n
µ
2
2

.
The h ! �� matrix element of O3 in (2.1) can be factorized further into a convolution

of two radiative jet functions with a soft function [8], i.e. (for simplicity we use the default
choices of the reference vectors n1 and n2, such that n̄1 · k1 = n̄2 · k2 = Mh)

h��| O(0)

3
|hi =

gµ⌫

?
2

Z 1

0

d`+
`+

Z 1

0

d`�
`�

⇥

h
J (0)(Mh`+) J (0)(�Mh`�) + J (0)(�Mh`+) J (0)(Mh`�)

i
S(0)(`+`�) .

(2.6)

Contrary to the 4-vectors x� and y+ introduced above, the integration variables `+ and `�
correspond to the light-cone components n1 · ` and n2 · ` of a soft 4-momentum `µ. Here and
below we omit the photon polarization vectors when presenting expressions for operator matrix
elements. The radiative jet function J(p2) has been studied first in the calculation of the decay
amplitude for the rare exclusive decay B�

! � l�⌫̄l in the context of QCD factorization [20].
The soft function S(w) is defined in terms of the discontinuity of a soft quark propagator
dressed with soft Wilson lines oriented along the light-like directions n1 and n2. For a more
detailed discussion about the derivation of the factorization theorem and the precise definition
of the various SCET fields, operators, jet and soft functions the reader is referred to [8], where
we have shown that the three operators Oi form a basis of O(�3) SCET operators contributing
to the decay h ! ��, and that sum of the three terms in (2.1) correctly reproduces the decay
amplitude at two-loop order.

5

dressed collinear photon fields

dressed collinear quark fields

subleading SCET Lagrangian 

λλ λ
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Existence of only three SCET operators at 
O(λ3) ensures that these regions account 

for all higher-order loop graphs (see 
[Liu, MN 2019] for a 2-loop example)!

SM
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⇠ Mhmb

µ2
⇠ m2

b
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SCET-2

(hc, hc, s)

(c, c, s)

Figure 2: Schematic illustration of the two-step matching procedure.

theory this propagator is shrunk to a point. The relevant SCET operator O2,n1 contains the
Higgs field, an n2-hard-collinear photon and two n1-hard-collinear quark fields. The latter
two fields share the large momentum component n̄1 · k1 of the photon, and hence the operator
depends on a variable z 2 [0, 1] denoting the momentum fraction carried by one of the two
hard-collinear fields. Finally, in the third contribution the propagator between the two photons
is soft and the two remaining propagators are hard-collinear. While soft gluon interactions with
hard-collinear fields are contained in the leading-order SCET Lagrangian [9, 10], interactions
of soft quarks with hard-collinear quarks and gluons first arise at subleading power in SCET-1,
more precisely at O(�

1
2 ) [12]. The relevant operator O3 thus contains the time-ordered product

of a scalar current made up of two hard-collinear quarks (coupled to the Higgs field) with two
insertions of the subleading SCET Lagrangian coupling these quarks to soft quarks.

The relevant SCET-1 operators needed to describe these contributions are

O1 =
mb

e2
b

h(0)A?µ
n1

(0)A?
n2,µ(0) ,

O2,n1(t) = h(0) X̄n1(0) �µ
?

/̄n1

2
Xn1(tn̄1)A

?
n2,µ(0) ,

O3 = T
n

h(0) X̄n1(0)Xn2(0), i

Z
dDx L

(1/2)
q ⇠n1

(x), i

Z
dDy L

(1/2)
⇠n2q

(y)
o

+ h.c. ,

(10)

and likewise for O2,n2 with n1 $ n2. The factor 1/e2
b in the definition of O1 is chosen for

later convenience. The Higgs field (a real scalar field after electroweak symmetry breaking) is
denoted by h, whereas fields denoted by calligraphic letters are the so-called “hard-collinear
building blocks” of SCET [11, 52]. They are composite objects invariant under “ni-hard-
collinear gauge transformations”, which preserve the scaling of the particle momenta shown
in (5). These composite fields consist of hard-collinear fields dressed by hard-collinear Wilson

7



“Bare factorization theorem”
❖ Adding up the three contributions we find:

with:

❖ Factorization formula accomplishes a naive scale separation, 
but all component functions are still unrenormalized!
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n̄1 · An1 = 0 and /n1Xn1 = 0. Note that the Feynman rule for the vector field Aµ contains a
factor of eb, which is the reason why we have divided by e2

b
in the definition of O1. The symbol

? on 4-vectors indicates the components orthogonal to the light-cone basis vectors n1 and n2.
Finally, the operator

O(0)

3
= T

n
h X̄n1Xn2 , i

Z
dDx L

(1/2)

q ⇠n1
(x), i

Z
dDy L

(1/2)

⇠n2q
(y)

o
+ h.c. (2.4)

contains the time-ordered product of the scalar Higgs current with two subleading-power terms
in the SCET Lagrangian [3], in which hard-collinear fields are coupled to a soft quark field.
It arises from full-theory graphs containing a soft quark propagator between the two photons,
with all momentum components of order mb. In terms of gauge-invariant building blocks, the
relevant subleading-power terms in the SCET Lagrangian read

L
(1/2)

q ⇠n1
(x) = q̄s(x�)

⇥
/A?
n1

(x) + /G?
n1

(x)
⇤
Xn1(x) ,

L
(1/2)

⇠n2q
(y) = X̄n2(y)

⇥
/A?
n2

(y) + /G?
n2

(y)
⇤
qs(y+) ,

(2.5)

where Gµ

n1
is the building block for the hard-collinear gluon field. In interactions of hard-

collinear fields with soft fields the soft field operators must be multipole expanded for consis-

tency [3, 19], and we denote xµ

� = (n̄1 · x) n
µ
1
2

and yµ

+ = (n̄2 · y) n
µ
2
2

.
The h ! �� matrix element of O3 in (2.1) can be factorized further into a convolution

of two radiative jet functions with a soft function [8], i.e. (for simplicity we use the default
choices of the reference vectors n1 and n2, such that n̄1 · k1 = n̄2 · k2 = Mh)

h��| O(0)

3
|hi =

gµ⌫

?
2

Z 1

0

d`+
`+

Z 1

0

d`�
`�

⇥

h
J (0)(Mh`+) J (0)(�Mh`�) + J (0)(�Mh`+) J (0)(Mh`�)

i
S(0)(`+`�) .

(2.6)

Contrary to the 4-vectors x� and y+ introduced above, the integration variables `+ and `�
correspond to the light-cone components n1 · ` and n2 · ` of a soft 4-momentum `µ. Here and
below we omit the photon polarization vectors when presenting expressions for operator matrix
elements. The radiative jet function J(p2) has been studied first in the calculation of the decay
amplitude for the rare exclusive decay B�

! � l�⌫̄l in the context of QCD factorization [20].
The soft function S(w) is defined in terms of the discontinuity of a soft quark propagator
dressed with soft Wilson lines oriented along the light-like directions n1 and n2. For a more
detailed discussion about the derivation of the factorization theorem and the precise definition
of the various SCET fields, operators, jet and soft functions the reader is referred to [8], where
we have shown that the three operators Oi form a basis of O(�3) SCET operators contributing
to the decay h ! ��, and that sum of the three terms in (2.1) correctly reproduces the decay
amplitude at two-loop order.
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“Bare factorization theorem”
❖ Adding up the three contributions we find:

❖ Hard matching coefficients:
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Figure 1: Leading regions of loop momenta (h: hard, c: n1-collinear, s: soft, hc: n1-hard-collinear,
hc: n2-hard-collinear) contributing to the decay amplitude. The convolution symbol ⌦ in the second
term means an integral over z.

integrated out) is matched onto SCET. In its simplest form, the factorization formula reads

Mb(h ! ��) = H(0)

1
h��| O(0)

1
|hi + 2

Z
1

0

dz H(0)

2
(z) h��| O(0)

2
(z) |hi + H(0)

3
h��| O(0)

3
|hi . (2.1)

The three terms corresponding to di↵erent regions of loop momenta giving rise to leading
contributions to the decay amplitude Mb, as illustrated in Figure 1. The operator

O(0)

1
=

mb

e2

b

hA?µ

n1
A?

n2,µ
(2.2)

contains a Higgs field coupled to two collinear gauge fields describing photons moving along
opposite light-like directions n1 and n2 ⌘ n̄1. The canonical choice of the reference vectors
is nµ

1
= (1, 0, 0, 1) and nµ

2
= (1, 0, 0, �1). This operator descents from full-theory graphs in

which all internal momenta are hard, of order Mh. Next, the operator

O(0)

2
(z) = h

h
X̄n1�

µ

?
/̄n1

2
�(z n̄1 · k1 + in̄1 · @)Xn1

i
A?

n2,µ
(2.3)

contains a Higgs field, an n2-collinear photon field and two n1-collinear b-quark fields, which
share the momentum k1 of the other photon. This operator is generated by full-theory graphs
in which a loop momentum is collinear with the photon direction n1 and carries virtuality
of order mb. The factor 2 in front of this contribution in (2.1) arises because there is an

4

Bare matching coe�cients

To first order in ↵s, the expressions for the bare matching coe�cients obtained in [8] read
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(A.9)
where yb,0 is the bare b-quark Yukawa coupling. These expressions are exact to all orders in
✏. From the second relation one obtains
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for the function H̄(0)

2
(z) introduced in (2.8) and the associated function [[H̄(0)

2
(z)]]. Finally, in

the rearranged factorization formula (2.9) one needs the infinity-bin subtraction term �H(0)

1
,

which is given by
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Figure 6: Representative Feynman diagrams contributing to the hard matching coe�cients Hi up
to O(↵s). In the case of H1 we do not show the mirror graphs of the third and fourth diagram, in
which the gluon is attached on the other side. In the case of H2 we omit the corresponding diagrams
with the photon attached to the other quark line.

Here yb,0 is the bare b-quark Yukawa coupling, and ↵s,0 and ↵b,0 denote the bare QCD and
electromagnetic couplings, respectively. These expressions are exact to all orders in ✏. Note
that the factor ↵b,0 included in H1 arises because we have defined O1 without including any
electric charges in the operator. When the bare couplings are renormalized according to

↵b,0 = µ2✏↵b(µ) + O(↵2) , ↵s,0 = µ2✏↵s(µ) + O(↵2
s) , (36)

this ensures that the three Wilson coe�cients depend on the dimensionless ratio (�M2
h�i0)/µ2.

We will see in the next section that the matrix element h��| O2(z) |hi is symmetric under
the exchange z $ (1 � z), as is the case for H2(z). We can therefore rewrite

Z 1

0

dz H2(z) h��| O2(z) |hi = 2

Z 1

0

dz
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⇢
1 +

CF↵s,0

4⇡

�
�M2

h

��✏
e✏�E

�(1 + ✏) �2(�✏)

�(2 � 2✏)

⇥

h
(2 � 4✏ � ✏2) z�✏

� 2(1 � ✏)2
� 2(1 � 2✏ � ✏2)

⇥
1 � (1 � z)�✏

⇤i�
.

(38)
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with the photon attached to the other quark line.

Here yb,0 is the bare b-quark Yukawa coupling, and ↵s,0 and ↵b,0 denote the bare QCD and
electromagnetic couplings, respectively. These expressions are exact to all orders in ✏. Note
that the factor ↵b,0 included in H1 arises because we have defined O1 without including any
electric charges in the operator. When the bare couplings are renormalized according to

↵b,0 = µ2✏↵b(µ) + O(↵2) , ↵s,0 = µ2✏↵s(µ) + O(↵2
s) , (36)

this ensures that the three Wilson coe�cients depend on the dimensionless ratio (�M2
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↵b,0 = µ2✏↵b(µ) + O(↵2) , ↵s,0 = µ2✏↵s(µ) + O(↵2
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this ensures that the three Wilson coe�cients depend on the dimensionless ratio (�M2
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the exchange z $ (1 � z), as is the case for H2(z). We can therefore rewrite
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Figure 1: Leading regions of loop momenta (h: hard, c: n1-collinear, s: soft, hc: n1-hard-collinear,
hc: n2-hard-collinear) contributing to the decay amplitude. The convolution symbol ⌦ in the second
term means an integral over z.

integrated out) is matched onto SCET. In its simplest form, the factorization formula reads

Mb(h ! ��) = H(0)

1
h��| O(0)

1
|hi + 2

Z
1

0

dz H(0)

2
(z) h��| O(0)

2
(z) |hi + H(0)

3
h��| O(0)

3
|hi . (2.1)

The three terms corresponding to di↵erent regions of loop momenta giving rise to leading
contributions to the decay amplitude Mb, as illustrated in Figure 1. The operator

O(0)

1
=

mb

e2

b

hA?µ

n1
A?

n2,µ
(2.2)

contains a Higgs field coupled to two collinear gauge fields describing photons moving along
opposite light-like directions n1 and n2 ⌘ n̄1. The canonical choice of the reference vectors
is nµ

1
= (1, 0, 0, 1) and nµ

2
= (1, 0, 0, �1). This operator descents from full-theory graphs in

which all internal momenta are hard, of order Mh. Next, the operator

O(0)

2
(z) = h

h
X̄n1�

µ

?
/̄n1

2
�(z n̄1 · k1 + in̄1 · @)Xn1

i
A?

n2,µ
(2.3)

contains a Higgs field, an n2-collinear photon field and two n1-collinear b-quark fields, which
share the momentum k1 of the other photon. This operator is generated by full-theory graphs
in which a loop momentum is collinear with the photon direction n1 and carries virtuality
of order mb. The factor 2 in front of this contribution in (2.1) arises because there is an

4

leading order in RG-improved perturbation theory. The technical details of this resummation
will be discussed in future work. It will also be important to generalize our analysis to the
non-abelian case of the Higgs-boson production in the gluon-gluon fusion channel gg ! h,
extending the approach of [12, 13] to higher logarithmic accuracy.
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A Bare matching coe�cients and matrix elements

For completeness, we list here the expressions for the h ! �� matrix elements of the bare
operators O(0)

i
and the corresponding bare matching coe�cients H(0)

i
as derived in [8]. These

expressions are needed to obtain the corresponding renormalized quantities derived in the
present work.

Bare matrix elements

Omitting the photon polarization vectors, the h ! �� matrix element of the bare operator
O(0)

1
is to all orders of perturbation theory simply given by

h��| O(0)

1
|hi = mb,0 gµ⌫

? , (A.1)

where mb,0 is the bare b-quark mass. The reason is that O1 does not contain any fields with
color charges, and hence there are no QCD corrections to the matrix element.

The bare matrix elements of the remaining operators are known to first order in ↵s only.
For the case of O(0)
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In (A.2) ↵s,0 and ↵b,0 denote the bare QCD and electromagnetic couplings, respectively. Start-
ing at first order in ↵s the matrix element contains terms that are singular for z ! 0 or z ! 1.
The former terms are contained in K(z), while the latter ones are contained in K(1 � z). In

order to compute the matrix element [[h��| O(0)

2
(z) |hi]] one needs to take the limit z ! 0 in

the above expressions. In [8] this limit has been obtained in closed form in the dimensional
regulator ✏. One finds

[[K(z) + K(1 � z)]] =
e2✏�E

1 � 2✏


2(2 � 3✏ + 2✏2) �2(✏) + 2(1 � ✏) �(✏) �(2✏) �(�✏)

+ z✏ (2 � 4✏ � ✏2)
�(2✏) �2(�✏)

�(1 � 2✏)

�
.

(A.4)

In order to compute the matrix element of the bare operator O(0)

3
, as given in the third

line of (2.9), one needs the expressions for the bare jet and soft functions at NLO in ↵s. For
the bare jet function one obtains

J (0)(p2) = 1 +
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4⇡
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� i0
��✏

e✏�E
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(2 � 4✏ � ✏2) . (A.5)

This function has a cut along the positive p2 axis starting at p2 = 0 and extending to infinity.
The bare soft function, which is defined in terms of the discontinuity of a soft quark propagator
dressed with Wilson lines, can be written in the form
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At first order in ↵s one finds
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where

C1(✏) =
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and we have defined the dimensionless ratios r = m2

b,0
/w and ŵ = w/m2

b,0
, both of which live

on the interval [0, 1]. In both expressions the dots refer to terms of O(✏) and higher, which
vanish for r ! 0 or ŵ ! 0, respectively.
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In (A.2) ↵s,0 and ↵b,0 denote the bare QCD and electromagnetic couplings, respectively. Start-
ing at first order in ↵s the matrix element contains terms that are singular for z ! 0 or z ! 1.
The former terms are contained in K(z), while the latter ones are contained in K(1 � z). In

order to compute the matrix element [[h��| O(0)

2
(z) |hi]] one needs to take the limit z ! 0 in

the above expressions. In [8] this limit has been obtained in closed form in the dimensional
regulator ✏. One finds

[[K(z) + K(1 � z)]] =
e2✏�E

1 � 2✏


2(2 � 3✏ + 2✏2) �2(✏) + 2(1 � ✏) �(✏) �(2✏) �(�✏)

+ z✏ (2 � 4✏ � ✏2)
�(2✏) �2(�✏)

�(1 � 2✏)

�
.

(A.4)

In order to compute the matrix element of the bare operator O(0)

3
, as given in the third

line of (2.9), one needs the expressions for the bare jet and soft functions at NLO in ↵s. For
the bare jet function one obtains

J (0)(p2) = 1 +
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This function has a cut along the positive p2 axis starting at p2 = 0 and extending to infinity.
The bare soft function, which is defined in terms of the discontinuity of a soft quark propagator
dressed with Wilson lines, can be written in the form

S(0)(w) = �
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At first order in ↵s one finds
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where
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and we have defined the dimensionless ratios r = m2

b,0
/w and ŵ = w/m2

b,0
, both of which live

on the interval [0, 1]. In both expressions the dots refer to terms of O(✏) and higher, which
vanish for r ! 0 or ŵ ! 0, respectively.
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+++ + · · ·

Figure 7: Representative Feynman diagrams contributing to the matrix element h��| O2(z) |hi up
to O(↵s). We do not show mirror copies of the last two graphs, in which the gluon is attached to
the other side.

We will also see that the matrix element is z-independent at leading order. It is then obvious
that the integrals over zi in (34) diverge at the endpoints zi = 0 and zi = 1. With the help of
(37), the divergence is concentrated at zi = 0. Moreover, we will find later that the integrals
over `± in (33) diverge when `+ ! 1 or `� ! 1 at fixed `+`�. These divergences are not
regularized by the dimensional regulator ✏ and require additional (rapidity) regulators. This
will be discussed in more detail in Section 5.

4 Operator matrix elements

In the next step, we need the matrix elements of the SCET operators in (10). We have
calculated these matrix elements at NLO in ↵s in both SCET-1 and SCET-2. In SCET-1, the
hard-collinear scaling can be enforced by taking the external photons o↵-shell, with virtualities
(�k2

i ) = O(Mhmb). The corresponding expressions for the matrix elements are presented in
Appendix A. Using these results, it should be possible to derive the RG evolution equations for
the hard matching coe�cients in the region between the hard scale Mh and the hard-collinear
scale

p
Mhmb.

For our purposes, it is more important to have the matrix elements in SCET-2 obtained
with physical (on-shell) photon states. To all orders in QCD perturbation theory, the matrix
element of O1 is given by (omitting the polarization vectors for simplicity)

h��| O1 |hi = mb,0 gµ⌫
? , (39)

where mb,0 is the bare b-quark mass. The reason is simply that O1 does not contain any
fields with color charges, and hence there are no QCD corrections to the matrix element. The
Feynman rule for the collinear photon fields A?

ni,µ gives eb "?⇤
µ (ki). The relevant Feynman

diagrams for the matrix element h��| O2(z) |hi are depicted in Figure 7. This matrix element
is symmetric under the exchange of z and (1 � z). We have not been able to calculate it in
closed form for arbitrary values of ✏. Expanding the NLO correction in powers of ✏, we obtain
(with 0  z  1)

h��| O2(z) |hi =
Nc↵b,0

2⇡
mb,0 gµ⌫

?


e✏�E �(✏)

�
m2

b,0

��✏
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CF↵s,0
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�
m2

b,0

��2✏⇥
K(z) + K(1 � z)

⇤�
,

(40)
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Figure 8: Feynman diagrams contributing to the jet function J(p2) up to O(↵s).

where
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(41)

It is obvious from this result that at NLO in ↵s the matrix element contains terms that are
singular at z ! 0 or z ! 1. The former terms are contained in K(z), while the latter ones
are contained in K(1� z). In order to compute the convolution of H2 with O2, it is important
to calculate these leading singularities exactly, without performing an expansion in ✏. In the
form (37), we only need to work out the behavior near z = 0. We obtain

lim
z!0

⇥
K(z) + K(1 � z)

⇤
=

e2✏�E

1 � 2✏
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�(2✏) �2(�✏)

�(1 � 2✏)

�
.

(42)

Note that, after renormalization of the bare couplings according to (36), the matrix element
in (40) depends on the dimensionless ratio m2

b,0/µ
2.

Concerning the matrix element of the operator O3 in (33), we now present our explicit
expressions for the jet and soft functions at NLO in ↵s. The diagrams contributing to the jet
function are shown in Figure 8. We obtain

J(p2) = 1 +
CF↵s,0

4⇡

�
�p2

� i0
��✏

e✏�E
�(1 + ✏) �2(�✏)

�(2 � 2✏)
(2 � 4✏ � ✏2) . (43)

This function has a cut along the positive p2 axis starting at p2 = 0 and extending to infinity.
To the best of our knowledge, this expression (expanded in powers of ✏) was first obtained in
the discussion of the exclusive B-meson decay process B�

! �l�⌫̄l in [58]. The calculation of
the soft function is more complicated. The relevant Feynman graphs are shown in Figure 9.
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+

+ + · · ·

+ +

`+ `�

Figure 9: Representative Feynman diagrams contributing to the soft function S(`+`�) up to O(↵s).
We omit the mirror graphs of the second and third diagram, in which the gluon is attached to the
other Wilson line. The soft function S(`+`�) in (32) is given by the discontinuity of S(`+`�).

Due to the multipole expansion applied to soft fields in interaction terms with hard-collinear
fields, the soft momentum component `+ enters at the left lower vertex, while `� exists at the
right lower vertex, as indicated in the first graph. In a more complicated diagram such as
the second graph, the assignment of momenta becomes non-trivial. For example, if the gluon
emitted from the Wilson-line segment belongs to S(G)†

n1 (0) in (27), then the plus component
of the momentum flowing through the left quark propagator is equal to `+, while the minus
component of the momentum carried by the right quark propagator is equal to `�. It follows
that the left quark propagator carries the minus component (`� � p�), while the right one
carries the plus component (`+ + p+), where p denotes the gluon momentum. As a result,
we find that the soft function S(`+`�) defined via the discontinuity of the diagrams shown in
Figure 9 has support for all values `+`� > 0, even though at leading order (first graph) the
discontinuity arises only if `+`� > m2

b,0. Writing
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Nc↵b,0
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h
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i
, (44)

we find (with w = `+`�)
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(45)
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Endpoint divergences
❖ Closer inspection shows that the convolution integrals in the 

factorization formula are divergent for                (second term) 
and                  (third term)

❖ Second term is symmetric under                       and it suffices to 
study the singularity at            :    

❖ Physical origin: overlap of soft                                                      
and collinear regions, whose                                           
boundaries are not separated by                                                   
the dimensional regulator
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b

Figure 1: Soft and collinear regions in the `� � `+ plane. Contour of constant `+`� are hyperbolas
in this plane. The separation of the three regions must be regularized using rapidity regulators.

1

Figure 10: Soft and collinear regions in the
plane of the soft momenta `� and `+. Contours
of constant `+`� are hyperbolas, as indicated by
the blue line. The separation of the three regions
must be defined using rapidity regulators.

the SCET Feynman rules, in our problem it
is simplest to impose them on the convolution
variables themselves. This is similar in spirit
to the approach of [61], where the regulator
was imposed on the phase-space integrals for
real emissions. For the soft contribution, we
use the regulator

✓
�n̄1 · k1 `+ + n̄2 · k2 `� � i0

⌫2

◆⌘

(47)

under the integral in (29), which gives rise to
another branch cut above the real axis in the
complex `� plane and thus does not invalidate
the arguments that led to (33). Here ⌘ is an
infinitesimal analytic regulator and ⌫ denotes
the associated mass scale. For the collinear
contributions, either `+ or `� is of O(Mh),
whereas the other variable is of O(m2

b/Mh).
We must therefore multipole expand the reg-
ulator term and use ✓

�ziM2
h � i0

⌫2

◆⌘

(48)

under the integral in (37). Using that M2
h = n̄1 · k1 n̄2 · k2, we see that the regulators indeed

match up at the boundaries of the soft, n1-collinear and n2-collinear regions.
Introducing the regulators as just described, the bare factorization formula (34) takes the

form

Mb(h ! ��) = lim
⌘!0

H1 h��| O1 |hi

+ 2

Z 1
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dz1
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�
.

(49)

We can now split up the double integral in the last contribution into regions where `� > `+

and `+ > `�. In the first region (`� > `+) rapidity divergences arise for `� ! 1, and they
cancel against rapidity divergences of the n1-collinear contribution in the second line, which
arise for z1 = `�/(n̄1 · k1) ! 0. Likewise, in the second region (`+ > `�) rapidity divergences
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`� ! 1

Major complications arise from endpoint-divergent convolution integrals in the second and
third term in (2.1), which need to be properly identified and regularized. The integral over
z in the second term contains singularities at z = 0 and z = 1. Likewise, the integrals over
`+ and `� in (2.6) contain singularities at `± = 1. Some of these endpoint divergences are
regularized by the dimensional regulator D = 4� 2✏, but others require an additional rapidity
regulator [21–23]. In [8] we have regularized the rapidity divergences by means of an analytic
regulator imposed on the convolution variables z and `±. The singular contributions in the
rapidity regulator cancel in the sum of the second and third term of the factorization formula,
but this requires that for z ! 0 (or 1) these two terms must have closely related structures to
all orders of perturbation theory. Indeed, we have shown that this condition gives rise to the
D-dimensional “refactorization conditions”

[[H̄(0)

2
(z)]] = �H(0)

3
J (0)(zM2

h
) ,

[[h��| O(0)

2
(z) |hi]] = �

gµ⌫

?
2

Z 1

0

d`+

`+

J (0)(�Mh`+) S(0)(zMh`+) ,
(2.7)

which must hold to all orders of perturbation theory. The symbol [[f(z)]] means that one
retains only the leading terms of a function f(z) in the limit z ! 0 and neglects higher power

corrections. We have rewritten the original function H(0)

2
(z) as

H(0)

2
(z) =

H̄(0)

2
(z)

z(1 � z)
, (2.8)

where the new function H̄(0)

2
(z) contains logarithmic singularities only. With the help of the

relations (2.7) one can rearrange the bare factorization formula (2.1) in such a way that all
endpoint and rapidity divergences are removed. The result is

Mb =
⇣
H(0)

1
+ �H(0)

1

⌘
h��| O(0)

1
|hi

+ 2 lim
�!0

Z
1��

�

dz


H(0)

2
(z) h��| O(0)

2
(z) |hi �

[[H̄(0)

2
(z)]]

z
[[h��| O(0)

2
(z) |hi]]

�
[[H̄(0)

2
(1 � z)]]

1 � z
[[h��| O(0)

2
(1 � z) |hi]]

�

+ gµ⌫

? lim
�!�1

H(0)

3

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J (0)(Mh`�) J (0)(�Mh`+) S(0)(`+`�)
���
leading power

.

(2.9)
Compared with [8] we have rewritten the second term in a di↵erent but equivalent way. The
subtraction terms involving the [[. . . ]] symbol remove the singularities at the endpoints z = 0
and z = 1, such that the limit � ! 0 is smooth. Note that both the matching coe�cient
H(0)

2
(z) and the matrix element hO(0)

2
(z)i contain terms that are singular for z = 0, 1 and the

two subtraction terms properly remove the singularities of the product of these two quantities.
This generalizes a simple “plus-type” subtraction prescription for the bare operator proposed
in [24, 25], which works only for cases where the relevant matching coe�cient approaches a
constant plus power-suppressed terms as z ! 0.

6



Endpoint divergences
❖ Things are, in fact, even more subtle. For example, in higher 

orders one finds that:

❖ Terms with              require the rapidity regulator when 
integrated over         , while those with               are regularized 
by the dimensional regulator

❖ In simpler examples based on SCET-1, the dimensional 
regulator regularizes all endpoint divergences, but this still 
leaves the problem of how to deal with the        poles from the 
endpoint singularities, which spoil factorization
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Endpoint divergences
❖ In order to define the two convolutions properly one needs to 

introduce a rapidity regulator under the integrals:

❖ Endpoint divergences lead to 1/η poles, which cancel in the sum 
of all terms!
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arise for `+ ! 1, and they cancel against rapidity divergences of the n2-collinear contribution
in the second line. The two combinations of terms give the same result, so that we can write
the final form of the bare factorization theorem as

Mb(h ! ��) = lim
⌘!0

H1 h��| O1 |hi + 4

Z 1

0

dz

z

✓
�zM2

h � i0

⌫2

◆⌘

H̄2(z) h��| O2(z) |hi

+ gµ⌫
? H3

Z 1

0

d`�

`�

Z `�

0

d`+

`+
S(`+`�)

⇥

✓
n̄2 · k2 `� � i0

⌫2

◆⌘

J(n̄1 · k1 `+) J(�n̄2 · k2 `�)

+

✓
�n̄2 · k2 `� � i0

⌫2

◆⌘

J(�n̄1 · k1 `+) J(n̄2 · k2 `�)

�
.

(50)

In the soft contribution we have dropped the `+ components in the regulator terms and kept
the larger component `� only. Di↵erences with the original form arise at O(⌘) and can be
ignored.

With the regulators in place, the convolution integrals are well defined and can be evaluated
in a straightforward way. Endpoint divergences arise from the region z ! 0 in the second
term and `� ! 1 in the third term. Note that the region `+`� ! 0 does not give rise to
divergences, because for `+`� < m2

b,0 the soft function S(`+`�) is of O(`+`�), see (45). It is
important to perform the expansion in the analytic regulator ⌘ before the expansion in the
dimensional regulator ✏. Renormalizing the bare b-quark Yukawa coupling and quark mass in
the MS scheme using1

yb,0
µ✏ yb(µ)

=
mb,0

mb(µ)
= 1 �

CF↵s

4⇡

3

✏
+ O(↵2

s) , (51)

we write the answer for the three terms in the factorization formula (50) in the form

Mb(h ! ��) = M0 (T1 + T2 + T3) , (52)

with M0 defined in (2). We find

T1 =
1

✏2
�

Lh

✏
+

L2
h

2
� 2 �

⇡2

12
+

CF↵s

4⇡
k1(Lh) ,

T2 =


2

⌘
+ 2 ln

�M2
h � i0
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� 
1

✏
� Lm +
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4⇡
k0(Lh, Lm)

�
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CF↵s

4⇡
k2(Lh, Lm) ,

T3 = �


2

⌘
+ ln

�M2
h � i0

⌫2
+ ln

m2
b

⌫2

� 
1

✏
� Lm +

CF↵s

4⇡
k0(Lh, Lm)

�

�
1

✏2
+

Lm

✏
�

L2
m

2
+

⇡2

12
+

CF↵s

4⇡
k3(Lh, Lm) ,

(53)

1We have factored out µ✏ from the renormalized Yukawa coupling, so that yb(µ) is dimensionless. This
factor µ✏ multiplies the entire decay amplitude and can simply be dropped, because the sum of all contributions
is free of 1/✏n poles after the renormalized parameters have been introduced.

22

(0) (0) (0) (0)

(0) (0)

(0) (0)

(0)(0)



❖ All-order cancellation of 1/η poles requires that the integrands 
of the second and third term are the same when evaluated in 
the singular regions!

❖ This is ensured by the D-dim. refactorization conditions:

❖ We have recently proved these relations using SCET tools:

Endpoint divergences
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[Liu, MN 2019]

Major complications arise from endpoint-divergent convolution integrals in the second and
third term in (2.1), which need to be properly identified and regularized. The integral over
z in the second term contains singularities at z = 0 and z = 1. Likewise, the integrals over
`+ and `� in (2.6) contain singularities at `± = 1. Some of these endpoint divergences are
regularized by the dimensional regulator D = 4� 2✏, but others require an additional rapidity
regulator [21–23]. In [8] we have regularized the rapidity divergences by means of an analytic
regulator imposed on the convolution variables z and `±. The singular contributions in the
rapidity regulator cancel in the sum of the second and third term of the factorization formula,
but this requires that for z ! 0 (or 1) these two terms must have closely related structures to
all orders of perturbation theory. Indeed, we have shown that this condition gives rise to the
D-dimensional “refactorization conditions”

[[H̄(0)

2
(z)]] = �H(0)

3
J (0)(zM2

h
) ,

[[h��| O(0)

2
(z) |hi]] = �

gµ⌫

?
2

Z 1

0

d`+

`+

J (0)(�Mh`+) S(0)(zMh`+) ,
(2.7)

which must hold to all orders of perturbation theory. The symbol [[f(z)]] means that one
retains only the leading terms of a function f(z) in the limit z ! 0 and neglects higher power

corrections. We have rewritten the original function H(0)

2
(z) as

H(0)

2
(z) =

H̄(0)

2
(z)

z(1 � z)
, (2.8)

where the new function H̄(0)

2
(z) contains logarithmic singularities only. With the help of the

relations (2.7) one can rearrange the bare factorization formula (2.1) in such a way that all
endpoint and rapidity divergences are removed. The result is

Mb =
⇣
H(0)

1
+ �H(0)

1

⌘
h��| O(0)

1
|hi

+ 2 lim
�!0

Z
1��

�
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2
(z) h��| O(0)

2
(z) |hi �

[[H̄(0)

2
(z)]]

z
[[h��| O(0)

2
(z) |hi]]

�
[[H̄(0)

2
(1 � z)]]

1 � z
[[h��| O(0)

2
(1 � z) |hi]]

�

+ gµ⌫

? lim
�!�1

H(0)

3

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J (0)(Mh`�) J (0)(�Mh`+) S(0)(`+`�)
���
leading power

.

(2.9)
Compared with [8] we have rewritten the second term in a di↵erent but equivalent way. The
subtraction terms involving the [[. . . ]] symbol remove the singularities at the endpoints z = 0
and z = 1, such that the limit � ! 0 is smooth. Note that both the matching coe�cient
H(0)

2
(z) and the matrix element hO(0)

2
(z)i contain terms that are singular for z = 0, 1 and the

two subtraction terms properly remove the singularities of the product of these two quantities.
This generalizes a simple “plus-type” subtraction prescription for the bare operator proposed
in [24, 25], which works only for cases where the relevant matching coe�cient approaches a
constant plus power-suppressed terms as z ! 0.
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Figure 3: Graphical illustration of the refactorization condition for [[H̄(0)

2
(z)]].

We now decouple soft gluons from the hard-collinear fields by performing the usual field
redefinitions [1], but we do not change the names of the fields for simplicity. This leads to

[[M(0)(h ! bb̄�)]] = H(0)

3
hb(k1) b̄(zk1) �(k2)| T

n
X̄n1(0)S†

n1
(0) Sn2(0)Xn2(0),

⇥ i

Z
dDy X̄n2(y)

�
/A?
n2

(y) + /G?
n2

(y)
�
S†
n2

(y+) qs(y+)
o

|0i .
(3.3)

In this matrix element the di↵erent types of fields (n1-hard-collinear, n2-hard-collinear and
soft) no longer interact with one another. We now match this result onto the low-energy
e↵ective theory called SCETII by integrating out the hard-collinear fields. In this step we
use the definition of the bare jet function J (0)(p2) given in Appendix B to obtain (using that
n2 = n̄1 and n1 = n̄2)

[[M(0)(h ! bb̄�)]] = eb H(0)

3
ūn1(k1)

/̄n1

2
/"⇤

?(k2) vs(zk1)
n̄2 · (k2 + zk1�)

(k2 + zk1�)2 + i0
J (0)

�
(k2 + zk1�)2

�

= �
eb
Mh

H(0)

3

z + i0
J (0)(zM2

h
) ū(z̄k1) /"⇤

?(k2)
/̄n1

2
v(zk1) ,

(3.4)

where k1� = n̄1·k1

n
µ
1
2

, and hence (k2+zk1�)2 = z n̄1·k1 n̄2·k2 = zM2

h
. A graphical illustration of

this result is shown in Figure 3. Note the important fact that, since we perform the calculation
on-shell and for massless quarks, there is no soft or n1-collinear scale in the problem, and
hence the soft and n1-collinear matrix elements are equal to their tree-level expressions. In
particular, the soft Wilson lines do not give rise to any non-trivial contributions, and the soft
matrix element simply provides a factor eizk1·y+ v(zk1). Matching this result with (3.1) we
obtain

[[H(0)

2
(z)]] =

[[H̄(0)

2
(z)]]

z
= �

H(0)

3

z
J(zM2

h
) , (3.5)

where we have used (2.8) in the first step. This establishes the first relation in (2.7).
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Figure 4: Graphical illustration of the refactorization condition for [[hO(0)

2
(z)i]].

3.2 Refactorization condition for [[hO(0)
2 (z)i]]

The derivation of the second refactorization condition is slightly more involved. In this case the
soft contributions are non-zero, because the matrix element of the operator O(0)

2
(z) depends

on the b-quark mass. In fact, for z ⌧ 1 the two relevant scales are the soft scale m2

b
and the

hard-collinear scale m2

b
/z ⇠ Mhmb. Our starting point is the position-space representation of

the operator O(0)

2
introduced in [8], which reads

O(0)

2
(t) = h(0) X̄n1(0) �µ

?
/̄n1

2
Xn1(tn̄1)A

?
n2,µ

(0) . (3.6)

We now replace the n1-collinear field Xn1 by a soft quark field qs and perform the soft decou-
pling transformation. This leads to (using that n̄1 = n2)

[[O(0)

2
(t)]] = h(0) X̄n1(0) S†

n1
(0) Sn2(0) �µ

?
/n2

2
S†
n2

(tn2) qs(tn2)A
?
n2,µ

(0) . (3.7)

The structure of the soft Wilson lines follows from the fact that the operator [[O(0)

2
(t)]] derives

from the amplitude in (3.3) after integrating out the n2-hard-collinear fields. We now need
to evaluate the on-shell h ! �� matrix element of this operator. To this end, we need an
insertion of the subleading-power SCET Lagrangian, which turns the soft quark field back
into an n1-hard-collinear quark field. We thus obtain

h��| [[O(0)

2
(t)]] |hi = ebh�(k1)| T

n
X̄n1(0) S†

n1
(0) Sn2(0) /"⇤

?(k2)
/n2

2
S†
n2

(tn2) qs(tn2),

⇥ i

Z
dDx q̄s(x�) Sn1(x�)

�
/A?
n1

(x) + /G?
n1

(x)
�
Xn1(x)

o
|0i .

(3.8)
In the next step we use the definitions of the jet function and of the soft-quark soft function
collected in Appendix B. Taking into account a minus sign from an odd number of interchanges
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Removing endpoint divergences
❖ Using these relations, the bare factorization formula can be 

rearranged in such a way that all endpoint divergences are 
removed and the limit η→0 can be taken. We find:
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Major complications arise from endpoint-divergent convolution integrals in the second and
third term in (2.1), which need to be properly identified and regularized. The integral over
z in the second term contains singularities at z = 0 and z = 1. Likewise, the integrals over
`+ and `� in (2.6) contain singularities at `± = 1. Some of these endpoint divergences are
regularized by the dimensional regulator D = 4� 2✏, but others require an additional rapidity
regulator [21–23]. In [8] we have regularized the rapidity divergences by means of an analytic
regulator imposed on the convolution variables z and `±. The singular contributions in the
rapidity regulator cancel in the sum of the second and third term of the factorization formula,
but this requires that for z ! 0 (or 1) these two terms must have closely related structures to
all orders of perturbation theory. Indeed, we have shown that this condition gives rise to the
D-dimensional “refactorization conditions”

[[H̄(0)

2
(z)]] = �H(0)

3
J (0)(zM2

h
) ,

[[h��| O(0)

2
(z) |hi]] = �

gµ⌫

?
2

Z 1

0

d`+

`+

J (0)(�Mh`+) S(0)(zMh`+) ,
(2.7)

which must hold to all orders of perturbation theory. The symbol [[f(z)]] means that one
retains only the leading terms of a function f(z) in the limit z ! 0 and neglects higher power

corrections. We have rewritten the original function H(0)

2
(z) as

H(0)

2
(z) =

H̄(0)

2
(z)

z(1 � z)
, (2.8)

where the new function H̄(0)

2
(z) contains logarithmic singularities only. With the help of the

relations (2.7) one can rearrange the bare factorization formula (2.1) in such a way that all
endpoint and rapidity divergences are removed. The result is
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⇣
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1
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1
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1
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�!0

Z
1��

�

dz


H(0)

2
(z) h��| O(0)

2
(z) |hi �

[[H̄(0)

2
(z)]]

z
[[h��| O(0)

2
(z) |hi]]

�
[[H̄(0)

2
(1 � z)]]

1 � z
[[h��| O(0)

2
(1 � z) |hi]]

�

+ gµ⌫

? lim
�!�1

H(0)

3

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J (0)(Mh`�) J (0)(�Mh`+) S(0)(`+`�)
���
leading power

.

(2.9)
Compared with [8] we have rewritten the second term in a di↵erent but equivalent way. The
subtraction terms involving the [[. . . ]] symbol remove the singularities at the endpoints z = 0
and z = 1, such that the limit � ! 0 is smooth. Note that both the matching coe�cient
H(0)

2
(z) and the matrix element hO(0)

2
(z)i contain terms that are singular for z = 0, 1 and the

two subtraction terms properly remove the singularities of the product of these two quantities.
This generalizes a simple “plus-type” subtraction prescription for the bare operator proposed
in [24, 25], which works only for cases where the relevant matching coe�cient approaches a
constant plus power-suppressed terms as z ! 0.

6

integrand for z→0



Removing endpoint divergences
❖ In the space of momentum modes, this amount to the 

following subtractions in the third term:
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`�

`+
n2-collinear

n1-collinear

soft

`+`� = m2
b

Figure 1: Soft and collinear regions in the `� � `+ plane. Contour of constant `+`� are hyperbolas
in this plane. The separation of the three regions must be regularized using rapidity regulators.

1

� bin

σMh

Mh

Figure 2: Graphical illustration of the subtractions performed in the rearrangement of the factor-
ization formula, which removes the endpoint divergences of the various contributions.

Removing the endpoint divergences in the way described above comes at the price of intro-
ducing hard upper limits on the integrals over `+ and `� in the last term of the factorization
formula (2.9), which originally have power counting `± = O(mb).1 This gives rise to additional
large rapidity logarithms in the matrix element of the operator O3. They are a consequence of
the so-called collinear anomaly, which results from the fact that a classical symmetry of the ef-
fective theory SCETII under rescalings of the light-cone vectors n1 and n2 is broken by quantum
e↵ects [21]. The presence of the upper limits also leads to some power-suppressed contribu-
tions of O(m2

b
/M2

h
) to the third term, which should be dropped for consistency. Moreover, to

obtain the correct result for the decay amplitude the upper limit on the (positive) integration
variable `+ must be analytically continued from Mh to �Mh � i0 after the integral has been
evaluated, as indicated by the limit � ! �1. In Figure 2 we show a graphical illustration of
the rearrangement of the factorization formula that eliminates the endpoint divergences. The
subtractions performed on the second term remove the shaded gray regions from the integrals
in the third term. Note that in this process the hard region in which |`±| � Mh is subtracted
twice. This over-subtraction needs to be corrected by adding back the “infinity bin” in the
form of a contribution �H(0)

1
to the matching coe�cient of the operator O(0)

1
.

In [8] we have presented explicit expressions for all quantities appearing in the factorization
formula (2.9) at next-to-leading order (NLO) in ↵s, corresponding to two-loop order for the de-
cay amplitude. For completeness, the corresponding expressions are collected in Appendix A.
The main goal of the present work is to turn the bare factorization theorem into a formula
involving renormalized matching coe�cients and operator matrix elements. As we shall see
this is a highly non-trivial task. The resulting formula provides the basis for a systematic
resummation of the large logarithms ln(M2

h
/m2

b
) � i⇡ to all orders of perturbation theory.

1It is an open question whether it is possible to formulate an alternative “endpoint regularization scheme”
avoiding the hard cuto↵s. If it exists, such a scheme would need to commute with the operation of renormal-
ization in dimensional regularization, and hence in particular it would need to respect gauge invariance.

7

“infinity bin” is subtracted 
twice and must be added 

back as a hard contribution 
∆H1(0) to the coefficient of 

the first term



Renormalized factorization theorem
❖ So far, the factorization formula is still expressed in terms of 

bare quantities, but we wish to establish a corresponding 
renormalized formula:

❖ This is non-trivial, because the presence of cutoffs does not 
commute with renormalization!

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET                                                                                  21

`+ from the jet function, and a cut infinitesimally below the real axis for positive values of `+

from the soft function. The integral is thus non-zero only if `+ � 0 and we can deform the
contour such that it wraps around the cut in the lower half-plane. This leads to

h��| [[O(0)

2
(z)]] |hi = �

1

2
"⇤

?(k1) · "⇤
?(k2)

Z 1

0

d`+

`+

J (0)(�Mh`+) S(0)(zMh`+) , (3.13)

where

S(0)(`+`�) =
1

2⇡i

h
S

(0)(`+`� + i0) � S
(0)(`+`� � i0)

i
(3.14)

is the discontinuity of the soft function S
(0)(`+`�). This proves the second refactorization

condition in (2.7).

4 Renormalized factorization formula

The main goal of this work is to establish the renormalized factorization formula

Mb = H1(µ) hO1(µ)i

+ 2

Z
1

0

dz


H2(z, µ) hO2(z, µ)i �

[[H̄2(z, µ)]]

z
[[hO2(z, µ)i]] �

[[H̄2(z̄, µ)]]

z̄
[[hO2(z̄, µ)i]]

�

+ gµ⌫

? H3(µ) lim
�!�1

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J(Mh`�, µ) J(�Mh`+, µ) S(`+`�, µ)
���
leading power

,

(4.1)
which is structurally equivalent to the bare formula (2.9). We have omitted the external states
in the matrix elements for brevity. It is not at all evident that such a formula exists, because,
as we will show, the presence of cuto↵s on some of the integrals does not commute with the
operation of renormalization. We will show that this complication gives rise to some additional
contributions, which to all orders of perturbation theory can be absorbed into the definition
of the matching coe�cient H1(µ).

4.1 Parameter renormalization

In a first step, we relate the bare parameters entering the decay amplitude Mb to the corre-
sponding renormalized parameters. These are the mass of the b quark (which enters in the
matrix elements of the operators Oi), its Yukawa coupling (which enters in the expressions for
the matching coe�cients Hi), as well as the gauge couplings of QCD and QED. We write the
relevant renormalization conditions in the MS subtraction scheme as

yb,0 = µ✏Zy yb(µ) , mb,0 = Zm mb(µ) ,

↵0 = µ2✏Z↵ ↵ , ↵s,0 = µ2✏Z↵s ↵s(µ) .
(4.2)

The factor of µ✏ from the renormalization of the Yukawa coupling multiplies the entire decay
amplitude. It can be ignored, since after parameter renormalization the amplitude is finite

12



❖ Renormalization conditions for the operators:

with complicated Z factors containing plus distributions

[2003.03393]

Renormalized factorization theorem
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O1(µ) = Z11 O
(0)
1

and the limit ✏ ! 0 is smooth. In our analysis we consider QCD radiative corrections only.
To first order in ↵s ⌘ ↵s(µ), we then have

Zy = Zm = 1 � 3CF

↵s

4⇡✏
+ O(↵2

s
) , Z↵s = 1 � �0

↵s

4⇡✏
+ O(↵2

s
) , (4.3)

and Z↵ = 1. Here �0 = 11

3
CA �

4

3
TF nf is the first coe�cient of the QCD �-function, with

nf = 5 being the number of active quark flavors.
In our analysis we will sometimes use the b-quark pole mass mb instead of the running

mass mb(µ). At NNLO the relation between the two quantities is given by [26]

mb(µ) = mb

⇢
1 +

CF↵s

4⇡
(3Lm � 4)

+ CF

⇣↵s

4⇡

⌘2
✓

9

2
CF �

3

2
�0

◆
L2

m
+

✓
�

21

2
CF +

185

6
CA �

26

3
TF nf

◆
Lm + . . .

�

+ O(↵3

s
)

�
,

(4.4)
where Lm = ln(m2

b
/µ2), and for the purposes of this work we do not need the scale-independent

two-loop contribution denoted by the dots. This relation, as well as the relations in (4.3), are
known to very high orders of perturbation theory.

4.2 Operator renormalization

The matrix elements of the bare operators O(0)

1,2
as well as the bare jet and soft functions

J (0) and S(0) contain ultraviolet (UV) divergences not eliminated by the renormalization of
the bare parameters. These divergences must be removed by renormalizing the operators
themselves, allowing for the possibility of operator mixing. In recent work we have studied
the renormalization properties of the jet function [27] and the soft function [28]. We now
discuss the renormalization of the remaining operators at first order in ↵s. We define

Oi(µ) = Zij ⌦ O(0)

j
, (4.5)

where in the basis {O1, O2, [[O2]]} the matrix of renormalization constants is found to have the
texture

Z =

0

BB@

Z11 0 0

Z21 Z22 0

[[Z21]] 0 [[Z22]]

1

CCA . (4.6)

The symbol ⌦ in (4.5) implies a product in the convolution sense whenever operators depend
on the momentum fraction z, i.e.

O2(z, µ) =

Z
1

0

dz0 Z22(z, z0) O(0)

2
(z0) + Z21(z) O(0)

1
,

[[O2(z, µ)]] =

Z 1

0

dz0 [[Z22(z, z0)]] [[O(0)

2
(z0)]] + [[Z21(z)]] O(0)

1
.

(4.7)
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and the limit ✏ ! 0 is smooth. In our analysis we consider QCD radiative corrections only.
To first order in ↵s ⌘ ↵s(µ), we then have
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where Lm = ln(m2
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/µ2), and for the purposes of this work we do not need the scale-independent

two-loop contribution denoted by the dots. This relation, as well as the relations in (4.3), are
known to very high orders of perturbation theory.

4.2 Operator renormalization

The matrix elements of the bare operators O(0)

1,2
as well as the bare jet and soft functions

J (0) and S(0) contain ultraviolet (UV) divergences not eliminated by the renormalization of
the bare parameters. These divergences must be removed by renormalizing the operators
themselves, allowing for the possibility of operator mixing. In recent work we have studied
the renormalization properties of the jet function [27] and the soft function [28]. We now
discuss the renormalization of the remaining operators at first order in ↵s. We define

Oi(µ) = Zij ⌦ O(0)

j
, (4.5)

where in the basis {O1, O2, [[O2]]} the matrix of renormalization constants is found to have the
texture

Z =

0

BB@

Z11 0 0

Z21 Z22 0

[[Z21]] 0 [[Z22]]

1

CCA . (4.6)

The symbol ⌦ in (4.5) implies a product in the convolution sense whenever operators depend
on the momentum fraction z, i.e.

O2(z, µ) =

Z
1

0

dz0 Z22(z, z0) O(0)

2
(z0) + Z21(z) O(0)

1
,

[[O2(z, µ)]] =

Z 1

0

dz0 [[Z22(z, z0)]] [[O(0)

2
(z0)]] + [[Z21(z)]] O(0)

1
.

(4.7)

13

At one-loop order the inverse renormalization factors are given by the same expressions as in
(11), but with the signs in front of ↵s reversed. The above renormalization condition can be
simplified by carefully evaluating the convolution of the three Z factors. After some algebra
we find the simple form

S(w, µ) =

Z 1

0

dw
0
ZS(w,w

0;µ)S(0)(w0) , (15)

where

ZS(w,w
0;µ) =


1 +

CF↵s

4⇡

✓
2

✏2
�

2

✏
ln

w

µ2
�

3

✏

◆�
�(w�w

0)�
CF↵s

⇡✏
w �(w,w0) +O(↵2

s) . (16)

Note that the same plus distribution �(w,w0) as in (12) appears, and that the logarithmic
terms contained in Z33 and Z

�1

J have conspired to generate a logarithm of the ratio w/µ
2.

This fact has already been anticipated in [5].
It is not at all obvious that this definition of the renormalized soft function ensures that all

1/✏n pole terms in (8) are removed. Our “derivation” of the renormalization factor ZS is only a
conjecture, since the convolution of the four bare functions in (9) contains endpoint divergences
for `± ! 1 and is thus ill-defined. Nevertheless, applying the renormalization condition (15)
to the bare soft function in (7) we find that the renormalization factor ZS(w,w0;µ) indeed
removes all 1/✏n pole terms. Note that (contrary to the one-loop renormalization of the jet
function [19]) the plus distributions have a non-trivial e↵ect, because the lowest-order soft
function is not constant, see (8). For the renormalized soft function at one-loop order we
obtain

S(w, µ) = mb

h
Sa(w, µ) ✓(w �m

2

b) + Sb(w, µ) ✓(m
2

b � w)
i
, (17)

with

Sa(w, µ) = 1 +
CF↵s

4⇡


� L

2

w � 6Lw + 3Lm + 8�
⇡
2

2
+ 2Li2

⇣ 1

ŵ

⌘

� 4 ln
⇣
1�

1

ŵ

⌘✓
Lm + 1 + ln

⇣
1�

1

ŵ

⌘
+

3

2
ln ŵ

◆�
,

Sb(w, µ) =
CF↵s

⇡
ln(1� ŵ)

⇥
Lm + ln(1� ŵ)

⇤
.

(18)

We have defined Lw = ln(w/µ2) and Lm = ln(m2

b/µ
2). Figure 2 shows the renormalized soft

function S(w, µ) in units of mb as a function of the dimensionless ratio ŵ = w/m
2

b . We use
mb = 4.8GeV for the b-quark pole mass and choose µ = mb for the renormalization scale.
Note that both curves are discontinuous at ŵ = 1.

4 Renormalization-group evolution

The dependence of the renormalized soft function on the scale µ can be controlled by means
of the RG evolution equation

d

d lnµ
S(w, µ) = �

Z 1

0

dw
0
�S(w,w

0;µ)S(w0
, µ) , (19)
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where �0 =
11
3 CA �

4
3 TF nf is the first coe�cient of the QCD �-function, one obtains

J
(0)(p2) = 1 +

CF↵s

4⇡

✓
�p

2
� i0

µ2

◆�✏  2

✏2
� 1�

⇡
2

6
+O(✏)

�
+O(↵2

s
) . (6)

Here and below ↵s ⌘ ↵s(µ) always denotes the renormalized coupling. For simplicity, we will
from now on drop the “�i0” prescription, which defines the sign of the imaginary part of the
jet function in the time-like region, where p

2
> 0.

While at one-loop order one could renormalize the jet function by means of a local coun-
terterm, the correct renormalization factor has a more complicated non-local form.1 The
proper renormalization condition has been derived from the consistency of the factorization
formula for the B

�
! �`

�
⌫̄ decay amplitude, requiring that the amplitude be independent

of the renormalization scale [19]. In this process, the known RG equations for the B-meson
light-cone distribution amplitude (LCDA) [22] and some other quantities have been used. The
jet function depends on a single argument p2, which can be either time-like or space-like. The
time-like (space-like) jet functions belonging to di↵erent p

2
> 0 (p2 < 0) values mix under

renormalization, but there is no mixing between the time-like and space-like jet functions. For
the time-like case, we write the renormalization condition in the form

J(p2, µ) =
1

p2

Z 1

0

dp
0 2
ZJ(p

2
, p

0 2;µ) J (0)(p0 2) , (7)

with a dimensionless renormalization factor ZJ . For the space-like case an analogous expression
holds, where p0 2 is integrated over the interval (�1, 0]. Treating both cases at the same time,
we write the renormalization condition in the form

J(p2, µ) =

Z 1

0

dxZJ(p
2
, xp

2;µ) J (0)(xp2) . (8)

At one-loop order, one finds (the generalization with y 6= 1 is needed below)

ZJ(yp
2
, xp

2;µ) =


1 +

CF↵s

4⇡

✓
�

2

✏2
+

2

✏
ln

�p
2

µ2

◆�
�(y � x) +

CF↵s

2⇡✏
�(y, x) +O(↵2

s
) , (9)

where the symmetric distribution

�(y, x) =


✓(y � x)

y(y � x)
+

✓(x� y)

x(x� y)

�

+

(10)

arises in the so-called Lange-Neubert kernel for the B-meson LCDA [22] (see also [23]). The
plus prescription is defined such that, when �(y, x) is integrated with a function f(x), one
must replace f(x) ! f(x)� f(y) under the integral. At one-loop order the plus distribution
has no e↵ect when the renormalized jet function is derived from (8). One finds

J(p2, µ) = 1 +
CF↵s

4⇡


ln2

✓
�p

2

µ2

◆
� 1�

⇡
2

6

�
+O(↵2

s
) . (11)

This result was first obtained in [18, 19]. One of the main goals of this paper is to calculate
the two-loop corrections to this formula.

1
It is an embarrassment that there is no known method in SCET to derive the anomalous dimensions of

jet functions directly from their operator definitions.

3

incompatible with cutoffs

incompatible with cutoffs

incompatible with cutoffs

[2009.06779]



Renormalized factorization theorem
❖ When the cutoffs are move from the bare over to the 

renormalized functions, some left-over terms remain, which 
individually have a rather complicated structure and depend 
both on the hard scale Mh and the soft scale mb

❖ The most non-trivial part of the derivation of the renormalized 
factorization theorem was to show that, to all orders of 
perturbation theory, the sum of the left-over terms takes the 
form of an additional hard subtraction            of the Wilson 
coefficient of the operator  
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Renormalized factorization theorem
❖ After this crucial step had been accomplished, we could derive 

the renormalization conditions for the matching coefficients:
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Details on the derivation of this result are given in Appendix C. It is important to remember
that we only need the leading-power terms in this expression. In the second integral (fourth
line) the variables ⇢± are both in the hard region, and hence the arguments of the soft and jet
functions are all of order M2

h
. For the first integral, the variables `± are in the hard region,

and this forces the variables ⇢± and !± to be in the hard region as well (see Appendix C for
more details). In order to obtain the leading-power terms we can therefore simply set mb,0 = 0
in the ratio S(0)(⇢+⇢�)/mb,0, in which case we obtain from (A.6) and (A.7)

S(0)

1 (w)

mb,0

⌘
S(0)(w)

mb,0

����
mb,0!0

= �
Nc↵b,0

⇡
✓(w)


e✏�E

�(1 � ✏)
w�✏ +

CF↵s,0

4⇡
C1(✏) w�2✏ + O(↵2

s
)

�
,

(4.46)

with C1(✏) given in (A.8). It is now explicit that the quantity �H(0), tot

1
only depends on

the hard scale �M2

h
. In order to calculate it at leading order in ↵s we use the lowest-order

expressions for the bare jet and soft functions. We also note that the integral in the last line
of (4.45) vanishes at first order in ↵s. After a straightforward calculation we find
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where H(✏) =  (1+ ✏)+ �E is the harmonic-number function. This generalizes relation (4.18)
to higher orders in ✏.

In terms of this quantity, the correct all-order definition of the renormalized matching
coe�cient H1(µ) is obtained as
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4.6 Contributions to the decay amplitude

As a cross check we evaluate the three terms Ti shown in the three lines of the renormalized
factorization theorem (4.1) using the results for the matrix elements and matching coe�cients
obtained above. This yields
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The renormalization factor for the bare matching coe�cient H(0)
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as well as

H1(µ) =
⇣
H(0)

1
+ �H(0)

1
� �H(0)

1

⌘
Z�1

11
+ 2

Z
1

0

dz H(0)

2
(z) Z�1

21
(z)

� 2

Z 1

0

dz
[[H̄(0)

2
(z)]]

z
[[Z�1

21
(z)]] � 2

Z 1

0

dz̄
[[H̄(0)

2
(z̄)]]

z̄
[[Z�1

21
(z̄)]] . (naively)

(4.30)

At O(↵s) most elements of the inverse matrix Z�1 can be obtained from the corresponding
elements of Z by simply changing the sign in front of ↵s. The only exception are the entries
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The three relations in (4.29) indeed provide the correct renormalization conditions for the

corresponding matching coe�cients. Using the expressions for the bare matching coe�cients
derived in [8] and collected in (A.9) and (A.10), we find
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The three relations in (4.29) indeed provide the correct renormalization conditions for the

corresponding matching coe�cients. Using the expressions for the bare matching coe�cients
derived in [8] and collected in (A.9) and (A.10), we find
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At O(↵s) most elements of the inverse matrix Z�1 can be obtained from the corresponding
elements of Z by simply changing the sign in front of ↵s. The only exception are the entries
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The three relations in (4.29) indeed provide the correct renormalization conditions for the

corresponding matching coe�cients. Using the expressions for the bare matching coe�cients
derived in [8] and collected in (A.9) and (A.10), we find
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the bare parameters ↵b,0, ↵s,0 and mb,0, we find that some 1/✏ poles remain, which must be

removed by the counterterm Z21 hO(0)

1
i. In this way we obtain
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Taking the limit z ! 0, we derive from this result the expression
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The renormalized matrix element of O3 is expressed as a double convolution over renormal-
ized jet and soft functions, as shown in (4.1). The calculation of the renormalized jet function
J(p2) at two-loop order and the study of its RG evolution equation have been discussed in
[27], while the renormalization of the soft function S(w) at one-loop order and the derivation
of its two-loop RG equation have been studied in [28]. When the renormalized expressions are
used, we find that
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It is tempting to interpret this extra contribution as a mixing of the operator O3 with O1, but
in reality its origin lies in the fact that imposing the upper cuto↵s on the convolution integrals
over `+ and `� does not commute with renormalization. It is thus more appropriate to treat
the extra term as a contribution to the bare matching coe�cient H(0)

1
. We will come back to

this issue in Section 4.5.

4.3 Renormalized matrix elements

With the renormalization factors fixed, we now proceed to derive the h ! �� matrix elements
of the renormalized operators in the factorization formula (4.1). For the case of O1 we trivially
obtain

hO1(µ)i = mb(µ) gµ⌫

? . (4.19)
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For the matrix element of O2 we find
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Note that we use the running b-quark mass mb(µ) in the prefactor but the pole mass mb in the
argument of the logarithm Lm = ln(m2

b
/µ2). Besides being convenient this is not unnatural,

because the linear factor of mb(µ) in each matrix element plays the role of a running coupling,
whereas the quantity mb appearing in the arguments of the logarithm Lm is due to phase-space
e↵ects. If desired, one can always switch back from one choice to the other using relation (4.4).
In the limit z ! 0 the above expression simplifies to
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(4.22)
Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).

To obtain the renormalized matrix element of O3, we start from the expressions for the
renormalized jet and soft functions. They are [20, 27]
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that we use the running b-quark mass mb(µ) in the prefactor but the pole mass mb in the
argument of the logarithm Lm = ln(m2

b
/µ2). Besides being convenient this is not unnatural,

because the linear factor of mb(µ) in each matrix element plays the role of a running coupling,
whereas the quantity mb appearing in the arguments of the logarithm Lm is due to phase-space
e↵ects. If desired, one can always switch back from one choice to the other using relation (4.4).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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with
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Here ŵ = w/m2

b
and Lw = ln(w/µ2). The result for the function Sa(w, µ) takes this relatively

simple form only if one uses the pole mass in the argument of the ✓(w � m2

b
) distribution in

(4.24). When these expressions are used in the double convolution integral shown in the third
term of (4.1), one obtains
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Contrary to the matrix elements of O1, O2 and [[O2]] this expression contains the large rapidity
logarithm L = ln(�M2

h
/m2

b
), which is a consequence of the collinear anomaly. The fact that

the integrals over `+ and `� in (4.1) run from the soft region (with `+`� ⇠ m2

b
) up to values of

O(Mh) generates up to two powers of L for each loop order in addition to the logarithms Lm

associated with the soft scale mb. In other examples where the collinear anomaly appears, the
rapidity logarithms take on a simpler form and (typically) exponentiate [21]. In the present
case their structure is more complicated, because the rapidity logarithms arise from a double
integral over a rather complicated integrand. In order to resum these logarithms it is necessary
to factorize the matrix element into a convolution over jet and soft functions, each of which
depends on a di↵erent scale, and then solve the RG evolution equations of these various
functions.

4.4 Renormalized matching coe�cients

Ignoring the cuto↵s on the convolutions integrals in (4.1) for a moment, one would conclude

that the UV divergences of the bare matching coe�cients H(0)

i
are removed by applying the

inverse matrix of renormalization factors Z�1. It has the same texture as Z and is given by

Z�1 =

0

BB@

Z�1

11
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CCA , (4.27)
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ŵ

⌘

� 4 ln
⇣
1 �

1

ŵ
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the bare parameters ↵b,0, ↵s,0 and mb,0, we find that some 1/✏ poles remain, which must be

removed by the counterterm Z21 hO(0)

1
i. In this way we obtain
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(4.15)

Taking the limit z ! 0, we derive from this result the expression
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The renormalized matrix element of O3 is expressed as a double convolution over renormal-
ized jet and soft functions, as shown in (4.1). The calculation of the renormalized jet function
J(p2) at two-loop order and the study of its RG evolution equation have been discussed in
[27], while the renormalization of the soft function S(w) at one-loop order and the derivation
of its two-loop RG equation have been studied in [28]. When the renormalized expressions are
used, we find that
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where
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It is tempting to interpret this extra contribution as a mixing of the operator O3 with O1, but
in reality its origin lies in the fact that imposing the upper cuto↵s on the convolution integrals
over `+ and `� does not commute with renormalization. It is thus more appropriate to treat
the extra term as a contribution to the bare matching coe�cient H(0)

1
. We will come back to

this issue in Section 4.5.

4.3 Renormalized matrix elements

With the renormalization factors fixed, we now proceed to derive the h ! �� matrix elements
of the renormalized operators in the factorization formula (4.1). For the case of O1 we trivially
obtain

hO1(µ)i = mb(µ) gµ⌫

? . (4.19)
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For the matrix element of O2 we find
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Note that we use the running b-quark mass mb(µ) in the prefactor but the pole mass mb in the
argument of the logarithm Lm = ln(m2

b
/µ2). Besides being convenient this is not unnatural,

because the linear factor of mb(µ) in each matrix element plays the role of a running coupling,
whereas the quantity mb appearing in the arguments of the logarithm Lm is due to phase-space
e↵ects. If desired, one can always switch back from one choice to the other using relation (4.4).
In the limit z ! 0 the above expression simplifies to
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).

To obtain the renormalized matrix element of O3, we start from the expressions for the
renormalized jet and soft functions. They are [20, 27]
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).

To obtain the renormalized matrix element of O3, we start from the expressions for the
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).
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Note that the same result is obtained using the second relation in (4.7) along with the renor-
malization factors given in (4.12) and (4.16).

To obtain the renormalized matrix element of O3, we start from the expressions for the
renormalized jet and soft functions. They are [20, 27]

J(p2, µ) = 1 +
CF↵s

4⇡


ln2

✓
�p2

� i0

µ2

◆
� 1 �

⇡2

6

�
+ O(↵2

s
) , (4.23)

and [28]

S(w, µ) = �
Nc↵b

⇡
mb(µ)

h
Sa(w, µ) ✓(w � m2

b
) + Sb(w, µ) ✓(m2

b
� w)

i
, (4.24)

17

with

Sa(w, µ) = 1 +
CF↵s

4⇡


� L2

w
� 6Lw + 12 �

⇡2

2
+ 2 Li2

⇣ 1

ŵ
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Here ŵ = w/m2

b
and Lw = ln(w/µ2). The result for the function Sa(w, µ) takes this relatively

simple form only if one uses the pole mass in the argument of the ✓(w � m2

b
) distribution in

(4.24). When these expressions are used in the double convolution integral shown in the third
term of (4.1), one obtains
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Contrary to the matrix elements of O1, O2 and [[O2]] this expression contains the large rapidity
logarithm L = ln(�M2

h
/m2

b
), which is a consequence of the collinear anomaly. The fact that

the integrals over `+ and `� in (4.1) run from the soft region (with `+`� ⇠ m2

b
) up to values of

O(Mh) generates up to two powers of L for each loop order in addition to the logarithms Lm

associated with the soft scale mb. In other examples where the collinear anomaly appears, the
rapidity logarithms take on a simpler form and (typically) exponentiate [21]. In the present
case their structure is more complicated, because the rapidity logarithms arise from a double
integral over a rather complicated integrand. In order to resum these logarithms it is necessary
to factorize the matrix element into a convolution over jet and soft functions, each of which
depends on a di↵erent scale, and then solve the RG evolution equations of these various
functions.

4.4 Renormalized matching coe�cients

Ignoring the cuto↵s on the convolutions integrals in (4.1) for a moment, one would conclude

that the UV divergences of the bare matching coe�cients H(0)

i
are removed by applying the

inverse matrix of renormalization factors Z�1. It has the same texture as Z and is given by
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CCA , (4.27)
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ŵ

⌘✓
Lm + 1 + ln

⇣
1 �

1

ŵ
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The renormalization factor for the bare matching coe�cient H(0)

3
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. Specifically, one
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At O(↵s) most elements of the inverse matrix Z�1 can be obtained from the corresponding
elements of Z by simply changing the sign in front of ↵s. The only exception are the entries
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]], for which we find
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The three relations in (4.29) indeed provide the correct renormalization conditions for the

corresponding matching coe�cients. Using the expressions for the bare matching coe�cients
derived in [8] and collected in (A.9) and (A.10), we find
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with
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(4.28)

The renormalization factor for the bare matching coe�cient H(0)

3
is Z�1

33
. Specifically, one

would then derive
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as well as
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(4.30)

At O(↵s) most elements of the inverse matrix Z�1 can be obtained from the corresponding
elements of Z by simply changing the sign in front of ↵s. The only exception are the entries
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The three relations in (4.29) indeed provide the correct renormalization conditions for the

corresponding matching coe�cients. Using the expressions for the bare matching coe�cients
derived in [8] and collected in (A.9) and (A.10), we find
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where Lh = ln(�M2

h
/µ2), and yb(µ) denotes the running b-quark Yukawa coupling. The result

for [[H̄2(z, µ)]] can be obtained in two ways: either by using the second relation in (4.29) or by
taking the limit z ! 0 in the expression for H2(z, µ). Both methods lead to the same result.

The expression for H1 shown in (4.30) is problematic, because the integrals over z and z̄
extending up to infinity are divergent and indeed undefined. To see this, note that at lowest
order in perturbation theory [[Z�1

21
(z)]] is a constant, while [[H̄(0)

2
(z)]] = 1. In order to obtain

a well-behaved expression we need to restrict the integration to the interval z 2 [0, 1], like in
the first term. We thus define
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⇣
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1
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,

(4.33)
where the sum of the three terms in the second line is now well defined and free of endpoint
singularities, such that the limit � ! 0 is smooth. The quantity �0H(0)

1
accounts for the mis-

match of integration limits, which one encounters when equating the factorization formula
(4.1) expressed in terms of renormalized quantities with formula (2.1) expressed in terms of
bare quantities (recall that both correctly reproduce the decay amplitude). After a straight-
forward calculation we find that
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(4.34)

Starting from the expressions for the bare quantities derived in [8] and given in Appendix A,

and using our results for the various renormalization factors, we find that �0H(0)

1
= O(↵2

s
). It

is then straightforward to obtain from (4.33)
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s
)

�
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(4.35)

4.5 Higher-order analysis of cuto↵ e↵ects

In our discussion so far we have glanced over an important subtlety related to the cuto↵s
on the various terms in the bare and renormalized factorization theorems (2.9) and (4.1). In
(4.33) the renormalized matching coe�cient H1(µ) is expressed in terms of bare quantities and
renormalization factors. However, it is far from obvious that the sum of the terms on the right-
hand side is indeed only a function of the hard scale �M2

h
and independent of the soft scale
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Resummation of large logs
❖ The renormalized factorization formula

provides a complete scale separation and allows us to resum 
large logarithms in the decay amplitude to all orders of 
perturbation theory!
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`+ from the jet function, and a cut infinitesimally below the real axis for positive values of `+

from the soft function. The integral is thus non-zero only if `+ � 0 and we can deform the
contour such that it wraps around the cut in the lower half-plane. This leads to

h��| [[O(0)

2
(z)]] |hi = �

1

2
"⇤

?(k1) · "⇤
?(k2)

Z 1

0

d`+

`+

J (0)(�Mh`+) S(0)(zMh`+) , (3.13)

where

S(0)(`+`�) =
1

2⇡i

h
S

(0)(`+`� + i0) � S
(0)(`+`� � i0)

i
(3.14)

is the discontinuity of the soft function S
(0)(`+`�). This proves the second refactorization

condition in (2.7).

4 Renormalized factorization formula

The main goal of this work is to establish the renormalized factorization formula

Mb = H1(µ) hO1(µ)i

+ 2

Z
1

0

dz


H2(z, µ) hO2(z, µ)i �

[[H̄2(z, µ)]]

z
[[hO2(z, µ)i]] �

[[H̄2(z̄, µ)]]

z̄
[[hO2(z̄, µ)i]]

�

+ gµ⌫

? H3(µ) lim
�!�1

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J(Mh`�, µ) J(�Mh`+, µ) S(`+`�, µ)
���
leading power

,

(4.1)
which is structurally equivalent to the bare formula (2.9). We have omitted the external states
in the matrix elements for brevity. It is not at all evident that such a formula exists, because,
as we will show, the presence of cuto↵s on some of the integrals does not commute with the
operation of renormalization. We will show that this complication gives rise to some additional
contributions, which to all orders of perturbation theory can be absorbed into the definition
of the matching coe�cient H1(µ).

4.1 Parameter renormalization

In a first step, we relate the bare parameters entering the decay amplitude Mb to the corre-
sponding renormalized parameters. These are the mass of the b quark (which enters in the
matrix elements of the operators Oi), its Yukawa coupling (which enters in the expressions for
the matching coe�cients Hi), as well as the gauge couplings of QCD and QED. We write the
relevant renormalization conditions in the MS subtraction scheme as

yb,0 = µ✏Zy yb(µ) , mb,0 = Zm mb(µ) ,

↵0 = µ2✏Z↵ ↵ , ↵s,0 = µ2✏Z↵s ↵s(µ) .
(4.2)

The factor of µ✏ from the renormalization of the Yukawa coupling multiplies the entire decay
amplitude. It can be ignored, since after parameter renormalization the amplitude is finite
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as well as the o↵-diagonal elements
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✓
ln2 z + 11 �

2⇡2

3

◆
+ O(↵2

s
)

�
.

(5.3)
Note that both Zij and �ij are scale-dependent quantities, but we suppress this dependence
for the sake of simplicity of the notation.

The diagonal elements of the anomalous-dimension matrix are also known to higher or-
ders in ↵s. Relation (4.8) implies that �11 = ��m is determined in terms of the anomalous
dimension of the quark mass, defined as

d

d ln µ
mb(µ) = �m mb(µ) . (5.4)

The quantity �m is known to five-loop order [38]. The two-loop expression for �22 (and with it
[[�22]]) can in principle be derived from [31–35]. The anomalous dimension �33, which according
to (4.13) is equal to the anomalous dimension of two-jet current operators in SCET, can to
all orders be written in the form [36]

�33 = �cusp(↵s) ln
�M2

h

µ2
+ 2�q(↵s) , (5.5)

where �cusp is the light-like cusp anomalous dimension in the fundamental representation of
SU(Nc) [39], and �q is the anomalous dimension of the quark field in light-cone gauge. The
cusp anomalous dimension has recently been calculated to four-loop order [40], while �q is
known to three loops. It can be determined from the three-loop expression for the divergent
part of the on-shell quark form factor in QCD [41, 42].

5.1 RG equations for the operator matrix elements

From (4.5) it follows that the matrix elements of the renormalized operators satisfy the RG
evolution equations

d

d ln µ
hO1(µ)i = ��11 hO1(µ)i ,

d

d ln µ
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Z
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0
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Z 1

0

dz0 [[�22(z, z0)]] [[hO2(z
0, µ)i]] � [[�21(z)]] hO1(µ)i .

(5.6)

We have checked that these equations are satisfied to O(↵s).
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As mentioned earlier, in order to resum all large logarithms contained in the matrix element
of the operator O3 one must factorize the matrix element in the form

hO3(µ)i = gµ⌫

? lim
�!�1

Z
Mh

0

d`�

`�

Z
�Mh

0

d`+

`+

J(Mh`�, µ) J(�Mh`+, µ) S(`+`�, µ)
���
leading power

(5.7)
and solve the RG equations for the jet and soft functions separately. We have derived the
corresponding evolution equations at two-loop order in two recent papers. For the jet function
one finds [20, 27]

d

d ln µ
J(p2, µ) = �

Z 1

0

dx �J(p2, xp2) J(xp2, µ) , (5.8)

which in this form holds for both space-like and time-like values of p2. The anomalous dimen-
sion is given by

�J(p2, xp2) =
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�(1 � x) + �cusp(↵s) �(1, x)

+ CF
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h(x) + O(↵3

s
) ,

(5.9)

where

h(x) = ln x


�0 + 2CF

✓
ln x �

1 + x

x
ln(1 � x) �

3

2

◆�
. (5.10)

The local terms (with x = 1) can to all orders be expressed in terms of the cusp anomalous
dimension and an anomalous dimension �0(↵s), which was recently obtained at two-loop order
[27]. Since the plus distribution contained in �(1, x) is linked with the logarithmic term, it
is also multiplied by �cusp. However, starting at two-loop order additional non-local terms
arise, whose explicit form was obtained in [27] by using the RG invariance of the B�

! � l�⌫̄
decay rate along with the calculation of the two-loop anomalous dimension of the B-meson
light-cone distribution amplitude (LCDA) performed in [43].

The RG equation for the soft function is tightly linked to that of the jet function [28]. One
finds2

d

d ln µ
S(w, µ) = �

Z 1

0

dx �S(w, w/x) S(w/x, µ) , (5.11)

where

�S(w, w/x) = �


�cusp(↵s) ln

w

µ2
� �s(↵s)

�
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� 2CF
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⌘2 ✓(1 � x)

1 � x
h(x) + O(↵3

s
) ,

(5.12)

with
�s(↵s) = 2�q(↵s) + 2�0(↵s) . (5.13)

2The quantity �S(w, w/x) in this relation is connected with the original definition of the anomalous dimen-
sion �S(w, w0; µ) in [28] by �S(w, w0; µ) = (w/w02) �S(w, w/x), where w0 = w/x.
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finds2
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with
�s(↵s) = 2�q(↵s) + 2�0(↵s) . (5.13)

2The quantity �S(w, w/x) in this relation is connected with the original definition of the anomalous dimen-
sion �S(w, w0; µ) in [28] by �S(w, w0; µ) = (w/w02) �S(w, w/x), where w0 = w/x.
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Resummation of large logs
❖ RG equations for matching coefficients:

❖ where:
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Via this relation the quantity �s is known to two-loop order. As defined above, the anomalous
dimensions of the matching coe�cient H3 and of the jet and soft functions obey the simple
relation

�33 = �J
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`+

, x
Mhw

`+

◆
+ �J(�Mh`+, �xMh`+) + �S(w, w/x) , (5.14)

which is a consequence of relation (4.14). In this form it is easy to see that the variable `+

drops out from the result.

5.2 RG equations for the matching coe�cients

The renormalized matching coe�cients obey the evolution equations
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in the first equation results from non-trivial e↵ects of the cuto↵s on the scale evolution. Once
again, we have checked that all of these equations are satisfied to O(↵s).

The evolution equation for the matching coe�cient H1(µ) calls for a more careful discus-
sion. We have seen in Section 4.5 that the definition of this coe�cient in higher orders is quite
subtle and requires a careful treatment of the e↵ects of the cuto↵s on the various convolution
integrals. In this section we will derive the evolution equation for H1 beyond one-loop order
using the RG invariance of the decay amplitude on the left-hand side of (4.1). Explicitly, we
evaluate

d

d ln µ
Mb = 0 =
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where T2 and T3 denote the second and third lines in the factorization formula (4.1). The
scale dependence of the third term has been studied in our recent work [28], where we have
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inhomogeneous contribution due to cutoffs

Combining the results (5.18) and (5.24), and using relation (5.26), all terms involving the
soft function cancel out, and we obtain the exact formula

d

d ln µ

h
T3(µ) + T2(µ)

i
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0
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(5.29)
Using this result along with (5.17), and comparing the answer with the evolution equation for
H1(µ) shown in (5.15), we find

Dcut(µ) = �4H3(µ)
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Z
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Z
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z
[[H̄2(xz, µ)]] �21(z, µ) .

(5.30)

In the second step we have used the renormalized refactorization condition (5.23). It is now
explicit that this quantity depends only on the hard scale Lh. Performing the integrals over
x and z, and using the explicit expressions for the quantities K(x) and �21 given above, we
can compute the first two expansion coe�cients of Dcut(µ) in powers of ↵s. We find
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where
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(5.32)

Interestingly, this result is expressed entirely in terms of ⇣n values. The leading-order term
agrees with (5.16). In the two-loop term nf = 5 is the number of light quark flavors in the
relevant scale interval between mb and Mh.

The quantity Dcut(µ) exhibits single-logarithmic behavior in higher orders. To see this,
note that �21 3 ↵b↵n

s
Ln+1

h
, [[H̄2]] 3 ↵n

s
Ln

h
and K = O(↵s), which implies

Dcut(µ) 3 ↵b (↵sLh)
n . (5.33)

Note also that instead of calculating Dcut directly one can recast the second relation in (5.30)
in the form

Dcut(µ) =

Z 1

0

dz

z
[[H̄2(z, µ)]] �cut(z) , (5.34)
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Interestingly, this result is expressed entirely in terms of ⇣n values. The leading-order term
agrees with (5.16). In the two-loop term nf = 5 is the number of light quark flavors in the
relevant scale interval between mb and Mh.

The quantity Dcut(µ) exhibits single-logarithmic behavior in higher orders. To see this,
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Note also that instead of calculating Dcut directly one can recast the second relation in (5.30)
in the form

Dcut(µ) =
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Logarithms in the 3-loop amplitude
❖ From a perturbative solution of the RGEs, we have obtained 

predictions for the terms of order                with k=6,5,4,3 in the 
3-loop decay amplitude in the on-shell scheme, finding:

❖ Find perfect agreement with recent numerical results!
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In deriving these coe�cients we have used the two-loop expression for the anomalous dimension
�33 in (5.5), which is given in Appendix D. To determine the O(↵2

s
L0

h
) contribution would

require a complete two-loop calculation of H3.
Given the higher-order logarithmic corrections to H2 shown in (6.7), it is straightforward

to integrate the first evolution equation in (5.15) perturbatively. In this way we obtain
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where
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The derivation of the O(↵b↵2

s
L2

h
) term would require knowledge of the O(↵2

s
Lh) contribution

to H2(z, µ), which in turn needs the two-loop coe�cient of the anomalous dimension �22.

6.3 Higher-order logarithmic contributions to the decay amplitude

Given the above higher-order results for the matrix elements and matching coe�cients, it
is straightforward to derive the higher-order logarithmic corrections to the b-quark induced
h ! �� decay amplitude at O(↵2
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Lk) with k � 3. We find
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(6.13)

where the dots refer to three-loop terms containing less than three powers of logarithms (L or
Lm). The higher-order expansion coe�cients are
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The amplitude is scale-independent to the order we are working, meaning that the µ depen-
dence of the running couplings yb(µ), mb(µ) contained in M0(µ) and of ↵s(µ) is compensated
by the terms containing Lm = ln(m2

b
/µ2).

As a cross check of our results, we now compare expression (6.13) for the decay amplitude
with the results of previous calculations. To this end we need to perform transformations
to di↵erent renormalization schemes. First, we express the running parameters mb(µ) and
yb(µ) =

p
2 mb(µ)/v in the prefactor M0(µ) in terms of the b-quark pole mass, using relation

(4.4). We then eliminate the remaining scale dependence by making the choice µ2 = µ̂2

h
⌘

�M2

h
� i0 in the running coupling ↵s(µ). In this “on-shell scheme” (OS), we find that the

amplitude takes the form

Mb =
Nc↵b

⇡

m2

b

v
"⇤

?(k1) · "⇤
?(k2)

⇥

(
L2

2
� 2 +

CF ↵s(µ̂h)

4⇡


�

L4

12
� L3

�
2⇡2

3
L2 +

✓
12 +

2⇡2

3
+ 16⇣3

◆
L � 20 + 4⇣3 �

⇡4

5

�

+ CF

✓
↵s(µ̂h)

4⇡

◆2 CF

90
L6 +

✓
CF

10
�

�0

30

◆
L5 + dOS

4
L4 + dOS

3
L3 + . . .

�)
,

(6.15)
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and the dots refer to terms containing less than three powers of logarithms. The contributions
to the decay amplitude of O(↵b↵2

s
nf ) have been calculated in closed analytic form in [14],

and we find full agreement with the results obtained by these authors. Moreover, recently the
entire three-loop gg ! h amplitude has been calculated in numerical form [15]. The authors
of this paper have kindly repeated their calculation for the case of h ! �� and found the
following numerical result for the three-loop coe�cient inside the rectangular bracket in (6.15)
(to much higher accuracy than indicated here):
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(6.17)

where we only show the coe�cients of the logarithmic terms of order L3 and higher. The
terms in the second line refer to three-loop diagrams containing a quark loop with nl massless
flavors in addition to the b-quark loop connecting to the Higgs boson; see Figure 7 for some
representative examples. The terms shown in the third line refer to the same diagrams, but
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Series of subleading logs
❖ We have reproduced the series of leading double logs (LL) and 

obtained a new result for the NLL logs to  all orders in αs:

with

❖ The subleading terms disagree with earlier results in the 
literature!
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[Akhoury, Wang, Yakovlev 2001; Anastasiou, Penin 2020]

When expanded to O(↵2

s
) this formula yields
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Interestingly, the coe�cient of the C2

F
↵2

s
L5 term (marked in bold face) does not agree with our

result shown in (6.21). It is di�cult to trace the origin of this discrepancy, given that in [11]
the derivation of the subleading logarithmic contributions is only sketched. The authors start
from an analysis of the o↵-shell Sudakov form factor [45], i.e. the quark form factor of a vector
current in the limit where Q2 = |q2

| � |p2

i
|, and then take the limit where the two external

legs go on-shell (p2

i
! 0). They also need to account for the kinematic di↵erences between

quark scattering o↵ a vector current and photon scattering o↵ a scalar (Higgs) current. In
general, a consistent framework based on e↵ective field theory, such as the SCET approach
developed here, is certainly helpful to derive consistent results for corrections appearing beyond
the leading order in both logarithmic counting and power counting in � = mb/Mh. In our
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where ⇢ = CF ↵s(Mh)

2⇡
L2, and in the prefactor mb denotes the pole mass. The second term inside

the brackets in the second line is not in agreement with (6.23).
In the recent paper [16] the resummation approach of [11] was extended to predict the

leading and subleading logarithms in the gg ! h amplitude. The authors showed that in an
appropriate “abelian limit” their result reproduces the formula for the subleading logarithms
shown in (6.23). We thus believe that also in this work the subleading logarithms at three-loop
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❖ Ultimate goal is to resum all large logarithms and 
exponentiate them (RG-improved perturbation theory)

❖ Particularly important for Sudakov problems, where leading 
logs are formally larger than O(1)

❖ In RG-improved perturbation theory one supplies the 
matching conditions for all component functions in the 
factorization theorem at matching scales where they are free of 
large logs; these functions and then evolved to a common scale 
solving their RG equations → all large logs exponentiate!

Resummation in RG-improved PT

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET                                                                                  33



❖ We have not yet performed a complete resummation, but we 
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RG-improved perturbation theory, finding:

with:
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where r = ↵s(µh)/↵s(µi). We have evaluated the rel-
evant coe�cients of the anomalous dimensions and the
QCD �-function for nf = 5 active quark flavors. Note
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The matching scales µ± for the jet functions and µs for

the soft function must be chosen such that the matching
conditions at these scales are free of large logarithms.
This is a non-trivial requirement, because the jet and
soft functions depend on the variables `±, which are inte-
grated from the soft region (`+`� ⇠ m2

b) into the hard re-
gion (`+`� ⇠ M2

h). It is therefore necessary that one sets
the matching scales dynamically under the integral [13],
such that µ2

s ⇠ `+`� and µ2
± ⇠ Mh`± up to O(1) fac-

tors, see (4) and (6). (The three scale parameters should
however not be lowered below m2

b , because the region
where `+`� is parametrically smaller than m2

b gives a
power-suppressed contribution to the decay amplitude.)
When this is done, all large logarithms are resummed
into ratios of running couplings. Corrections omitted in
(11) are thus suppressed by powers of ↵s. They can be
included systematically by calculating the matching con-
ditions and anomalous dimensions to higher orders.

It is possible to reexpand the resummed expression (11)
in a perturbative series and extract the series of leading
and next-to-leading logarithms (NLL) of order ↵↵n
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where ⇢ = CF↵s(µ̂h)

2⇡ L2 with µ̂2

h = �M2

h � i0, and in the
prefactor mb denotes the pole mass. Our normalization

of the amplitude is chosen such that this result can be
compared directly with the findings of [18]. We observe
a disagreement in the second term in brackets, which is
quoted in this reference as 3⇢

2L
n+1

2n+3
. The infinite sums

in (13) can be expressed in closed form in terms of a
hypergeometric function and the Dawson integral.

In summary, we have derived the first renormalized
factorization theorem for an observable in high-energy
physics appearing at subleading power in the ratio of
two hierarchical mass scales m ⌧ M , carefully regulariz-
ing endpoint-divergent convolution integrals by system-
atically rearranging the factorization formula. For the ex-
ample of the b-quark induced h ! �� decay of the Higgs
boson, we have derived the RGEs for all quantities in the
factorization theorem and resummed large logarithms in
the decay amplitude beyond the leading logarithmic ap-
proximation. The techniques we have developed, and
in particular our approach to regularize endpoint diver-
gences, are more general and can be applied to other
power-suppressed observables as well. Our results thus
constitute an important step toward establishing a robust
framework for studying factorization and scale separation
at subleading order in scale ratios.
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where yb(µ) denotes the running b-quark Yukawa cou-
pling and Lh = ln(�M2
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2
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The RGEs for the jet and soft functions have been dis-
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where the quantity Dcut contains terms of order ↵↵n
sL

n
h

in higher orders (n > 1) of perturbation theory. As long
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function (see e.g. [24, 25]). The Sudakov exponent S is
given by [26]
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where r = ↵s(µh)/↵s(µi). We have evaluated the rel-
evant coe�cients of the anomalous dimensions and the
QCD �-function for nf = 5 active quark flavors. Note
that G2,2

4,4(· · · |x) vanishes for |x| ! 1 (and hence the re-
gion where `+`� ⌧ m2

b gives a power-suppressed contri-
bution to T3), whereas it approaches �2(1+as)/�2(1�as)
for x ! 0 (corresponding to `+`� � m2

b).
The matching scales µ± for the jet functions and µs for

the soft function must be chosen such that the matching
conditions at these scales are free of large logarithms.
This is a non-trivial requirement, because the jet and
soft functions depend on the variables `±, which are inte-
grated from the soft region (`+`� ⇠ m2

b) into the hard re-
gion (`+`� ⇠ M2

h). It is therefore necessary that one sets
the matching scales dynamically under the integral [13],
such that µ2

s ⇠ `+`� and µ2
± ⇠ Mh`± up to O(1) fac-

tors, see (4) and (6). (The three scale parameters should
however not be lowered below m2

b , because the region
where `+`� is parametrically smaller than m2

b gives a
power-suppressed contribution to the decay amplitude.)
When this is done, all large logarithms are resummed
into ratios of running couplings. Corrections omitted in
(11) are thus suppressed by powers of ↵s. They can be
included systematically by calculating the matching con-
ditions and anomalous dimensions to higher orders.

It is possible to reexpand the resummed expression (11)
in a perturbative series and extract the series of leading
and next-to-leading logarithms (NLL) of order ↵↵n
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where ⇢ = CF↵s(µ̂h)

2⇡ L2 with µ̂2

h = �M2

h � i0, and in the
prefactor mb denotes the pole mass. Our normalization

of the amplitude is chosen such that this result can be
compared directly with the findings of [18]. We observe
a disagreement in the second term in brackets, which is
quoted in this reference as 3⇢

2L
n+1

2n+3
. The infinite sums

in (13) can be expressed in closed form in terms of a
hypergeometric function and the Dawson integral.

In summary, we have derived the first renormalized
factorization theorem for an observable in high-energy
physics appearing at subleading power in the ratio of
two hierarchical mass scales m ⌧ M , carefully regulariz-
ing endpoint-divergent convolution integrals by system-
atically rearranging the factorization formula. For the ex-
ample of the b-quark induced h ! �� decay of the Higgs
boson, we have derived the RGEs for all quantities in the
factorization theorem and resummed large logarithms in
the decay amplitude beyond the leading logarithmic ap-
proximation. The techniques we have developed, and
in particular our approach to regularize endpoint diver-
gences, are more general and can be applied to other
power-suppressed observables as well. Our results thus
constitute an important step toward establishing a robust
framework for studying factorization and scale separation
at subleading order in scale ratios.
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Conclusions
❖ We have derived the first SCET factorization theorem for an 

observable appearing at subleading order in power counting

❖ Generic features: 
‣ several SCET operators exist → several terms in factorization formula

‣ these operators mix under renormalization

‣ endpoint divergences in convolutions cancel between the different terms; 
cancellation ensured by D-dim. refactorization conditions 

‣ endpoint divergences can be removed by performing subtractions and 
rearranging the various terms

❖ Our results are an important step towards establishing SCET as a 
complete EFT admitting a consistent power expansion! 
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