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Introduction

L)

» Factorization of scales is a fundamental concept in HEP:

»  LHC cross section ~ Oparton ® PDFs

»  basis for the resummation of large logarithmic corrections

+ Soft-collinear effective theory (SCET)
provides a framework for studying
factorization and resummation for
processes involving light energetic
particles using tools of etfective field

theory (EFT)

[Bauer et al. 2000, 2001; Beneke et al. 2002]
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Introduction

» Conventional EFTs provide a systematic expansion in inverse
powers of a large scale Q:

L ¥ el e Zd” (Q, 1) OV (1) ZC@) (Q, 1) 07 () +
» Examples: He**, xPT, HQET, NRQCD, SMEFT, ...

» Extension to higher orders “straightforward if tedious”
= s 12 988 d sl T 0066 20 [Graf et al. 2020]

v SNIEET: 12 3045 1542 41807 90456 2092441 -
[Henning, Lu, Melia, Murayama 2015]
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Introduction
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SCET is more complicated in several aspects:

»  operators contain non-local products of fields (unavoidable
consequence of E ~ @ but p* < Q°), need to introduce Wilson
lines for gauge invariance

»  Wilson coefficients depend on large momentum components in
addition to heavy masses of particles integrated out

»  fields are split up in momentum modes (method of regions):
[Beneke, Smirnov 1997]

| Lz |

collinear soft
(regions of large momentum flow)
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Introduction
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SCET is more complicated in several aspects:

» hard modes are integrated out
(Wilson coefficients = hard matching coefficients)

» different collinear sectors appear decoupled in the effective
Lagrangian except for soft interactions

»  soft interactions can be decoupled by means of field redefinitions
— factorization theorems

»  large logarithms can be resummed systematically by solving RGEs
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Introduction

+ Typical SCET factorization theorem:

- Two common scale hierarchies:

4 )
o~H | J® J RS

. hard Colhn-ear soft )

A A
hard —— Q2

hard —— ? In SCET-2 the product

B p2 J ® J®S contains an extra
: dependence on Q2 due to the

collinear ) 1 )
. — P collinear anomaly.
I —— Q
— / [Becher, MN 2010]
SCET-1 SCET-2
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Introduction

+ Examples:
» threshold resummation for DIS, DY, Higgs, tH production, ...
»  pr resummation, jet vetoes, event shapes, jet substructure, ...
» electroweak Sudakov resummation
» non-global logarithms, super-leading logarithms (ongoing work)

» high-order structure of IR divergences of scattering amplitudes,
subtractions methods for N"LO fixed-order calculations (e.g. based

on N-jettiness)
[many distinguished authors ...; Becher, MN et al. 2006-2016]
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»  Extension to next-to-leading power?

»  generically (all known examples), find endpoint-divergent
convolution integrals! [Beneke et al., Moult et al,, Stewart et al., MN et al. 2018-2020; ...]

»  upsets scale separation and breaks factorization
»  prevents systematic resummation of large logarithms

»  failure of standard OPE based on dimensional regularization and
MS subtractions

* Questions usefulness of entire SCET framework!

»  a hard problem; many groups world-wide work on this...
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First SCET factorization theorem
at subleading power

Liu, MN: 1912.08818 (JHEP)
Liu, Mecaj, MN, Wang: 2009.04456 & 2009.06779
Liu, MN: 2003.03393 (JHEP)
Liu, Mecaj, MN, Wang, Fleming: 2005.03013 (JHEP)




A subleading-power observable

» Consider b-quark induced contribution to h—yy decay
amplitude (pseudo observable)

»  this and related g¢g—h process may be relevant
for high-precision Higgs studies, but here

b b
are considered for academic purposes mainly ;
b %‘(
nz

» Relevant modes are hard, collinear (11 and n,) and soft, with
SCET-2 scaling

» “sufficiently complicated but simple enough” =

+ Scale hierarchy: m; < M}
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A subleading-power observable

* Same momentum regions appear in analysis of the Sudakov
form factor (e.g. electroweak Sudakov resummation)

» standard factorization theorem without
endpoint divergences:

a )
oc~H | J® J RS
\_ Y,

» asingle, leading-order SCET operator arises at O(A2):

el
7\ A

»  crucial difference: soft quark can appear at subleading power
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A subleading-power observable

» Relevant momentum regions at 1-loop order:

h h :

U 2 5 o
AT

c h c c
— Hy(2)@ p* | ki, p°~mi
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A subleading-power observable

» Relevant momentum regions at 1-loop order:

pt —  Hp- pH ~ M, (1,1,1)
et Sty o
SN — mEe ) pt e~ My (1,02, 0)
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A subleading-power observable

# Corresponding SCET operators at O(A3): A~ my/Mp
A = L.

—  H- J@H o = A
= b

dressed collinear photon fields

c h ¢ ¢ —A 77i1 2 S
—_— HQ(Z) (9 Oéo)(z) — h |::xn1’yﬁb_ ? (5(Z77L1 kl = Z.’ﬁl' 8) xnl .Af{%'u

Faa | \

dressed collinear quark fields

he he J J Az 25X Al/2 hi
——  Hs- /\ oW =T {h 5 / il ) / e (y)} o
‘ r

S I \ /

subleading SCET Lagrangian
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A subleading-power observable

* Corresponding SCET operators at O(A3):

! Existence of only three SCET operators at
! O(A3) ensures that these regions account
for all higher-order loop graphs (see
[Liu, MN 2019] for a 2-loop example)!

[ ! SM
SU(3)e X U(1)em
YN L omee ) o My
;V' . LLL - SCET-1
(he, he, s)
| | Y

2
| 1 u- o~ Mh/mb
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“Bare factorization theorem’

* Adding up the three contributions we find:

1
My(h = yy) = H (yy| O |h) 4 2 / dz HY (2) (vy| O (2) |B) + H (| O |h)

0
with:
O)h QL/ d€+ OO%
(v O3 |h) -

« [J(O)(Mh€+) TO (ML) + JO(— Myt J(O)(th_)] SO (g, 0.)

L)

» Factorization formula accomplishes a naive scale separation,
but all component functions are still unrenormalized!
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“Bare factorization theorem’

* Adding up the three contributions we find:

1
My(h = vy) = H? (7] O |y + 2 / dz HY (2) (vy| O (2) |B) + H (| O |h)
0

+ Hard matching coefficients:

L)

= yb—\/g Nfb’“ (—MZ —i0) " e (1 — 3¢) QF(;Z;G_)EZ_E)
Crasg e S A IO TS LA G DT
e S R : : : : :
X|:2(1—€)(3—126+962—263)+ 8 T(1+€)T?(2—¢€)T(2— 3¢) //\\ + /Q\ + A + /é\ + A\ + o
1—3e 1—2¢ T(14+2¢)T3(1 — 2€) s L Lo Lo L 5 L
_ 43 —18e+ 28¢% — 10€3 — 4¢?) ['(2—¢) ] }
1—3e I'(1+¢€)T'(2 — 2¢)

IR Oy ['(1+€)T?(—e¢)

H(O) = @ = _M2 — 0 =€ _&Vim : : : : :
2 (Z) \/5 Z+ 47‘{' ( h [/ ) € F(2—26) /< + /é{ + & + /@\{H + A\{, + ...
2—46—62_2(1—6)2 s \ \ \ h h

x{ = = —2(1—26—62)1_Z:|}+(Z—>1—Z)

(0):% - CFOZ&O N 2R e e o 2F(1+€)F2(_€) +
58 \/él L T (—Mp —i0) e 2(1 — ) T2 29
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“Bare factorization theorem”

* Adding up the three contributions we find:

1
My(h = yy) = H (yy| O |h) 4 2 / dz HY (2) (vy| O (2) |B) + H (| O |h)

0

» Operator matrix elements:

1 1 1 1

( ) 1 1 1 1

0 o i
{(y7|O1” |R) = myp gY

+ + + + -
0 N, Qb0 =C CYFOC ,0 —2¢
2) |h) = === mao gt | €72 T(e) (mi == (mj z z
T > T
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Endpoint divergences

» Closer inspection shows that the convolution integrals in the
factorization formula are divergent for z — 0, 1 (second term)

and ¢4+ — oo (third term)

» Second term is symmetric under z <+ (1 — 2z) and it suffices to

study the singularity at z — 0:

(0
0

H2) i

» Physical origin: overlap of soft
and collinear regions, whose
boundaries are not separated by
the dimensional regulator

Ly

A no-collinear

{_ — o0

z—0 .
ni-collinear

£+€_ = m%

- (_
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Endpoint divergences

» Things are, in fact, even more subtle. For example, in higher
orders one finds that:

g . but oG

» Terms withm =n requ1re the rapidity regulator when
integrated over / =~ , while those with m # n are regularized
by the d1mens1onal regulator

* In simpler examples based on SCET-1, the dimensional
regulator regularizes all endpoint divergences, but this still
leaves the problem of how to deal with the 1/€ poles from the

endpoint singularities, which spoil factorization
[Beneke et al., Moult et al. 2018-2020]
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Endpoint divergences

* In order to define the two convolutions properly one needs to
introduce a rapidity regulator under the integrals:

_MZ_' n
./\/l(h—ww)—hmHl(y \0(10)|h>—|—4/ dz( Ziitell

) Hy\2) {(y7] O(2) |h)

7 12

(O)/ dl_ / d€_|_ S(E €
_I_

x [("2 W‘_ZO> Ty - by 03) J=ig - ko 0)

12

+< M - W—ZO) W klmj?ﬁz.w_)]

12

» Endpoint divergences lead to 1/1 poles, which cancel in the sum
of all terms!
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Endpoint divergences

» All-order cancellation of 1/1 poles requires that the integrands
of the second and third term are the same when evaluated in
the singular regions!

* This is ensured by the D-dim. refactorization conditions:

a [[H(O)( M= H(O)J(O)(ZMQ) ™ [Liu, MN 2019]
[{77] O (2 dg* (—Mpty) SO (zMye,)
\- Y,

* We have recently proved these relations using SCET tools:

: : o : [2009.06779]
H2) (A2 1y :
. 220 b, a0 ok
J
ni ni ni S 1 g ol g o
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Removing endpoint divergences

» Using these relations, the bare factorization formula can be
rearranged in such a way that all endpoint divergences are
removed and the limit n—0 can be taken. We find:

KM@ _ (Hl(O) n AHl(O)) (] O |h) integrand for z—0 \
. 4

(0)
v2tm [ (106 0r1 00 1 - EEE o 0 o

5001 _
A 00 - 2 ]

Medge_ oM ae
+¢" lim HY / / +J<0 (Mpl_) JO(=My,) SO, 0)

oc——1

leading p(v
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Removing endpoint divergences

* In the space of momentum modes, this amount to the

following subtractions in the third term:

Ly

no-collinear

Soft
oM

ni-collinear

€_|_€_ = m%
0_

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET

“infinity bin” is subtracted
twice and must be added
back as a hard contribution
AH10) to the coefficient of
the first term
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Renormalized factorization theorem

» So far, the factorization formula is still expressed in terms of
bare quantities, but we wish to establish a corresponding
renormalized formula:

ﬁ/lb = Hi(p) (O1(p)) \

+2 [ s | Hate.) (Oute )~ FEED 104,y - ERE2 0y, )

leading poﬂ

» This is non-trivial, because the presence of cutoffs does not
commute with renormalization!

0

Mp dé oM d€+
K T gJ_ ,LL ngl J th ,u ( th—l-a :u) S(€+€_7 :u)
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Renormalized factorization theorem

* Renormalization conditions for the operators:
O () = Z11 0y
1
Oo(z, 1) = / do Tl A0 L 7 e [2009.06779]
0

«— incompatible with cutoffs

()
[0:(2 )] = /. 4 [Zn(2, ] [02" ()] + [Z(2)] OF

o +— incompatible with cutoffs
J(p*, 1) = o / dp 7oy w) () [2003.03393]
0

o incompatible with cutoffs
Sl — / dw' Zg(w, w'; 1) SO (w') [2005.03013]
0

with complicated Z factors containing plus distributions
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Renormalized factorization theorem

* When the cutoffs are move from the bare over to the
renormalized functions, some left-over terms remain, which
individually have a rather complicated structure and depend
both on the hard scale M}, and the soft scale m;

* The most non-trivial part of the derivation of the renormalized
factorization theorem was to show that, to all orders of
perturbation theory, the sum of the left-over terms takes the
form of an additional hard subtraction 0 H 50) of the Wilson
coefficient of the operator O](LO) [2009.06779]
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Renormalized factorization theorem

* After this crucial step had been accomplished, we could derive
the renormalization conditions for the matching coefficients:

Hi(p) = (H + AHL - sH*) Z7]

70) 5
1251 (2)] - 2B 7 )

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET 24



Renormalized factorization theorem

+ Renormalized matrix elements, with L,, = ln(mg L

(O1 (1)) = mup(p) g

NCOé v C S
L — 27rb my (1) g { — Ly, + j: [Lfn (lnz +1In(1 — 2) + 3)

— L, <ln2z—|—ln2(1 —2)—4lnzln(l—2)+11 — 2%2) + F(z)+ F(1 — z)] + (9(0@)}

SO 9
) [1n2< - ZO) —1—”—] +0(ay)

4m = 6
Neaw 2 2
S(w, 1) = ==L ma(1) | Salw, 1) 6w —m2) + Sy(w, 1) Bt — w)]
/ Lo = In(w/ss?)
2 A
Sa(w,,u):1+CF%[—LfU—GLw+12—7T—+2LiQ(iA) W =w/mp
4 2 w
1 e
— 4ln(1 — E) (Lm -+ 1 +ln(1 — E) + §lnw)] + (’)(ozg)
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Renormalized factorization theorem

* Renormalized matrix elements, with L,, = In(m3/u?):

(O1 (1)) = mup(p) g

NCO{(,
2T

C’Fozs
47

L — o )a { — Ly, + [Lfn (lnz +1In(1 — 2) + 3)

— L, (ln2z—|—ln2(1 —2)—4lnzln(l —2) + 11 — 27”2) + F(z)+ F(1- z)] -+ O(ag)}

o P
e [m?( P ”‘0) —1—%] +0(a?)

47 I
N_.ay 2 D
S(w, 1) = ==L ma(1) | Salw, 1) 6w —m2) + Sy(w, 1) Bt — w)]

Ly = In(w/p?)
W= w/mg

Sel ) — s In(1 — w) [Lm + In(1 — ”LD)] + O(a?)

T

M. Neubert — Factorization at Subleading Power and Endpoint Divergences in SCET
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Renormalized factorization theorem

# Renormalized matching coefficients, with Ly = In(—M?/u?):

- N ulp [ Crag _7T2 . - Vit 5

Hi(u) = = 7 P 5 e A by 20 ; T + O(a3)
Hol )= e 1+OF@S [2Lh(1nz—|—ln(1 — 2))+1In® z+1n*(1 — z)—S} +0(a?)
: Vil =) 4t :

2

Bl = Yol41) [—1 + Cd (Li +2— W—) - O(aﬁ)]

4 6
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Resummation of large logarithms

Liu, Mecaj, MN, Wang: 2009.04456 & 2009.06779
Liu, MN: 2003.03393 (JHEP)
Liu, Mecaj, MN, Wang, Fleming: 2005.03013 (JHEP)




Resummation of large logs

» The renormalized factorization formula

ﬁ/lb = Hi(p) (O1(p)) \

+2 [ s | Hate.) (0ute )~ FEED 104,y - BRE2 0y, )

M dé

UMhd€+
\ + ¢ Hs(p) lim J(Mpl_, ) J(—Mply, ) S(Ul_, 1)

o——1 J, leading poy
provides a complete scale separation and allows us to resum
large logarithms in the decay amplitude to all orders of
perturbation theory!
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Resummation of large logs

* RG equations for matrix elements:

dlfl,u (O1(p)) = =11 (O1(p))
dlfl,u Gaag) = _/0 d2' y22(2,2) (O2(2, 1)) — y21(2) (O1(p))
dlfl,u I, 1) =~ /Ooodfﬂ e mpt ) ept 1)

T St == | dostw,wfo) Stw/a.
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Resummation of large logs

* RG equations for matching coefficients:

inhomogeneous contribution due to cutoffs

dlcrzllu Hy(p) = Dewt(p) + 11 Hi(p)
2 2/o - [HZ(Z”LL) 721(2) = [[H2(Z”u)]] [[721(2)]] i [[H2(§> :“>]] [[’721(5)]]
dlCerMH2(Z’“) :/O dz' Ha(2', p) 122(7', 2)
dlfl,u H3(,u) = 33 H3(,LL)
where;
T _N;&b yiﬁg) [Ojﬁs i (Z_;)Q deut,2 + O(ai)] > ay (. Lp)"”
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Logarithms in the 3-loop amplitude

* From a perturbative solution of the RGEs, we have obtained
predictions for the terms of order O(a2L*) with k=6,5,4,3 in the
3-loop decay amplitude in the on-shell scheme, finding:

2
Neay my

L ) )
2 @ o e i~ Do m
— 7 : =— == L= A — —
x{2 — [12 > +( +3+6<3) 0 + 4¢3 5]
~ 2
s (fin) Cr & S 5 OS 14 OS 73
G = gp = T
+F(47r)[90 +(10 W

» Find perfect agreement with recent numerical results!
[Czakon, Niggetiedt 2020]
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Series of subleading logs

We have reproduced the series of leading double logs (LL) and
obtained a new result for the NLL logs to all orders in as:

@,

NiL  Ne@s Yo(Mp) i 2= L? 2l
Wi = g /2 mp e (k1) - €7 (k) 9 Z( p) T(2n + 3)

o 30 2n+1 = e e (n + 1)* [Kotsky, Yakovlev 1997]
2 dp e 5 O AT Dn 2 30y
: Crogs(M
with p= == 2875 h) i

The subleading terms disagree with earlier results in the

literature! [Akhoury, Wang, Yakovlev 2001; Anastasiou, Penin 2020]
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Resummation in RG-improved PT

« Ultimate goal is to resum all large logarithms and
exponentiate them (RG-improved perturbation theory)

« Particularly important for Sudakov problems, where leading
logs are formally larger than O(1)

* In RG-improved perturbation theory one supplies the
matching conditions for all component functions in the
factorization theorem at matching scales where they are free of
large logs; these functions and then evolved to a common scale
solving their RG equations — all large logs exponentiate!
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Resummation in RG-improved PT

L)

* We have not yet performed a complete resummation, but we
have resummed the most difficult contribution T3 at LO in
RG-improved perturbation theory, finding: [2009.04456]

( ar al —D
7ro = & elin) /Mh% e )e28<us,uh>—2s<u,uh>—28<u+,uh><—th—) F<—th+) F<—€+€—) '
° 3m V2 Jo 4o Jo A4 ’ > M%r I
y (O‘s(ﬂs) >_3 ~2mat FA=ar) _oyp0r P =a0) aypap 20 ( —af, —af, 1-ap, 1-af | mj )
as (i) I'(1+af) I'(1+ap) 4\ 0, 1, 0, 0 |—440
\_ /
with:
L G udl e e
et e e [as(,ui) (1 27 ) i ( 207 2) (1 THM)]
2 . - o= as(pn)/as (i)
* dynamical matching scales:
i o Dt pi ~ Mply pn ~ My,
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Conclusions

* We have derived the first SCET factorization theorem for an
observable appearing at subleading order in power counting

* Generic features:
» several SCET operators exist — several terms in factorization formula
» these operators mix under renormalization

» endpoint divergences in convolutions cancel between the different terms;
cancellation ensured by D-dim. refactorization conditions

» endpoint divergences can be removed by performing subtractions and
rearranging the various terms

# Qur results are an important step towards establishing SCET as a
complete EFT admitting a consistent power expansion!
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