Unnuclear Physics

Dam Thanh Son (University of Chicago) All Things EFT seminar
April 28, 2021

Ref.: H.-W. Hammer and DTS, arXiv:2I03.126I0

Very short summary

- Unnucleus $=$ field in norelativistic CFT
- Unnuclear physics = nonrelativistic version of Georgi's "unparticle physics"
- Realized in nuclear reaction with final-state neutrons

Plan

- Georgi's unparticle
- Nonrelativistic conformal field theory (NRCFT) Nishida, DTS arXiv:0706.3746
- Rates of processes involving unnuclei
- Few-neutron systems as unnuclei and consequences of nuclear reactions

Georgi's unparticle

H. Georgi, 2007

- Unparticle $=$ field in a CFT
- In CFT: $\langle\mathscr{U}(x) \mathscr{U}(0)\rangle=\frac{c}{|x|^{2 \Delta_{U}}}$
- In momentum space $G_{\mathscr{U}}(p) \sim p^{2 \Delta_{\mathscr{U}}-4}$
- Particle corresponds to free field: $\Delta_{\phi}=1, G_{\phi}(p) \sim p^{-2}$
- otherwise the propagator has cuts, not poles

Example of unparticles

- Simplest example: $\mathscr{U}=\phi^{n}, \Delta=n$
- More sophisticated: Bank-Zaks fixed point in gauge theory at sufficiently large N_{f}
- $N_{c}=3: ? \leq N_{f} \leq 16$

Processes involving unparticles

- Imagine the SM particles are coupled to a unparticle sector
- $A_{1}+A_{2} \rightarrow B+\mathscr{U}$
- Energy spectrum of B is continuous
- If $\mathscr{U}=\phi^{n}: A_{1}+A_{2} \rightarrow B+n \phi$
- Near end point: differential cross section depends on the n-particle phase space
- Unparticle of dimension Δ is equivalent to Δ massless particles

Nonrelativistic QFT

- Second-quantized formulation of QM
- $S=\int d t d \mathbf{x} \psi^{\dagger}\left(i \partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\frac{1}{2} \int d t d \mathbf{x} d \mathbf{y} V(\mathbf{x}-\mathbf{y}) \psi^{\dagger}(x) \psi^{\dagger}(y) \psi(y) \psi(x)$
- Galilean symmetry, including
- space and time translation
- Galilean boosts

Schrödinger symmetry

- The free NR field theory $V(\mathbf{x}-\mathbf{y})=0$ has extra symmetries
- Scale invariance: $\mathbf{x} \rightarrow \lambda \mathbf{x}, t \rightarrow \lambda^{2} t, \psi \rightarrow \lambda^{-\Delta} \psi$
- $\Delta=d / 2$ is the dimension of ψ
- "Proper conformal transformation"
- $t \rightarrow \frac{t}{1+c t}, \mathbf{x} \rightarrow \frac{\mathbf{x}}{1+c t}, \psi \rightarrow \psi^{\prime}=\cdots$

Schrödinger algebra

- Spatial translation P_{i}, time translation H
- Galilean boost $K^{i}=\int d \mathbf{x} m x^{i} \psi^{\dagger} \psi$
- Dilatation $D=\int d \mathbf{x} \mathbf{x} \cdot\left(-\frac{i}{2} \psi^{\dagger} \overleftrightarrow{\nabla} \psi\right)$
- "Proper conformal transformation" $C=\int d \mathbf{x} m x^{2} \psi^{\dagger} \psi$
- Angular momentum $M_{i j}=-\frac{i}{2} \int d \mathbf{x} \psi^{\dagger}\left(x_{i} \overleftrightarrow{\nabla}_{j}-x_{j} \overleftrightarrow{\nabla}_{i}\right) \psi$
- Mass $M=\int d \mathbf{x} m \psi^{\dagger} \psi$

Schrödinger algebra

$X \backslash Y$	P_{j}	K_{j}	D	C	H
P_{i}	0	$-i \delta_{i j} M$	$-i P_{i}$	$-i K_{i}$	0
K_{i}	$i \delta_{i j} M$	0	$i K_{i}$	0	$i P_{i}$
D	$i P_{j}$	$-i K_{j}$	0	$-2 i C$	$2 i H$
C	$i K_{j}$	0	$2 i C$	0	$i D$
H	0	$-i P_{j}$	$-2 i H$	$-i D$	0

$$
\begin{aligned}
& {\left[J_{i j}, N\right]=\left[J_{i j}, D\right]=\left[J_{i j}, C\right]=\left[J_{i j}, H\right]=0,} \\
& {\left[J_{i j}, P_{k}\right]=i\left(\delta_{i k} P_{j}-\delta_{j k} P_{i}\right), \quad\left[J_{i j}, K_{k}\right]=i\left(\delta_{i k} K_{j}-\delta_{j k} K_{i}\right),} \\
& {\left[J_{i j}, J_{k l}\right]=i\left(\delta_{i k} J_{j l}+\delta_{j l} J_{i k}-\delta_{i l} J_{j k}-\delta_{j k} J_{i l}\right) .}
\end{aligned}
$$

Schrödinger algebra

- Commutator of D with an operator is determined by the operator's dimension:
- $[D, O]=i \Delta_{O} O$| O | H | P | M | K | C |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Δ_{O} | 2 | 1 | 0 | -1 | -2 |
- H, C, and D form a $\mathrm{SO}(2,1)$ subalgebra

Local operators

- Local operators are classified by mass and dimension
- $[M, O(x)]=-M_{O} O(x)$
- $[D, O(0)]=i \Delta_{O} O(0)$
- Commuting with P and H increases the dimension by 1 and 2, commuting with K and C by -1 and -2
- Representation theory for operators with $M \neq 0$ is simple

Raising and lowering dimensions

- Operators with $M \neq 0$ are organized in towers
- Dimension raised by P and H, lowered by K and C
- Primary operators: $[K, O(0)]=[C, O(0)]=0$

Operator-state correspondence

- Dimension of a primary operator = energy of a state in a harmonic potential
- Example: in free theory $[\psi]=\frac{d}{2}$, ground state of 1
particle in harmonic potential: $E=\frac{d}{2} \hbar \omega$

Two-point function

- Let \mathscr{U} be a primary operator in a NRCFT
- Characterized by mass M and dimension Δ
- Propagator
- $G_{\vartheta}(t, \mathbf{x})=-i\left\langle T U(t, \mathbf{x}) U^{\dagger}(0, \mathbf{0})\right\rangle=C \frac{\theta(t)}{(i t)^{\Delta}} \exp \left(\frac{i M x^{2}}{2 t}\right)$
- $G_{\vartheta}(\omega, \mathbf{p}) \sim\left(\frac{p^{2}}{2 M}-\omega\right)^{\Delta-\frac{5}{2}}$
$\omega-\frac{p^{2}}{2 M}$ is the energy of the in the CM frame

OPE in NRCFT

S. Golkar and DTS, 2014

- In contrast to relativistic CFT, OPE coefficients in NRCFT are functions

$$
O_{1}(x) O_{2}(0)=\sum \frac{1}{|\mathbf{x}|^{\Delta_{1}+\Delta_{2}-\Delta_{n}}} c_{n}\left(\frac{x^{2}}{t}\right) O_{n}(0)
$$

- The function c_{n} can be determined if one of the operator is a free field operator with $\Delta=d / 2$

Fermions at unitarity

- $\psi=\psi\left(\mathbf{x}_{i}, \mathbf{y}_{j}\right) \quad \mathbf{x}_{i}:$ spin-up, $\mathbf{y}_{j}:$ spin-down
- When $\mathbf{x}_{i} \rightarrow \mathbf{y}_{j}: \psi(\mathbf{x}, \mathbf{y})=\frac{1}{|\mathbf{x}-\mathbf{y}|} f\left(\frac{\mathbf{x}+\mathbf{y}}{2}\right)+O(\mathbf{x}-\mathbf{y})$
- For example, ground state of 2 particles in harmonic potential:
- $\psi(\mathbf{x}, \mathbf{y}) \sim \frac{e^{-\left(x^{2}+y^{2}\right) / 2}}{|\mathbf{x}-\mathbf{y}|} \quad E=2$
- An operator with $M=2 m$ and $\Delta=2$

Fermions at unitarity as a NRCFT

- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-c_{0} \psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \psi_{\downarrow} \psi_{\uparrow}$
- Introducing auxiliary field ϕ
- $L=i \psi^{\dagger}\left(\partial_{t}+\frac{\nabla^{2}}{2 m}\right) \psi-\psi_{\uparrow}^{\dagger} \psi_{\downarrow}^{\dagger} \phi-\phi^{\dagger} \psi_{\downarrow} \psi_{\uparrow}+\frac{\phi^{\dagger} \phi}{c_{0}}$
- Propagator of ϕ

Renormalization

- $G_{\phi}^{-1}(\omega, \mathbf{p})=c_{0}^{-1}+$ one-loop integral
- $=c_{0}^{-1}+\Lambda+\left(\frac{p^{2}}{4 m}-\omega\right)^{1 / 2}$

- Unitarity: fine-tuning so that $c_{0}+\Lambda=0$
- (scattering length: $c_{0}+\Lambda=\frac{1}{a}$)
- Physically: fine-tune the attractive short-range potential to have a bound state at threshold

$$
G_{\phi}(\omega, \mathbf{p})=\frac{1}{\sqrt{\frac{p^{2}}{4 m}-\omega}}
$$

Operator dimensions for fermions at unitarity

- Dimensions of operators can be obtained either by field theory or quantum mechanical calculation in a harmonic trap
- Lowest dimension operators

N	S	L	O	Δ
2	0	0	$\psi_{\uparrow} \psi_{\downarrow}$	2
3	$1 / 2$	1	$\psi_{\downarrow} \psi_{\uparrow} \boldsymbol{\nabla} \psi_{\uparrow}$	4.273
3	$1 / 2$	0	$\psi_{\downarrow} \boldsymbol{\nabla} \psi_{\uparrow} \cdot \boldsymbol{\nabla} \psi_{\uparrow}$	4.666
4	0	0	$\psi_{\downarrow} \psi_{\uparrow} \boldsymbol{\nabla} \psi_{\downarrow} \cdot \nabla \psi_{\uparrow}$	$5.0-5.1$

$N(l)$	$\mathcal{O}_{N}^{(l)}$	$\Delta_{\mathcal{O}}$	$E / \hbar \omega$ in $d=3$
$2(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}$	2	$2[30]$
$3(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial_{t} \psi_{\uparrow}\right)$	$5+O\left(\bar{\epsilon}^{2}\right)$	$4.66622[26]$
$3(l=1)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow}\right)$	$4+O\left(\bar{\epsilon}^{2}\right)$	$4.27272[26]$
$4(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right)$	$6-\bar{\epsilon}+\left(\bar{\epsilon}^{2}\right)$	$\approx 5.028[33]$
$5(l=0)$	$(*)$	$9-\frac{11 \pm \sqrt{105} \bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right)}{16}$	$\approx 8.03[33]$
$5(l=1)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right) \partial \psi_{\uparrow}$	$8-\bar{\epsilon}+O\left(\bar{\epsilon}^{2}\right)$	$\approx 7.53[33]$
$6(l=0)$	$\psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right)^{2}$	$10-2 \bar{\epsilon}+\left(\bar{\epsilon}^{2}\right)$	$\approx 8.48{ }^{[33]}$

$(*)=a \psi_{\uparrow} \psi_{\downarrow}\left(\boldsymbol{\partial} \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial^{2} \psi_{\uparrow}+b \psi_{\uparrow} \partial_{i} \psi_{\downarrow}\left(\boldsymbol{\partial} \psi_{\uparrow} \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial_{i} \psi_{\uparrow}+c \psi_{\uparrow} \psi_{\downarrow}\left(\left(\partial_{i} \boldsymbol{\partial} \psi_{\uparrow}\right) \cdot \boldsymbol{\partial} \psi_{\downarrow}\right) \partial_{i} \psi_{\uparrow}-$ $d \psi_{\uparrow} \psi_{\downarrow}\left(\partial \psi_{\uparrow} \cdot \partial \psi_{\downarrow}\right) i \partial_{t} \psi_{\uparrow}$ with $(a, b, c, d)=(\pm 19 \sqrt{3}-5 \sqrt{35}, \mp 16 \sqrt{3},-6 \sqrt{35} \mp 6 \sqrt{3}, 16 \sqrt{35})$.
Y. Nishida, DTS, arXiv: I 004.3597

Systems with large scattering length

- α-particles
- Coulomb interaction complicates the picture
- $D^{0}-\bar{D}^{* 0}[X(3872)]$
- He-4 atoms, $a \sim 100 \AA$
- Trapped ultra-cold atoms (Feshbach resonance)
- Neutrons

Few-neutron systems as unnuclei

- Neutrons have large scattering length:
$a_{n n} \approx-19 \mathrm{fm}$
- vs effective range $r_{0} \approx 2.8 \mathrm{fm}$
- Idealized regime: $a=\infty, r_{0}=0$:"unitarity fermion"
- Physics of fermions at unitarity is described by a NRCFT

Nuclear reactions

- Many nuclear reactions with emissions of neutrons:
- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$
- ${ }^{7} \mathrm{Li}+{ }^{7} \mathrm{Li} \rightarrow{ }^{11} \mathrm{C}+3 n$
- ${ }^{4} \mathrm{He}+{ }^{8} \mathrm{He} \rightarrow{ }^{8} \mathrm{Be}+4 \mathrm{n}$
- Final-state neutrons can be considered as forming an "unnucleus" - a field in NRCFT
- Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$

Few-neutron systems as unnuclei

Factorization: $\quad \frac{d \sigma}{d E} \sim|\mathscr{M}|^{2} \sqrt{E_{B}} \quad \operatorname{Im} G_{\mathscr{U}}\left(E_{\mathscr{U}}, \mathbf{p}\right)$
primary reaction has larger energy than final-state interaction
For 2 neutrons:Watson and Migdal ~ 1950s

Rates of processes involving an unnucleus

- $\frac{d \sigma}{d E} \sim|\mathscr{M}|^{2} \sqrt{E} \operatorname{Im} G_{\mathscr{U}}\left(E_{\mathrm{kin}}-E, \mathbf{p}\right)$
- $\operatorname{lm} G_{\mathscr{U}}\left(E_{\mathrm{kin}}-E, \mathbf{p}\right) \sim\left(E_{\mathrm{kin}}-E-\frac{p^{2}}{2 M_{\mathscr{U}}}\right)^{\Delta-\frac{5}{2}}$
- Near end point: $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\Delta-\frac{5}{2}}$

Nuclear reactions

- ${ }^{3} \mathrm{H}+{ }^{3} \mathrm{H} \rightarrow{ }^{4} \mathrm{He}+2 \mathrm{n}$

$$
\alpha=-0.5
$$

- ${ }^{7} \mathrm{Li}+{ }^{7} \mathrm{Li} \rightarrow{ }^{11} \mathrm{C}+3 n$
$\alpha=1.77$
- ${ }^{4} \mathrm{He}+8 \mathrm{He} \rightarrow 8 \mathrm{Be}+4 \mathrm{n}$ $\alpha=2.5-2.6$
- Prediction:
- $\frac{d \sigma}{d E} \sim\left(E_{0}-E\right)^{\alpha}$
- Regime of validity: kinetic energy of neutrons in their c.o.m. frame between $\hbar^{2} / m a^{2} \sim 0.1 \mathrm{MeV}$ $\hbar^{2} / m r_{0}^{2} \sim 5 \mathrm{MeV}$

- In both reactions the unnuclear scaling regime can be seen from "data"
- Deviation from power-law scaling starts at around 2.5 MeV
- somewhat smaller than the naive estimate of 5 MeV because ${ }^{3} \mathrm{He}$ nucleus is extended?

Conclusion

- Viewing final-state neutrons as forming an unparticle allow one to predict power-law behavior of the diff cross section near end point
- More details calculation: cross-over to free particle behavior below 0.1 MeV
- RG flow from unitary fermions to free fermions
- Unparticle behavior in other systems?

Thank you

