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Very short summary

• Unnucleus = field in norelativistic CFT

• Unnuclear physics = nonrelativistic version of 
Georgi’s “unparticle physics”

• Realized in nuclear reaction with final-state 
neutrons



Plan

• Georgi’s unparticle

• Nonrelativistic conformal field theory (NRCFT) 
Nishida, DTS arXiv:0706.3746

• Rates of processes involving unnuclei

• Few-neutron systems as unnuclei and 
consequences of nuclear reactions



Georgi’s unparticle

• Unparticle = field in a CFT

• In CFT:    

• In momentum space 

• Particle corresponds to free field: ,  

• otherwise the propagator has cuts, not poles

⟨𝒰(x)𝒰(0)⟩ =
c

|x |2Δ𝒰

G𝒰(p) ∼ p2Δ𝒰−4

Δϕ = 1 Gϕ(p) ∼ p−2

H. Georgi, 2007



Example of unparticles

• Simplest example: ,  

• More sophisticated: Bank-Zaks fixed point in gauge 
theory at sufficiently large 

• :  

𝒰 = ϕn Δ = n

Nf

Nc = 3 ? ≤ Nf ≤ 16



Processes involving unparticles
• Imagine the SM particles are coupled to a 

unparticle sector

•
• Energy spectrum of  is continuous

• If :   

• Near end point: differential cross section depends 
on the -particle phase space

• Unparticle of dimension  is equivalent to  
massless particles

A1 + A2 → B + 𝒰

B

𝒰 = ϕn A1 + A2 → B + nϕ

n

Δ Δ



Nonrelativistic QFT

• Second-quantized formulation of QM

•

• Galilean symmetry, including

• space and time translation

• Galilean boosts

S = ∫ dt dx ψ†(i∂t +
∇2

2m )ψ −
1
2 ∫ dt dx dy V(x − y)ψ†(x)ψ†(y)ψ(y)ψ(x)



Schrödinger symmetry

• The free NR field theory  has extra 
symmetries

• Scale invariance: ,  ,  

•  is the dimension of 

• “Proper conformal transformation” 

• ,  ,  

V(x − y) = 0

x → λx t → λ2t ψ → λ−Δψ

Δ = d/2 ψ

t →
t

1 + ct
x →

x
1 + ct

ψ → ψ′ = ⋯



Schrödinger algebra
• Spatial translation  , time translation 

• Galilean boost 

• Dilatation 

• “Proper conformal transformation” 

• Angular momentum 

• Mass 

Pi H

Ki = ∫ dx mxiψ†ψ

D = ∫ dx x ⋅ (− i
2 ψ† ∇ψ)

C = ∫ dx mx2ψ†ψ

Mij = − i
2 ∫ dx ψ†(xi∇ j − xj∇ i) ψ

M = ∫ dx mψ†ψ
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Table 1 Part of the Schrödinger algebra. The values of [X , Y ] are shown below.

X \Y Pj Kj D C H
Pi 0 −iδi jM −iPi −iKi 0
Ki iδi jM 0 iKi 0 iPi
D iPj −iKj 0 −2iC 2iH
C iKj 0 2iC 0 iD
H 0 −iPj −2iH −iD 0

mass : M ≡
∫

dxρ(x) (51)

momentum : Pi ≡
∫

dx ji(x) (52)

angular momentum : Ji j ≡
∫

dx [xi j j(x)− x j ji(x)] (53)

Galilean boost : Ki ≡
∫

dxxiρ(x) (54)

dilatation : D≡
∫

dxx · j(x) (55)

special conformal : C ≡
∫

dx
x2

2
ρ(x) (56)

and the Hamiltonian:

H = ∑
σ=↑,↓

∫

dx
∂ψ†σ (x) ·∂ψσ (x)

2mσ

+
∫

dx
∫

dyψ†↑ (x)ψ
†
↓ (y)V (|x−y|)ψ↓(y)ψ↑(x). (57)

D andC are the generators of the scale transformation (x→ eλx, t→ e2λ t) and the
special conformal transformation [x→ x/(1+λ t), t → t/(1+λ t)], respectively.
In a scale invariant system such as fermions in the unitarity limit, these operators
form a closed algebra.5
Commutation relations of the above operators are summarized in Table 1. The

rest of the algebra is the commutators of M, which commutes with all other op-
erators; [M, any] = 0. The commutation relations of Ji j with other operators are
determined by their transformation properties under rotations:

[Ji j, N] = [Ji j, D] = [Ji j,C] = [Ji j, H] = 0, (58a)
[Ji j, Pk] = i(δikPj− δ jkPi), [Ji j, Kk] = i(δikKj− δ jkKi), (58b)
[Ji j, Jkl ] = i(δikJ jl+ δ jlJik− δilJ jk− δ jkJil). (58c)

5 One potential that realizes the unitarity interaction isV (r) = (π/2)2 limr0→0 θ (r0− r)/(2m↑↓r20),
where m↑↓ ≡ m↑m↓/(m↑+m↓) is the reduced mass.
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Schrödinger algebra

• Commutator of  with an operator is determined 
by the operator’s dimension: 

•

• , , and  form a SO(2,1) subalgebra

D

[D, O] = iΔOO

H C D
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Local operators

• Local operators are classified by mass and dimension

•
•

• Commuting with  and  increases the dimension by 
1 and 2, commuting with  and  by -1 and -2

• Representation theory for operators with  is 
simple

[M, O(x)] = − MOO(x)

[D, O(0)] = iΔOO(0)

P H
K C

M ≠ 0



Raising and lowering dimensions

• Operators with  are organized in towers

• Dimension raised by  and , lowered by  and 

• Primary operators:  

M ≠ 0

P H K C

[K, O(0)] = [C, O(0)] = 0

Δ
Δ + 1
Δ + 2

Δ − 1

P
H

K
CΔ − 2



Operator-state correspondence

• Dimension of a primary operator = energy of a state in 
a harmonic potential

• Example: in free theory , ground state of 1 

particle in harmonic potential:  

[ψ] =
d
2
E =

d
2

ℏω



Two-point function

• Let  be a primary operator in a NRCFT

• Characterized by mass  and dimension 

• Propagator

•

•

𝒰

M Δ

G𝒰(t, x) = − i⟨T𝒰(t, x)𝒰†(0,0)⟩ = C
θ(t)
(it)Δ

exp( iMx2

2t )
G𝒰(ω, p) ∼ ( p2

2M
− ω)

Δ− 5
2

 is the energy of the in the CM frameω −
p2

2M



OPE in NRCFT

• In contrast to relativistic CFT, OPE coefficients in 
NRCFT are functions

• The function  can be determined if one of the 
operator is a free field operator with 

cn
Δ = d/2

1 Introduction

Experimental studies of fermions at unitarity have stimulated theoretical developments of nonrela-
tivistic conformal field theories. The conformal extension of the Galilean algebra was found a long
time ago [1, 2] and was later analyzed in the context of string theory. Mehen, Stewart, and Wise
explored the consequences of the conformal invariance for the scattering amplitudes involving uni-
tarity fermions [3], and subsequently other applications have been considered in the literature [4–6].

The understanding of the operator structure of nonrelativistic conformal field theory is still
not complete. Only recently has the operator product expansion begun to be explored. The
motivation was to probe unitarity fermions at short distances. There have also been attempts to
construct holographic duals of the unitarity fermions [7–9]. A very interesting nontrivial check is
the computation of the three-point function from hologrpahy, which yields the same result as the
calculation in the field theory of unitarity fermions.

In this paper we explore the consequences of conformal invariance on the structure of the OPEs.
One property of nonrelativistic OPEs is that the OPE coefficients involves, in general, nontrivial
functions of the ratio x2/t, where x and t are the separation between the two points:

O1(x)O2(0) =
∑ 1

|x|∆1+∆2−∆n
cn
(

x2

t

)

On(0) (1)

Here and later, x ≡ (t,x), but x2 ≡ |x|2.
In general conformal symmetry is not powerful enough to restrict the form of the functions

cn. In this work, however, we show that when one of the operators participating in the OPE is
an elementary field, that is it carries scaling dimension equal to d/2, the OPE coefficents are, in
general, determined up to a numerical coefficient. The exception is when one of the other operator
has particle number zero, in which case not all the OPE coefficients are fixed by symmetry.

We also look at the structure of the family generated by a primary with particle number zero.
This case is particular because the a subset of the ladder operators in the algebra commute when
the particle number is zero. We discuss the consequences of this degeneracy and its implications
for the existence of conservation laws.

2 Nonrelativistic conformal symmetry

To make the paper self-contained, we recall some basic fact about nonrelativistic conformal field
theories [6].

2.1 The Schrödinger algebra

The Schrödinger algebra in d dimensions, schrd is formed from the operators N, D, Mij, Ki, Pi,
C and H, respectively the number (mass), scaling, rotation, Galilean boost, spatial translation,
special Schrödinger transformation and time translation operators. The operator N is central and
all operators transform with the appropriate tensor structure under rotations Mij . The rest of the
algebra is given in Table 1.

We look at representations made of local operators such that:

O(x) = eiHt−iP·xO(0)e−iHt+iP·x (2)

2

S. Golkar and DTS, 2014



Fermions at unitarity

•    : spin-up, : spin-down

• When  : 

• For example, ground state of 2 particles in 
harmonic potential:

•         

• An operator with  and 

ψ = ψ(xi, yj) xi yj

xi → yj ψ(x, y) =
1

|x − y |
f( x + y

2 ) + O(x − y)

ψ(x, y) ∼
e−(x2+y2)/2

|x − y |
E = 2

M = 2m Δ = 2



Fermions at unitarity as a 
NRCFT

•
• Introducing auxiliary field 

•

• Propagator of 

L = iψ†(∂t +
∇2

2m
)ψ − c0ψ†

↑ψ†
↓ψ↓ψ↑

ϕ

L = iψ†(∂t +
∇2

2m
)ψ − ψ†

↑ψ†
↓ϕ − ϕ†ψ↓ψ↑ +

ϕ†ϕ
c0

ϕ



Renormalization
•

•
• Unitarity: fine-tuning so that 

• (scattering length: )

• Physically: fine-tune the attractive short-range potential 
to have a bound state at threshold

G−1
ϕ (ω, p) = c−1

0 + one-loop integral

= c−1
0 + Λ + ( p2

4m
− ω)

1/2

c0 + Λ = 0

c0 + Λ =
1
a

=

+

p2

+ +
...

=

=

+ +
...

Figure 6: Leading and subleading contributions arising from local operators. The unmarked vertex
is the C0 interaction, which is summed to all orders; the one marked “p2” is the C2 interaction,
etc.

contributions to the amplitude scaling as higher powers of p come from perturbative inser-
tions of derivative interactions, dressed to all orders by C0. The first three terms in the
expansion are

A−1 =
−C0[

1 + C0M
4π (µ + ip)

] ,

A0 =
−C2p2

[
1 + C0M

4π (µ + ip)
]2 ,

A1 =

(
(C2p2)2M(µ + ip)/4π
[
1 + C0M

4π (µ + ip)
]3 −

C4p4

[
1 + C0M

4π (µ + ip)
]2

)

, (146)

where the first two correspond to the Feynman diagrams in Fig. 6. The third term, A1,
comes from graphs with either one insertion of C4∇4 or two insertions of C2∇2, dressed to
all orders by the C0 interaction.

Comparing eq. (146) with the expansion of the amplitude eq. (138), the couplings C2n

are related to the low energy scattering data a, rn:

C0(µ) =
4π

M

(
1

−µ + 1/a

)
,

C2(µ) =
4π

M

(
1

−µ + 1/a

)2 r0

2
,

C4(µ) =
4π

M

(
1

−µ + 1/a

)3 [1

4
r2
0 +

1

2

r1

Λ2
(−µ + 1/a)

]
. (147)

54

ϕ

Gϕ(ω, p) =
1

p2

4m − ω



Operator dimensions for 
fermions at unitarity  

• Dimensions of operators can be obtained either by 
field theory or quantum mechanical calculation in a 
harmonic trap

• Lowest dimension operators

<latexit sha1_base64="cz1KS7h9DDHGkPRXVA4aTkC9cjc="></latexit>
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Table 4 N-body composite operators with angular momentum l near d = 2 and their scaling di-
mensions in the ε̄ expansion. Known values for the energies of N fermions in a harmonic potential
in d = 3 are also shown in units of h̄ω .

N (l) O
(l)
N ΔO E/h̄ω in d = 3

2 (l = 0) ψ↑ψ↓ 2 2 [30]

3 (l = 0) ψ↑ψ↓(∂tψ↑) 5+O(ε̄2) 4.66622 [26]

3 (l = 1) ψ↑ψ↓(∂ψ↑) 4+O(ε̄2) 4.27272 [26]

4 (l = 0) ψ↑ψ↓(∂ψ↑·∂ψ↓) 6− ε̄+(ε̄2) ≈ 5.028 [33]

5 (l = 0) (∗) 9− 11±
√
105

16 ε̄+O(ε̄2) ≈ 8.03 [33]

5 (l = 1) ψ↑ψ↓(∂ψ↑·∂ψ↓)∂ψ↑ 8− ε̄+O(ε̄2) ≈ 7.53 [33]

6 (l = 0) ψ↑ψ↓(∂ψ↑·∂ψ↓)
2 10−2ε̄+(ε̄2) ≈ 8.48 [33]

(∗) = aψ↑ψ↓(∂ψ↑·∂ψ↓)∂ 2ψ↑ + bψ↑∂iψ↓(∂ψ↑ ·∂ψ↓)∂iψ↑ + cψ↑ψ↓((∂i∂ψ↑)·∂ψ↓)∂iψ↑ −
dψ↑ψ↓(∂ψ↑ ·∂ψ↓)i∂tψ↑ with (a,b,c,d) = (±19

√
3−5

√
35,∓16

√
3,−6

√
35∓6

√
3,16

√
35).

sion can mix under the renormalization and thus the primary operator with the well-
defined scaling dimension may have a complicated form such as forN = 5 and l= 0.
The leading order results for the corresponding energies E(l)

N = ΔOω in a harmonic
potential can be easily understood by recalling that fermions at unitarity become
noninteracting in d = 2. Therefore the energy eigenvalue of each N-fermion state is
just a sum of single particle energies in a harmonic potential in d = 2, and obviously,
the ground state energy shows the shell structure. TheO(ε̄) correction to the energy,
which is represented by the anomalous dimension in NRCFT, originates from the
weak fermion-fermion interaction. We can see in Table 4 the rough agreement of
the naive extrapolations of ΔO to ε̄→ 1 with the known values in d = 3.

3.4.3 Interpolations of ε expansions

We now extract the energy of N fermions in a harmonic potential in d = 3 by in-
terpolating the two expansions around d = 4 and d = 2 just as has been done for ξ
in Sect. 2.3 and Tc/εF in Sect. 2.5. We approximate E

(l)
N /ω by ratios of two poly-

nomials (Padé approximants) and determine their unknown coefficients so that the
correct expansions both around d = 4 (Table 3) and d = 2 (Table 4) are reproduced.
Fig. 14 shows the behaviors of the three-fermion energies E(l)

N=3 with orbital an-
gular momentum l = 0 (left panel) and l = 1 (right panel) as functions of d. The
middle four curves are the Padé interpolations of the two NLO expansions. Because
the exact results for arbitrary d can be obtained from Eqs. (135) and (136), we can
use this case as a benchmark test of our interpolation scheme. We find that the be-
haviors of the interpolated curves are quite consistent with the exact results even
within the leading corrections in ε and ε̄. In d = 3, these interpolations give

Y. Nishida, DTS, arXiv:1004.3597



Systems with large 
scattering length

• -particles

• Coulomb interaction complicates the picture

• -  [X(3872)]

• He-4 atoms,  

• Trapped ultra-cold atoms (Feshbach resonance)

• Neutrons

α

D0 D̄*0

a ∼ 100 Å



Few-neutron systems as 
unnuclei

• Neutrons have large scattering length: 

• vs effective range 

• Idealized regime: , : “unitarity fermion”

• Physics of fermions at unitarity is described by a 
NRCFT

ann ≈ − 19 fm

r0 ≈ 2.8 fm

a = ∞ r0 = 0



Nuclear reactions

• Many nuclear reactions with emissions of neutrons:

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• Final-state neutrons can be considered as forming an 
“unnucleus” - a field in NRCFT

• Regime of validity: kinetic energy of neutrons in their 
c.o.m. frame between  ℏ2/ma2 ∼ 0.1 MeV
ℏ2/mr2

0 ∼ 5 MeV



Few-neutron systems as unnuclei

5

In the regime E0 � E ⌧ E0, ignoring the energy dependence of all other factors, we can

write
d�

dE
⇠ (E0 � E)�� 5

2 . (16)

Thus, a characteristic feature of processes involving an unnucleus is the power-law depen-

dence of the di↵erential cross section on the recoil energy near the end point.

IV. MULTI-NEUTRON FINAL STATES AS UNNUCLEI

So far the search for relativistic unparticles has been unsuccessful [2–4]. In nuclear

physics, however, there are natural approximate unnuclei due to the fortuitous occurrence of

fine tuning in several nuclear systems. In particular, neutrons have a large s-wave scattering

length: a ⇡ �19 fm, compared to the e↵ective range r0 ⇡ 2.8 fm. A system of neutrons

can be considered as an unnucleus if the relative momentum between any two neutrons in

the system is between ~/a and ~/r0. If this is the case, they are described by a well known

nonrelativistic conformal field theory—the theory of fermions at unitarity.

B

A

A

n

n

n

1

2

FIG. 2. A nuclear reaction with three neutrons in the final state.

Thus, the real-world realizations of the reaction pictured in Fig. 1 are reactions with a few

neutrons in the final state. A typical reaction with three final-state neutrons is schematically

depicted in Fig. 2. The di↵erential cross section d�/dE considered above is now an inclusive

cross section, where the momenta of the neutrons are left unmeasured. Reactions of this

type are abundant in nuclear physics. Some examples are

3H+ 3H ! 4He + 2n , (17)
7Li + 7Li ! 11C + 3n , (18)

4He + 8He ! 8Be + 4n . (19)

The final-state neutrons can be considered as forming an unnucleus when the kinetic energy

of the system of neutrons in its center-of-mass frame (neutron kinetic energy) is between

"0 = ~2/ma2 ⇠ 0.1 MeV and ~2/mr20 ⇠ 5 MeV. Only in this kinematic regime, our predic-

tion (16) for d�/dE applies. Physically, in this regime the neutrons travel together and keep

interacting with each other until the distance between them becomes larger than a. If the

total kinetic energy of the final scattering products Ekin is much larger than ~2/mr20, then

𝒰

Factorization: dσ
dE

∼ |ℳ |2 EB Im G𝒰(E𝒰, p)

primary reaction has larger energy than final-state interaction

For 2 neutrons: Watson and Migdal ~ 1950s



Rates of processes involving 
an unnucleus

•  

•

• Near end point: 

dσ
dE

∼ |ℳ |2 E Im G𝒰(Ekin − E, p)

Im G𝒰(Ekin − E, p) ∼ (Ekin − E −
p2

2M𝒰
)

Δ− 5
2

dσ
dE

∼ (E0 − E)Δ− 5
2

4

B

UA

A
2

1 U
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FIG. 1. A nuclear reaction with an unnucleus U (represented by the shaded region) in the final

state.

where A1 and A2 are some initial particles, B is a particle and U is the unnucleus. For

simplicity, we assume all particles involved in the reaction are nonrelativistic, though our

main conclusion requires that only U is. We work in the center-of-mass frame. The total

kinetic energy available to final products is

Ekin = (MA1 +MA2 � MB � MU)c
2 +

p2A1

MA1

+
p2A2

MA2

. (11)

Unless U is a particle, the energy spectrum of B is continuous. Let E and p be the energy

of the particle B, E = p2/2mB. We are interested in the di↵erential cross section d�/dE.

We can think about a term in the e↵ective Lagrangian

Lint = g U †B†A1A2 + h.c. (12)

where g is some coupling constant. The di↵erential cross section can be computed to be

d�

dE
⇠ |M|2

p
E ImGU(Ekin�E,p). (13)

For the Lagrangian (12) M = g, but in principle M can contain dependence on the momenta

of the incoming and outgoing particles. The statement of Eq. (13) is that the cross section

can be factorized into two parts, one (encoded by M) corresponding to the primary process

A1+A2 ! B+U , the other (encoded by ImGU) corresponding to the final-state interaction

between the constituents of U . Such a factorization requires that the energy scale of the

primary scattering process is much larger than that of the interaction between the neutrons

and is the essence of the Watson-Migdal approach to final-state interaction [6, 7].

According to Eq. (9),

ImGU(Ekin�E,p) ⇠
✓
Ekin � E � p2

2MU

◆�� 5
2

=


Ekin �

✓
1 +

MB

MU

◆
E

��� 5
2

. (14)

Denote the maximal value of the recoil energy received by the particle B as

E0 =

✓
1 +

MB

MU

◆�1

Ekin. (15)

Ekin = E + E𝒰
E



Nuclear reactions

• 3H + 3H → 4He + 2n

• 7Li + 7Li → 11C + 3n

• 4He + 8He → 8Be + 4n

• Prediction:

•
• Regime of validity: kinetic energy of neutrons in their 

c.o.m. frame between  

dσ
dE

∼ (E0 − E)α

ℏ2/ma2 ∼ 0.1 MeV
ℏ2/mr2

0 ∼ 5 MeV

α = − 0.5

α = 1.77

α = 2.5 − 2.6
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FIG. 4. Center-of-mass energy spectrum of three neutrons in the reaction
3
H(⇡�, �)3n (left panel)

and
3
H(µ�, ⌫µ)3n (right panel). The circles/squares give the full/plane wave calculations by Golak

et al. [23, 24]. Di↵erent fits are explained in the legend and in the main text.

the calculated photon spectra to three-neutron spectra for convenience. As expected, the

free neutron behavior, E3 (dashed line), can describe the full calculation (circles) only at the

lowest energies. However, the plane wave impulse approximation (squares) can be described

up to about 2.5 MeV. The full calculation including final state interaction displays clear

unnucleus behavior, E1.77 (solid line) for energies also up to about 2.5 MeV, where it starts

to deviate from the prediction. This is somewhat smaller than the value 5 MeV expected from

the scattering length. We suspect that this is due to the wave function of the triton, which

has finite extent, making the reaction a less than ideal “point source” of the neutrons and

causing the factorization formula (13) to break down earlier than expected. The description

cannot be significantly improved by including the next state which behaves as E2.17 (dash-

dotted line). Analogous behavior is exhibited by the theoretical spectra for the reaction
3H(µ�, ⌫µ)3n calculated by Golak et al. [24] using the same interaction model (see right

panel of Fig. 4). In this reaction, the energy scale of the primary scattering process is

slightly smaller such that the corrections to factorization are larger.

A four-neutron spectrum was recently measured by Kisamori et al. in the reaction
4He(8He,8Be)4n [25], but the number of events is too low to extract evidence of unnu-

cleus behavior. It may, however, be possible to extract such behavior from the spectra of a

new experiment using the reaction 8He(p, p↵)4n, which are currently being analyzed [18].
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up to about 2.5 MeV. The full calculation including final state interaction displays clear

unnucleus behavior, E1.77 (solid line) for energies also up to about 2.5 MeV, where it starts

to deviate from the prediction. This is somewhat smaller than the value 5 MeV expected from

the scattering length. We suspect that this is due to the wave function of the triton, which

has finite extent, making the reaction a less than ideal “point source” of the neutrons and

causing the factorization formula (13) to break down earlier than expected. The description

cannot be significantly improved by including the next state which behaves as E2.17 (dash-

dotted line). Analogous behavior is exhibited by the theoretical spectra for the reaction
3H(µ�, ⌫µ)3n calculated by Golak et al. [24] using the same interaction model (see right

panel of Fig. 4). In this reaction, the energy scale of the primary scattering process is

slightly smaller such that the corrections to factorization are larger.

A four-neutron spectrum was recently measured by Kisamori et al. in the reaction
4He(8He,8Be)4n [25], but the number of events is too low to extract evidence of unnu-

cleus behavior. It may, however, be possible to extract such behavior from the spectra of a

new experiment using the reaction 8He(p, p↵)4n, which are currently being analyzed [18].



• In both reactions the unnuclear scaling regime can be 
seen from “data”

• Deviation from power-law scaling starts at around 2.5 
MeV

• somewhat smaller than the naive estimate of 5 MeV 
because 3He nucleus is extended?



Conclusion

• Viewing final-state neutrons as forming an unparticle 
allow one to predict power-law behavior of the diff 
cross section near end point

• More details calculation: cross-over to free particle 
behavior below 0.1 MeV

• RG flow from unitary fermions to free fermions

• Unparticle behavior in other systems?



Thank you


