Effective field theory of the Standard Model extended with right-handed neutrinos

Arsenii Titov

Università di Padova and INFN \rightarrow
IFIC, Universitat de València-CSIC
M. Chala and AT, 2001.07732, 2006.14596
J. Alcaide, S. Banerjee, M. Chala, AT, 1905.11375
J.M. Butterworth, M. Chala, C. Englert, M. Spannowsky, AT, 1909.04665

All Things EFT

25 November 2020

Outline

- Motivation
- NSMEFT operator basis
* One-loop renormalisation of dimension-6 operators
- Matching NSMEFT onto NLEFT
* Phenomenology
- Conclusions

Motivation: absence of New Physics

No New Physics signals at particle physics experiments (modulo several inconclusive anomalies), except for neutrino masses

New Physics

- very weakly coupled
new degrees of freedom (dofs) below the electroweak (EW) scale v very likely singlets of the SM gauge group
- present at scales $\Lambda>\mathrm{v}$

SMEFT is appropriate description

- both
"new dofs + SM" EFT (respecting SM gauge symmetry) required
What are these new dofs:
scalars, fermions, vectors?

Motivation: neutrino masses

In the SM neutrinos are massless
Neutrino oscillations show neutrinos are massive (hypothesised by B. Pontecorvo in 1957, detected by Super-Kamiokande in 1998)

The minimal way to generate neutrino masses (at renormalisable level) is via Yukawa interaction (as for all other fermions in the SM) This requires a new state - right-handed (RH) neutrino, $\nu_{R} \equiv N$

$$
\mathscr{L}_{S M+N}=\mathscr{L}_{S M}+i \bar{N} \gamma^{\mu} \partial_{\mu} N-\left[\bar{L} \tilde{H} Y_{N} N+\text { h.c. }\right]
$$

$\tilde{H}=i \sigma_{2} H^{*}$
$\nu=\left(\nu_{L}, N\right)^{T}$ is Dirac neutrino, lepton number is conserved

$$
\begin{gathered}
m_{\nu}=Y_{N} \frac{\mathrm{v}}{\sqrt{2}} \sim 0.01 \mathrm{eV} \quad \mathrm{v}=246 \mathrm{GeV} \quad \Rightarrow \quad Y_{N} \sim 10^{-14} \\
\left(Y_{t} \sim 1 \quad Y_{e} \sim 10^{-6} \quad \Rightarrow \quad \text { flavour problem }\right)
\end{gathered}
$$

Is lepton number a fundamental symmetry?

Motivation: neutrino masses

If lepton number is not a fundamental symmetry, then
$-\mathscr{L}_{\text {mass }}=\bar{L} \tilde{H} Y_{N} N+\frac{1}{2} \overline{N^{c}} M N+$ h.c. $\rightarrow \frac{1}{2}\left(\overline{\nu_{L}} \overline{N^{c}}\right)\left(\begin{array}{cc}0 & m_{D} \\ m_{D}^{T} & M\end{array}\right)\binom{\nu_{L}^{c}}{N}+$ h.c.
$\psi^{c}=C \bar{\psi}^{T} \quad C=i \gamma^{2} \gamma^{0} \quad m_{D}=Y_{N} \frac{\mathrm{v}}{\sqrt{2}}$
$\nu=\left(\nu_{L}, \nu_{L}^{c}\right)^{T}$ and $n=\left(N^{c}, N\right)^{T}$ are Majorana neutrinos
Type I seesaw mechanism: $m_{D} \ll M$

$$
m_{\nu}=-m_{D} M^{-1} m_{D}^{T} \sim 0.01 \mathrm{eV}
$$

Huge range of values for M, including $M \lesssim \mathrm{v}$

Motivation: neutrino masses

Of course, at non-renormalisable level, the minimal way to generate Majorana neutrino masses is via Weinberg dimension-5 operator

$$
\mathcal{O}_{L H}=(\bar{L} \tilde{H})\left(\tilde{H}^{T} L^{c}\right)+\text { h.c. }
$$

SMEFT accommodates lepton number-violating neutrino masses

In what follows, we assume

- lepton number conservation (LNC)
or
- lepton number violation (LNV) by $M \lesssim \mathrm{v}$
N should be present in the EFT \Rightarrow NSMEFT

NSMEFT: operator basis

$$
\mathscr{L}=\mathscr{L}_{S M+N}+\sum_{d=5}^{\infty} \frac{1}{\Lambda^{d-4}} \sum_{i}^{n_{d}} \alpha_{i}^{(d)} \mathcal{O}_{i}^{(d)}
$$

$\mathcal{O}_{i}^{(d)}$ are invariant under $S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}$

Dimension 5 (LNV operators)

$$
\begin{aligned}
\mathcal{O}_{L H}= & (\bar{L} \tilde{H})\left(\tilde{H}^{T} L^{c}\right) \\
\mathcal{O}_{N N H}= & \left(\overline{N^{c}} N\right)\left(H^{\dagger} H\right) \quad \begin{array}{l}
\text { Weinberg, PRL 43 (1979) } 1566 \\
\text { Aguila, Bar-Shalom, Soni, Wuadka, 0806.0876 } \\
\text { Aparici, Kim, Santamaria, Wudka, 0904.3244 }
\end{array} \\
\mathcal{O}_{N N B}=\left(\overline{N^{c}} \sigma^{\mu \nu} N\right) B_{\mu \nu} & B_{\mu \nu}=\partial_{\mu} B_{\nu}-\partial_{\nu} B_{\mu} \quad \sigma^{\mu \nu}=\frac{i}{2}\left[\gamma^{\mu}, \gamma^{\nu}\right] \\
& \mathcal{O}_{N N B} \equiv 0 \text { for } n_{s}=1 \quad\left(n_{s} \text { is \# of } N \mathrm{~s}\right)
\end{aligned}
$$

NSMEFT: operator basis

Dimension 6

Initial set of operators (redundant) Aguila, Bar-Shalom, Soni, Wudka, 0806.0876 Complete set of independent operators (basis) Liao and Ma, 1612.04527

$$
\text { Higgs-N operators } \# \text { (+h.c.) }=5 \text { (9) }
$$

$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}$	$\mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$	

4-ferm	ns 11 (16)
年	$\begin{gathered} \mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right) \\ \mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \\ \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right) \\ \mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \end{gathered} \mathcal{O}_{d u N e}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
皆	$\begin{gathered} \mathcal{O}_{L N L e}=(\bar{L} N) \epsilon(\overline{L e}) \quad \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d) \\ \mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N) \end{gathered}$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

3 (6)

$\&$	$\mathcal{O}_{N N N N}=\left(\overline{N^{c}} N\right)\left(\overline{N^{c}} N\right)$
$\notin \& B$	$\mathcal{O}_{Q Q d N}=\left(\overline{Q^{c}} \in Q\right)\left(\overline{d^{c}} N\right)$ $\mathcal{O}_{u d N N}=\left(\overline{u^{c}} d\right)\left(\overline{d^{c}} N\right)$

$n_{f}=1(3): 29(1614)$
operators including h.c.

NSMEFT: operator basis

Dimension 7 (LNV and BNV operators)
Initial set of operators (incomplete) Bhattacharya and Wudka, 1505.05264
Complete set of independent operators (basis) Liao and Ma, 1612.04527
$n_{f}=1$ (3): 80 (4206) operators including h.c.

The basis of operators involving N should be added to the basis of SMEFT operators derived in

- Dim 5 Weinberg, PRL 43 (1979) 1566
- Dim 6 Buchmüller and Wyler, NPB 268 (1986) 621

Grzadkowski, Iskrzynski, Misiak, Rosiek, 1008.4884

- Dim 7 Lehman, 1410.4193

Liao and Ma, 1607.07309

Hierarchy of scales: SM

$\Lambda \sim \mathcal{O}(1-?) \mathrm{TeV}$

SMEFT

$\mathrm{v} \sim \mathcal{O}(100) \mathrm{GeV}$

Low-energy EFT (LEFT) t, H, W, Z integrated out
$E \sim \mathcal{O}(1) \mathrm{GeV}$

Hierarchy of scales: SM

$\Lambda \sim \mathcal{O}(1-?) \mathrm{TeV}$

SMEFT

$$
\mathrm{v} \sim \mathcal{O}(100) \mathrm{GeV}
$$

Low-energy EFT (LEFT) t, H, W, Z integrated out

Renormalisation of dim-6 operators
at 1 loop Jenkins, Manohar, Trott, 1308.2627
Jenkins, Manohar, Trott, 1310.4838

Alonso, Jenkins, Manohar, Trott, 1312.2014

Matching of SMEFT onto LEFT at

- tree level

Jenkins, Manohar, Stoffer, 1709.04486

- 1 loop Dekens, Stoffer, 1908.05295

Renormalisation of dim-6 operators at 1 loop

Jenkins, Manohar, Stoffer, 1711.05270

Hierarchy of scales: SM + N

$\Lambda \sim \mathcal{O}(1-?) \mathrm{TeV}$

NSMEFT
$\mathrm{v} \sim \mathcal{O}(100) \mathrm{GeV}$

Hierarchy of scales: SM + N

$\Lambda \sim \mathcal{O}(1-?) \mathrm{TeV}$

NSMEFT
$\mathrm{v} \sim \mathcal{O}(100) \mathrm{GeV}$
$E \sim \mathcal{O}(1) \mathrm{GeV}$

NLEFT

Renormalisation of dim-6 operators at 1 loop

- Higgs-N including gauge, lambda and Yukawa dependence

Chala and AT, 2006.14596

- Higgs-N and 4-fermions including gauge dependence only

Datta, Kumar, Liu, Marfatia, 2010.12109
Matching of NSMEFT onto NLEFT at tree level Chala and AT, 2001.07732

Li, Ma, Schmidt, 2005.01543
Bischer and Rodejohann, 1905.08699

Renormalisation of dim-6 operators at 1 loop

* partial results

Chala and AT, 2001.07732
Li, Ma, Schmidt, 2005.01543

Running of dim-6 Higgs-N operators

Green basis: set of operators independent off shell
Chala and AT, 2001.07732

$0 H$	$1 H$	$2 H$
$\mathcal{O}_{D N}^{1}=\bar{N} \partial^{2} \not \partial N$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}, \mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i D_{\mu} H\right)$
$\mathcal{O}_{D N}^{2}=i \tilde{B}{ }_{\mu \nu}\left(\bar{N} \gamma^{\mu} \partial^{\nu} N\right)$	$\mathcal{O}_{L N}^{1}=\bar{L} N D^{2} \tilde{H}, \mathcal{O}_{L N}^{2}=\bar{L} \partial_{\mu} N D^{\mu} \tilde{H}$	$\mathcal{O}_{N N}^{2}=\bar{N} i \not \partial N\left(H^{\dagger} H\right)$
$\mathcal{O}_{D N}^{3}=\partial^{\nu} B_{\mu \nu}\left(\bar{N} \gamma^{\mu} N\right)$	$\mathcal{O}_{L N}^{3}=i \bar{L} \sigma^{\mu \nu} \partial_{\mu} N D_{\nu} \tilde{H}, \mathcal{O}_{L N}^{4}=\bar{L}\left(\partial^{2} N\right) \tilde{H}$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H: \mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$		

The basis is obtained with the help of the package BasisGen Criado, 1901.03501
Operators in gray are redundant when evaluated on shell:
$\mathcal{O}_{D N}^{1}=0$
$\mathcal{O}_{L N}^{1}=\left(\mu_{H}^{2} \tilde{L} \tilde{H} N+\right.$ h.c. $)-\lambda_{H} \mathcal{O}_{L N H}$
$\mathscr{O}_{D N}^{2}=-\frac{g_{1}}{2} \mathcal{O}_{H N} \quad \sigma_{L N}^{2}=-\left(\mu_{H}^{2} \bar{L} \tilde{H} N+\right.$ h.c. $)-\frac{g_{1}}{8} \mathcal{O}_{N B}+\frac{g_{2}}{8} \mathcal{O}_{N W}-\frac{1}{2} Y_{e} \mathcal{O}_{H N}-\frac{\lambda_{H}}{2} \mathscr{O}_{L N H}$
$\mathscr{O}_{D N}^{3}=-\mathscr{O}_{D N}^{2}$
$\mathscr{O}_{L N}^{3}=-\mathscr{\sigma}_{L N}^{2}$
$\mathcal{O}_{N N}^{2}=0 \quad \mathcal{O}_{L N}^{4}=0$
(The equations hold up to Y_{N} suppressed operators and 4-fermions)

Running of dim-6 Higgs-N operators

Anomalous dimension matrix

$$
\begin{aligned}
& 16 \pi^{2} \mu \frac{\mathrm{~d} \vec{\alpha}}{\mathrm{~d} \mu}=\gamma \vec{\alpha}
\end{aligned}
$$

We set $Y_{N}=0 \Rightarrow$ no mixing between Higgs- N and pure SMEFT operators
For $Y_{u, d, e}=0, \mathscr{L}_{S M+N}$ is invariant under $N \rightarrow e^{i \theta_{N}} N, e \rightarrow e^{i \theta_{e}} e, H \rightarrow e^{i \theta_{H}} H$ $\mathcal{O}_{N B, N W, L N H} \rightarrow e^{i\left(\theta_{N}-\theta_{H}\right)} \mathcal{O}_{N B, N W, L N H}, \quad \mathcal{O}_{H N} \rightarrow \mathcal{O}_{H N}, \quad \mathcal{O}_{H N e} \rightarrow e^{i\left(\theta_{e}-\theta_{N}+2 \theta_{H}\right)} \mathcal{O}_{H N e}$

Running of dim-6 Higgs-N operators

Technicalities of the computation
Background field method: $V_{\mu} \rightarrow V_{\mu}+\delta V_{\mu}$

- Feynman gauge
- To order $\mathcal{O}\left(1 / \Lambda^{2}\right)$ any divergence can be mapped onto EFT's Green basis
- (Off-shell) 1PI amplitudes
- Dim reg: $d=4-2 \epsilon$
(Semi-)automatic computation using

```
FeynRules + FeynArts + FormCalc
    Alloul et al., Hahn, Hahn and Perez-Victoria
```

(Semi-)manual check using
FeynRules + QGRAPH

Running of dim-6 Higgs-N operators

Example: $\bar{N} N \rightarrow B$ amplitude

(1)

(2)

(3)

(4)

$$
i \mathcal{M}_{\text {loop }}=\frac{i}{48 \pi^{2} \Lambda^{2} \epsilon} g_{1} \alpha_{H N} \overline{v_{1}}\left(p_{2}^{2} \gamma^{\mu}-p_{2}^{\mu} \phi_{2}\right) P_{R} u_{3} \epsilon_{\mu}^{*} \quad \mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i D_{\mu} H\right)
$$

$$
i \mathcal{M}_{\text {div }}=\frac{i}{\Lambda^{2}} \overline{v_{1}}\left[\widetilde{\alpha}_{D N}^{3}\left(p_{2}^{\mu} \not p_{2}-p_{2}^{2} \gamma^{\mu}\right)-2 \widetilde{\alpha}_{D N}^{2}\left(\gamma^{\mu} p_{3} p_{2}-\gamma^{\mu} p_{2} p_{3}+p_{2}^{\mu} \not p_{3}-p_{3}^{\mu} \not p_{2}\right)\right] P_{R} u_{3} \epsilon_{\mu}^{*}
$$

$$
\begin{aligned}
& \widetilde{\alpha}_{D N}^{2}=0 \\
& \widetilde{\alpha}_{D N}^{3}=-\frac{1}{48 \pi^{2} \epsilon} g_{1} \alpha_{H N}
\end{aligned}
$$

$$
\mathcal{O}_{D N}^{2}=i \tilde{B}_{\mu \nu}\left(\bar{N} \gamma^{\mu} \partial^{\nu} N\right)
$$

$$
\mathcal{O}_{D N}^{3}=\partial^{\nu} B_{\mu \nu}\left(\bar{N} \gamma^{\mu} N\right)
$$

6 more amplitudes to fix all $\tilde{\alpha}_{i}$

Running of dim-6 Higgs-N operators

After removing the redundant (on shell) operators
$\mathscr{L}_{\text {div }}=\frac{1}{32 \pi^{2} \Lambda^{2} \epsilon} \overrightarrow{\mathcal{O}}^{T} \cdot \mathscr{C} \cdot \vec{\alpha}$
\mathscr{C} contains SM couplings
$\mathscr{L}_{6}=\frac{1}{\Lambda^{2}} \vec{\alpha}^{T} \cdot \overrightarrow{\mathcal{O}}+\mathscr{L}_{\text {c.t. }} \quad \mathscr{L}_{\text {c.t. }}=-\mathscr{L}_{\text {div }}$
$\gamma=-\mathscr{C}-K_{F} \quad K_{F}=32 \pi^{2} \epsilon\left(Z_{F}-\mathbf{1}\right) \quad Z_{F}$ contains wave-function renormalisation factors

Running of dim-6 Higgs-N operators

After removing the redundant (on shell) operators

$$
\begin{aligned}
& \mathscr{L}_{\text {div }}=\frac{1}{32 \pi^{2} \Lambda^{2} \epsilon} \overrightarrow{\mathscr{O}}^{T} \cdot \mathscr{C} \cdot \vec{\alpha} \quad \mathscr{C} \text { contains SM couplings } \\
& \mathscr{L}_{6}=\frac{1}{\Lambda^{2}} \vec{\alpha}^{T} \cdot \overrightarrow{\mathcal{O}}+\mathscr{L}_{\text {c.t. }} \quad \mathscr{L}_{\text {c.t. }}=-\mathscr{L}_{\text {div }} \\
& \gamma=-\mathscr{C}-K_{F} \quad K_{F}=32 \pi^{2} \epsilon\left(Z_{F}-\mathbf{1}\right) \quad Z_{F} \begin{array}{l}
\text { contains wave-function } \\
\text { renormalisation factors }
\end{array}
\end{aligned}
$$

Running of dim-6 Higgs-N operators

After removing the redundant (on shell) operators

$$
\begin{aligned}
& \mathscr{L}_{\text {div }}=\frac{1}{32 \pi^{2} \Lambda^{2} \epsilon} \overrightarrow{\mathscr{O}}^{T} \cdot \mathscr{C} \cdot \vec{\alpha} \quad \mathscr{C} \text { contains SM couplings } \\
& \mathscr{L}_{6}=\frac{1}{\Lambda^{2}} \vec{\alpha}^{T} \cdot \overrightarrow{\mathcal{O}}+\mathscr{L}_{\text {c.t. }} \quad \mathscr{L}_{\text {c.t. }}=-\mathscr{L}_{\text {div }} \\
& \gamma=-\mathscr{C}-K_{F} \quad K_{F}=32 \pi^{2} \epsilon\left(Z_{F}-\mathbf{1}\right) \quad Z_{F} \begin{array}{l}
\text { contains wave-function } \\
\text { renormalisation factors }
\end{array}
\end{aligned}
$$

$$
\operatorname{Tr}^{2} \equiv 3 \operatorname{Tr}\left(Y_{u}^{2}+Y_{d}^{2}\right)+\operatorname{Tr}\left(Y_{e}^{2}\right)
$$

Applications

Dirac neutrino magnetic dipole moment and neutrino mass

$$
\left|\frac{\mu_{\nu}}{\mu_{B}}\right|=\frac{4 \sqrt{2}}{\mathrm{e}} \frac{m_{e} \mathrm{v}}{\Lambda^{2}} \alpha_{N A}(\mathrm{v}) \text { Bell et al., hep-ph/0504134 } \mathcal{O}_{N A}=c_{W} \mathcal{O}_{N B}+s_{W} \mathcal{O}_{N W}
$$

(c) Neutrino magnetic moment

XENON1T, 2006.09721

$\alpha_{N A} \sim 10^{-5}\left(10^{-1}\right)$ for $\quad \Lambda=1 \mathrm{TeV}(100 \mathrm{TeV})$
$\alpha_{L N H}(v) \sim 10^{-7}\left(10^{-3}\right) \quad \widehat{O}_{L N H}=\bar{L} N \tilde{H}\left(H^{\dagger} H\right) \xrightarrow{\text { EWSB }} \delta m_{\nu} \sim \frac{\alpha_{L N H} \mathrm{v}^{3}}{2 \sqrt{2} \Lambda^{2}}$
$\delta m_{\nu} \sim 10^{2} \mathrm{eV}\left(10^{3} \mathrm{eV}\right)$ to be cancelled by $Y_{N}-$ considerable fine-tuning

Applications

$\mathcal{O}_{H N e}$ and neutrino mass
$\mathcal{O}_{H N e}=\left(\bar{N}^{\mu} e\right)\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$ also renormalises $\mathcal{O}_{L N H}$
For $\ell=\tau, Y_{\tau} \sim 10^{-2}$ and
$\delta m_{\nu} \lesssim 1 \mathrm{eV} \quad \Rightarrow \quad \frac{\alpha_{H N e}}{\Lambda^{2}} \lesssim 10^{-6} \mathrm{TeV}^{-2}$

Bound from $W \rightarrow \tau \nu$
$\Delta \Gamma(W \rightarrow \tau \nu)=\frac{m_{W}^{3} \mathrm{v}^{2}}{48 \pi \Lambda^{4}} \alpha_{H N e}^{2}$
$\frac{\Delta \Gamma(W \rightarrow \tau \nu)}{\Gamma_{W}^{\text {total }}}<2 \times 10^{-3} \Rightarrow \frac{\alpha_{H N e}}{\Lambda^{2}} \lesssim 4.5 \mathrm{TeV}^{-2}$

6 orders of magnitude stronger bound from RGE!

Running of 4-fermions

Gauge dependence of anomalous dimension matrix
Datta, Kumar, Liu, Marfatia, 2010.12109

The strong gauge coupling constant is in play
Sizeable mixing between certain 4-fermion operators, e.g.,
$\mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$ and $\mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N)$

NLEFT：operator basis

NLEFT is the EFT below the EW scale invariant under $S U(3)_{c} \times U(1)_{\mathrm{em}}$

LNC operators

Chala and AT， 2001.07732

Dipole	$\mathcal{O}_{N \gamma}=$	$\overline{\nu_{L}} \sigma^{\mu \nu} N A_{\mu \nu}$
保	$\mathcal{O}_{N N}^{V, R R}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$	
	$\mathcal{O}_{e N}^{V, R R}=\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\bar{N} \gamma^{\mu} N\right)$	$\mathcal{O}_{u N}^{V, R R}=\left(\overline{u_{R}} \gamma_{\mu} u_{R}\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}^{V, R R}=\left(\overline{d_{R}} \gamma_{\mu} d_{R}\right)\left(\bar{N} \gamma^{\mu} N\right)$	$\mathcal{O}_{u d e N}^{V, R R}=\left(\overline{u_{R}} \gamma_{\mu} d_{R}\right)\left(\overline{e_{R}} \gamma^{\mu} N\right)$
	$\mathcal{O}_{\nu N}^{V, L R}=\left(\overline{\nu_{L}} \gamma_{\mu} \nu_{L}\right)\left(\bar{N} \gamma^{\mu} N\right)$	$\mathcal{O}_{e N}^{V, L R}=\left(\overline{e_{L}} \gamma_{\mu} e_{L}\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{u N}^{V, L R}=\left(\overline{u_{L}} \gamma_{\mu} u_{L}\right)\left(\bar{N} \gamma^{\mu} N\right)$	$\mathcal{O}_{d N}^{V, L R}=\left(\overline{d_{L}} \gamma_{\mu} d_{L}\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{u d e N}^{V, L R}=\left(\overline{u_{L}} \gamma_{\mu} d_{L}\right)\left(\overline{e_{R}} \gamma^{\mu} N\right)$	
鹪	$\mathcal{O}_{N N}^{S, R R}=\left(\overline{\nu_{L}} N\right)\left(\overline{\nu_{L}} N\right)$	
	$\mathcal{O}_{e N}^{S, R R}=\left(\overline{e_{L}} e_{R}\right)\left(\overline{\nu_{L}} N\right)$	$\mathcal{O}_{e N}^{T, R R}=\left(\overline{e_{L}} \sigma_{\mu \nu} e_{R}\right)\left(\overline{\nu_{L}} \sigma^{\mu \nu} N\right)$
	$\mathcal{O}_{u N}^{S, R R}=\left(\overline{u_{L}} u_{R}\right)\left(\overline{\nu_{L}} N\right)$	$\mathcal{O}_{u N}^{T, R R}=\left(\overline{u_{L}} \sigma_{\mu \nu} u_{R}\right)\left(\overline{\nu_{L}} \sigma^{\mu \nu} N\right)$
	$\mathcal{O}_{d N}^{S, R R}=\left(\overline{d_{L}} d_{R}\right)\left(\overline{\nu_{L}} N\right)$	$\mathcal{O}_{d N}^{T, R R}=\left(\overline{d_{L}} \sigma_{\mu \nu} d_{R}\right)\left(\overline{\nu_{L}} \sigma^{\mu \nu} N\right)$
	$\mathcal{O}_{u d e N}^{S, R R}=\left(\overline{u_{L}} d_{R}\right)\left(\overline{e_{L}} N\right)$	$\mathcal{O}_{u d e N}^{T, R R}=\left(\overline{u_{L}} \sigma_{\mu \nu} d_{R}\right)\left(\overline{e_{L}} \sigma^{\mu \nu} N\right)$
号	$\mathcal{O}_{e N}^{S, L R}=\left(\overline{e_{R}} e_{L}\right)\left(\overline{\nu_{L}} N\right)$	$\mathcal{O}_{u N}^{S, L R}=\left(\overline{u_{R}} u_{L}\right)\left(\overline{\nu_{L}} N\right)$
	$\mathcal{O}_{d N}^{S, L R}=\left(\overline{d_{R}} d_{L}\right)\left(\overline{\nu_{L}} N\right)$	$\mathcal{O}_{u d e N}^{S, L R}=\left(\overline{u_{R}} d_{L}\right)\left(\overline{e_{L}} N\right)$

Dipole： 1

4－fermions： 23

Matching NSMEFT onto NLEFT

Tree-level matching at EW scale (w/o Yukawas)

$$
\begin{aligned}
& \frac{\alpha_{N \gamma}}{v}=\frac{v}{\sqrt{2} \Lambda^{2}}\left(\alpha_{N B} c_{W}+\alpha_{N W} s_{W}\right), \\
& \frac{\alpha_{e N}^{V, R R}}{v^{2}}=\frac{\alpha_{e N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{e_{R}} Z_{N}}{m_{Z}^{2}}, \\
& \frac{\alpha_{d N}^{V, R R}}{v^{2}}=\frac{\alpha_{d N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{d_{R}} Z_{N}}{m_{Z}^{2}}, \\
& \frac{\alpha_{\nu N}^{V, L R}}{v^{2}}=\frac{\alpha_{L N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{\nu_{L}} Z_{N}}{m_{Z}^{2}}, \\
& \frac{\alpha_{u N}^{V, L R}}{v^{2}}=\frac{\alpha_{Q N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{u_{L}} Z_{N}}{m_{Z}^{2}}, \\
& \frac{\alpha_{u d e N}^{V, L R}}{v^{2}}=-\frac{g^{2} W_{N}}{2 m_{W}^{2}}, \\
& \frac{\alpha_{e N}^{S, R R}}{v^{2}}=\frac{3 \alpha_{L N L e}}{2 \Lambda^{2}}, \\
& \alpha_{u N}^{S, R R}=0, \\
& \frac{\alpha_{d N}^{S, R R}}{v^{2}}=\frac{\alpha_{L N Q d}}{\Lambda^{2}}-\frac{\alpha_{L d Q N}}{2 \Lambda^{2}}, \\
& \frac{\alpha_{u d e N}^{S, R R}}{v^{2}}=\frac{\alpha_{L d Q N}}{2 \Lambda^{2}}-\frac{\alpha_{L N Q d}}{\Lambda^{2}}, \\
& \frac{\alpha_{e N}^{S, L R}}{v^{2}}=\frac{g^{2} W_{N}}{m_{W}^{2}}, \\
& \alpha_{d N}^{S, L R}=0, \\
& \text { (D.1) } \frac{\alpha_{N N}^{V, R R}}{v^{2}}=\frac{\alpha_{N N}}{\Lambda^{2}} \text {, } \\
& \begin{array}{l}
\text { (D.3) } \frac{\alpha_{u N}^{V, R R}}{v^{2}}=\frac{\alpha_{u N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{u_{R}} Z_{N}}{m_{Z}^{2}}, \\
\text { (D.5) } \quad \frac{\alpha_{u d e N}^{V, R R}}{v^{2}}=\frac{\alpha_{d u N e}}{\Lambda^{2}},
\end{array} \\
& \text { (D.7) } \quad \frac{\alpha_{e N}^{V, L R}}{v^{2}}=\frac{\alpha_{L N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{e_{L}} Z_{N}}{m_{Z}^{2}} \text {, } \\
& \text { (D.9) } \frac{\alpha_{d N}^{V, L R}}{v^{2}}=\frac{\alpha_{Q N}}{\Lambda^{2}}-\frac{g_{Z}^{2} Z_{d_{L}} Z_{N}}{m_{Z}^{2}}, \\
& \text { (D.11) } \quad \alpha_{N N}^{S, R R}=0 \text {, } \\
& \text { (D.13) } \frac{\alpha_{e N}^{T, R R}}{v^{2}}=\frac{\alpha_{L N L e}}{8 \Lambda^{2}} \text {, } \\
& \text { (D.15) } \quad \alpha_{u N}^{T, R R}=0 \text {, } \\
& \text { (D.17) } \frac{\alpha_{d N}^{T, R R}}{v^{2}}=-\frac{\alpha_{L d Q N}}{8 \Lambda^{2}} \text {, } \\
& \text { (D.19) } \frac{\alpha_{u d e N}^{T, R R}}{v^{2}}=\frac{\alpha_{L d Q N}}{8 \Lambda^{2}} \text {, } \\
& \text { (D.21) } \quad \frac{\alpha_{u N}^{S, L R}}{v^{2}}=\frac{\alpha_{Q u N L}}{\Lambda^{2}} \text {, } \\
& \text { (D.23) } \frac{\alpha_{u d N}^{S, L R}}{v^{2}}=\frac{\alpha_{Q u N L}}{\Lambda^{2}} \text {. }
\end{aligned}
$$

Chala and AT, 2001.07732

$$
\begin{aligned}
g_{Z} & =\frac{e}{s_{W} c_{W}} \quad Z_{\psi_{S M}}=T_{3}-Q s_{W}^{2} \\
Z_{N} & =-\frac{\alpha_{H N} \mathrm{v}^{2}}{2 \Lambda^{2}} \quad W_{N}=\frac{\alpha_{H N e} \mathrm{v}^{2}}{2 \Lambda^{2}}
\end{aligned}
$$

NLEFT：operator basis

There are also LNV operators

LNV operators

Chala and AT， 2001.07732

Dipole	$\mathcal{O}_{N N \gamma}=\bar{N} \sigma^{\mu \nu} N^{c} A_{\mu \nu}$
	$\begin{array}{cc} \hline \mathcal{O}_{\nu N^{c}}^{V, L L}=\left(\overline{\nu_{L}} \gamma_{\mu} \nu_{L}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) & \mathcal{O}_{e N^{c}}^{V, L L}=\left(\overline{e_{L}} \gamma_{\mu} e_{L}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) \\ \mathcal{O}_{u N^{c}}^{V, L L}=\left(\overline{u_{L}} \gamma_{\mu} u_{L}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) & \mathcal{O}_{d N^{c}}^{V, L L}=\left(\overline{d_{L}} \gamma_{\mu} d_{L}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) \\ \mathcal{O}_{u d e N^{c}}^{V, L L}=\left(\overline{u_{L}} \gamma_{\mu} d_{L}\right)\left(\overline{e_{L}} \gamma^{\mu} N^{c}\right) \\ \hline \end{array}$
光	$\begin{array}{ll} \mathcal{O}_{e N^{c}}^{V, R L}=\left(\overline{e_{R}} \gamma_{\mu} e_{R}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) & \mathcal{O}_{u N^{c}}^{V, R L}=\left(\overline{u_{R}} \gamma_{\mu} u_{R}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) \\ \mathcal{O}_{d N^{c}}^{V, R L}=\left(\overline{d_{R}} \gamma_{\mu} d_{R}\right)\left(\overline{\nu_{L}} \gamma^{\mu} N^{c}\right) & \mathcal{O}_{u d e N^{c}}^{V, R L}=\left(\overline{u_{R}} \gamma_{\mu} d_{R}\right)\left(\overline{e_{L}} \gamma^{\mu} N^{c}\right) \end{array}$
货花	$\begin{array}{cc} \mathcal{O}_{e N^{c}}^{S, L L}=\left(\overline{e_{R}} e_{L}\right)\left(\bar{N} N^{c}\right) & \mathcal{O}_{u N^{c}}^{S, L L}=\left(\overline{u_{R}} u_{L}\right)\left(\bar{N} N^{c}\right) \\ \mathcal{O}_{d N^{c}}^{S, L L}=\left(\overline{d_{R}} d_{L}\right)\left(\bar{N} N^{c}\right) & \mathcal{O}_{u d e N^{c}}^{S, L L}=\left(\overline{u_{R}} d_{L}\right)\left(\overline{e_{R}} N^{c}\right) \\ \mathcal{O}_{u d e N^{c}}^{T, L L}=\left(\overline{u_{R}} \sigma_{\mu \nu} d_{L}\right)\left(\overline{e_{R}} \sigma^{\mu \nu} N^{c}\right) \end{array}$
	$\begin{array}{lr} \mathcal{O}_{\nu^{c} N^{c}}^{S, R L}=\left(\overline{\nu_{L}} \nu_{L}^{c}\right)\left(\bar{N} N^{c}\right) & \mathcal{O}_{N N^{c}}^{S, R L}=\left(\overline{\nu_{L}} N\right)\left(\bar{N} N^{c}\right) \\ \mathcal{O}_{e N^{c}}^{S, L}=\left(\overline{e_{L}} e_{R}\right)\left(\bar{N} N^{c}\right) & \mathcal{O}_{u N^{c}}^{S, R L}=\left(\overline{u_{L}} u_{R}\right)\left(\bar{N} N^{c}\right) \\ \mathcal{O}_{d N^{c}}^{S, 2 L}=\left(\overline{d_{L}} d_{R}\right)\left(\bar{N} N^{c}\right) & \mathcal{O}_{u d e N^{c}}^{S, R L}=\left(\overline{u_{L}} d_{R}\right)\left(\overline{e_{R}} N^{c}\right) \end{array}$

See also Li，Ma，Schmidt，2005．01543，in particular，for tree－level matching

Phenomenology: Dirac neutrino

- What are the constraints on the NSMEFT operators involving N ?
- What are the signatures of the unconstrained operators?

$\frac{\sim}{\sim}$	$\mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{\text {duNe }}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
皆	$\mathcal{O}_{L N L e}=(\bar{L} N) \epsilon(\bar{L} e) \quad \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$
先	$\mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N)$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

Phenomenology: Dirac neutrino

- What are the constraints on the NSMEFT operators involving N ?

What are the signatures of the unconstrained operators?

Alcaide, Banerjee, Chala, AT, 1905.11375

	$\mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{\text {duNe }}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
采	$\mathcal{O}_{L N L e}=(\bar{L} N) \epsilon(\bar{L} e) \quad \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$
	$\mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N)$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

Phenomenology: Dirac neutrino

- What are the constraints on the NSMEFT operators involving N ?

What are the signatures of the unconstrained operators?

Alcaide, Banerjee, Chala, AT, 1905.11375

$\begin{aligned} & \text { cֻ } \\ & \text { cex } \end{aligned}$	$\mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{\text {duNe }}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
采	$\mathcal{O}_{L N L e}=(\bar{L} N) \epsilon(\bar{L} e) \quad \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$
	$\mathcal{O}_{\text {LdQ }}=(\bar{L} d) \epsilon(\bar{Q} N)$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

Phenomenology: Dirac neutrino

- What are the constraints on the NSMEFT operators involving N ?

What are the signatures of the unconstrained operators?

Alcaide, Banerjee, Chala, AT, 1905.11375

	$\mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{d u N e}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
采	$\mathcal{O}_{\text {LNLe }}=(\bar{L} N) \epsilon(\bar{L} e) \quad \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$
	$\mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N)$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

Phenomenology: Dirac neutrino

- What are the constraints on the NSMEFT operators involving N ?

What are the signatures of the unconstrained operators?

Alcaide, Banerjee, Chala, AT, 1905.11375

	$\mathcal{O}_{N N}=\left(\bar{N} \gamma_{\mu} N\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{e N}=\left(\bar{e} \gamma_{\mu} e\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{u N}=\left(\bar{u} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} N\right)$
	$\mathcal{O}_{d N}=\left(\bar{d} \gamma_{\mu} d\right)\left(\bar{N} \gamma^{\mu} N\right) \quad \mathcal{O}_{\text {duNe }}=\left(\bar{d} \gamma_{\mu} u\right)\left(\bar{N} \gamma^{\mu} e\right)$
LLRR	$\mathcal{O}_{L N}=\left(\bar{L} \gamma_{\mu} L\right)\left(\bar{N} \gamma^{\mu} N\right) \mathcal{O}_{Q N}=\left(\bar{Q} \gamma_{\mu} Q\right)\left(\bar{N} \gamma^{\mu} N\right)$
界采	$\mathcal{O}_{L N L e}=(\bar{L} N) \epsilon(\bar{L} e) \mathcal{O}_{L N Q d}=(\bar{L} N) \epsilon(\bar{Q} d)$
	$\mathcal{O}_{L d Q N}=(\bar{L} d) \epsilon(\bar{Q} N)$
LRRL	$\mathcal{O}_{Q u N L}=(\bar{Q} u)(\bar{N} L)$

New top decay

Constraints on 4-fermions

Novel LHC analysis for $t \rightarrow b l+i n v$

Alcaide, Banerjee, Chala, AT, 1905.11375

do not reconstruct m_{W}

SM

reconstruct m_{W}

A multivariate analysis based on a BDT classifier $\left(p_{T}^{b_{i}}, p_{T}^{j_{i}}, m_{W}, \Delta R_{i j}\right)$

$$
A=\frac{N_{+}-N_{-}}{N_{+}+N_{-}} \quad \begin{cases}A<0 & \text { in } \text { SM } \\ A>0 & \text { in } \text { NSMEFT }\end{cases}
$$

$$
\mathscr{B}(t \rightarrow b \ell N) \sim 2 \times 10^{-4}
$$

@ HL-LHC with $\mathscr{L}=3 \mathrm{ab}^{-1}$

Phenomenology: Majorana N

$-\mathscr{L}_{\text {mass }}=\bar{L} \tilde{H} Y_{N} N+\frac{1}{2} \overline{N^{c}} m_{N} N+$ h.c. $\quad \Rightarrow \quad N$ is Majorana
$\Gamma(N \rightarrow \nu \gamma)=\frac{m_{N}^{3} \mathrm{v}^{2}}{4 \pi \Lambda^{4}} \alpha_{N A}^{2} \quad \alpha_{N A}=c_{W} \alpha_{N B}+s_{W} \alpha_{N W}$

Duarte, Peressutti, Sampayo, 1508.01588

Butterworth, Chala, Englert,

Let's restrict to Higgs-N operators
For the analysis including 4-fermions in this regime see

Higgs-N operators

$$
\mathcal{O}_{N N H}=\left(\overline{N^{c}} N\right)\left(H^{\dagger} H\right)
$$

$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}$	$\mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$	

Higgs-N operators

$\widehat{O}_{N N H}=\left(\overline{N^{c}} N\right)\left(H^{\dagger} H\right)$	
$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu} \quad \mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$

Higgs-N operators

$$
\mathcal{O}_{N N H}=\left(\bar{N}^{c} N\right)\left(H^{\dagger} H\right)
$$

$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}$	$\mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i \overleftrightarrow{D_{\mu}} H\right)$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$	

Higgs-N operators

Higgs-N operators

$\mathcal{O}_{N N H}=\left(\overline{N^{c}} N\right)\left(H^{\dagger} H\right)$

$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}$	$\mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i \overline{D_{\mu}^{\prime}} H\right)$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$	

Higgs-N operators

Higgs-N operators

$$
\mathcal{O}_{N N H}=\left(\bar{N}^{c} N\right)\left(H^{\dagger} H\right)
$$

$1 H$	$\mathcal{O}_{N B}=\bar{L} \sigma^{\mu \nu} N \tilde{H} B_{\mu \nu}$	$\mathcal{O}_{N W}=\bar{L} \sigma^{\mu \nu} N \sigma_{I} \tilde{H} W_{\mu \nu}^{I}$
$2 H$	$\mathcal{O}_{H N}=\bar{N} \gamma^{\mu} N\left(H^{\dagger} i \bar{D}_{\mu}^{\prime} H\right)$	$\mathcal{O}_{H N e}=\bar{N} \gamma^{\mu} e\left(\tilde{H}^{\dagger} i D_{\mu} H\right)$
$3 H$	$\mathcal{O}_{L N H}=\bar{L} \tilde{H} N\left(H^{\dagger} H\right)$	

$\mathscr{B}(Z \rightarrow \nu \nu \gamma(\gamma)) \lesssim 3 \times 10^{-6} \quad \Rightarrow \quad$ set $\quad \alpha_{N Z}=\alpha_{H N}=0 \quad$ (for simplicity) LEP, 90's; PDG, RPP 2018

Higgs-N operators

$\mathscr{B}(Z \rightarrow \nu \nu \gamma(\gamma)) \lesssim 3 \times 10^{-6} \quad \Rightarrow \quad$ set $\quad \alpha_{N Z}=\alpha_{H N}=0 \quad$ (for simplicity) LEP, 90's; PDG, RPP 2018

Higgs searches in $h \rightarrow \gamma(\gamma)+i n v$

Shape analysis: small signal on top of large background
Butterworth, Chala, Englert, Spannowsky, AT, 1909.04665

$\mathscr{B}\left(h \rightarrow \gamma+p_{T}^{\text {miss }}\right) \sim 1.2 \times 10^{-4}$
$\mathscr{B}\left(h \rightarrow \gamma \gamma+p_{T}^{\text {miss }}\right) \sim 4.2 \times 10^{-5}$
@ HL-LHC with $\mathscr{L}=3 \mathrm{ab}^{-1}$

Operator	$\alpha_{\max }$ for $\Lambda=1 \mathrm{TeV}$	$\Lambda_{\min }[\mathrm{TeV}]$ for $\alpha=1$	Channel
$\mathcal{O}_{L N H}$	4.2×10^{-3}	15	$h \rightarrow \gamma+p_{T}^{\text {miss }}$
$\mathcal{O}_{N N H}$	5.3×10^{-4}	1900	$h \rightarrow \gamma \gamma+p_{T}^{\text {miss }}$
$\mathcal{O}_{N A}$	0.21	2.2	$h \rightarrow \gamma \gamma+p_{T}^{\text {miss }}$

Further probes of NSMEFT / NLEFT

- CEvNS, beta and meson decays

Bischer and Rodejohann, 1905.08699
Han, Liao, Liu, Marfatia, 2004.13869 -> also collider constraints
Li, Ma, Schmidt, 2005.01543, 2007.15408

* Displaced vertices from long-lived sterile neutrinos
de Vries et al., 2010.07305
- Neutrinoless double beta decay

Dekens et al., 2002.07182

* Long-range neutrino interactions

Bolton, Deppisch, Hati, 2004.08328

Conclusions

- If massive neutrinos are Dirac particles, or light sterile Majorana neutrinos exist, SM should be extended with RH neutrino N
* If New Physics exists at $\Lambda>\mathrm{v}$, EFT is the appropriate description SMEFT \rightarrow NSMEFT, LEFT \rightarrow NLEFT
- Renormalisation of dim-6 NSMEFT operators at 1 loop
- Matching NSMEFT onto NLEFT at tree level
* Phenomenological consequences of new operators: new rare top and Higgs decays to be probed at HL-LHC

Further directions

- Completing RGEs in NSMEFT and NLEFT taking into account dependence on all Yukawas and full flavour structure
- Matching NSMEFT onto NLEFT at 1 loop
- Phenomenological studies of NSMEFT / NLEFT in different regimes

Backup slides

Running of some operators in NLEFT

(a)

$$
\dot{\alpha} \equiv 16 \pi^{2} \mu \frac{\mathrm{~d} \alpha}{\mathrm{~d} \mu}
$$

$$
\begin{aligned}
& \dot{\alpha}_{N \gamma}= \frac{4}{3}\left(3 q_{e}^{2}+3 N_{c} q_{d}^{2}+2 N_{c} q_{u}^{2}\right) e^{2} \alpha_{N \gamma} \\
& \dot{\alpha}_{\psi N}^{V, R R}= \frac{4}{3} e^{2} q_{\psi}\left[N_{c} q_{u}\left(\alpha_{u N}^{V, R R}+\alpha_{u N}^{V, L R}\right)+N_{c} q_{d}\left(\alpha_{d N}^{V, R R}+\alpha_{d N}^{V, L R}\right)+q_{e}\left(\alpha_{e N}^{V, R R}+\alpha_{e N}^{V, L R}\right)\right] \\
& \dot{\alpha}_{\psi N}^{V, L R}= \frac{4}{3} e^{2} q_{\psi}\left[N_{c} q_{u}\left(\alpha_{u N}^{V, R R}+\alpha_{u N}^{V, L R}\right)+N_{c} q_{d}\left(\alpha_{d N}^{V, R R}+\alpha_{d N}^{V, L R}\right)+q_{e}\left(\alpha_{e N}^{V, R R}+\alpha_{e N}^{V, L R}\right)\right] \\
& \psi=\nu, N, e, u, d \\
& \dot{\alpha}_{N N}^{V, R R}=\dot{\alpha}_{\nu N}^{V, L R}=0
\end{aligned}
$$

Amplitudes for RGEs in NSMEFT

$$
\overline{\nu_{L}} N \rightarrow H_{0}
$$

(2)
$\overline{\nu_{L}} N \rightarrow B H_{0}$

(1)
$\overline{e_{L}} N \rightarrow W^{3} H^{+}$

Amplitudes for RGEs in NSMEFT

$\bar{N} N \rightarrow H_{0}^{*} H_{0}$

(1)

(5)

(2)

(3)

(4)

(6)

(7)

(8)

Amplitudes for RGEs in NSMEFT

$$
\overline{\nu_{L}} N H_{0}^{*} \rightarrow H_{0}^{*} H_{0}
$$

(19)

(20)

(21)

(22)

Amplitudes for RGEs in NSMEFT

$\overline{\nu_{L}} N H_{0}^{*} \rightarrow H_{0}^{*} H_{0} \quad$ (II)

(24)

(25)

(30)

(26)

(31)

(27)

(32)

Amplitudes for RGEs in NSMEFT

$\bar{N} e_{R} \rightarrow H^{-} H_{0}^{*}$

(1)

(2)

(3)

(4)

(5)

(8)

(9)

(11)

UV complete model

Chala and AT, 2001.07732

$$
\mathrm{SM}+N+X_{E} \sim(\mathbf{1}, \mathbf{2})_{1 / 2}+X_{N} \sim(\mathbf{1}, \mathbf{1})_{1}+\varphi \sim(\mathbf{1}, \mathbf{1})_{-1}
$$

$$
\mathcal{L}=\mathcal{L}_{S M+N}+\mathcal{L}_{\text {heavy }}
$$

$$
\mathcal{L}_{S M+N}=-\frac{1}{4} G_{\mu \nu}^{A} G^{A \mu \nu}-\frac{1}{4} W_{\mu \nu}^{I} W^{I \mu \nu}-\frac{1}{4} B_{\mu \nu} B^{\mu \nu}
$$

$$
+\left(D_{\mu} H\right)^{\dagger}\left(D^{\mu} H\right)+\mu_{H}^{2} H^{\dagger} H-\frac{1}{2} \lambda_{H}\left(H^{\dagger} H\right)^{2}
$$

$$
+i(\bar{Q} \not D Q+\bar{u} \not D u+\bar{d} D D d+\bar{L} \not D L+\bar{e} \not D e+\bar{N} \not D N)
$$

$$
-\left[\frac{1}{2} m_{N} \overline{N^{c}} N+\bar{Q} Y_{d} H d+\bar{Q} Y_{u} \tilde{H} u+\bar{L} Y_{e} H e+\bar{L} Y_{N} \tilde{H} N+\text { h.c. }\right]
$$

$$
\mathcal{L}_{\text {heavy }}=\overline{X_{E}}\left(i \not D-M_{X_{E}}\right) X_{E}+\overline{X_{N}}\left(i \not D-M_{X_{N}}\right) X_{N}
$$

$$
+\left(D_{\mu} \varphi\right)^{*}\left(D^{\mu} \varphi\right)-M_{\varphi}^{2} \varphi^{*} \varphi-\lambda_{\varphi \varphi}\left(\varphi^{*} \varphi\right)^{2}-\lambda_{\varphi H}\left(\varphi^{*} \varphi\right)\left(H^{\dagger} H\right)
$$

$$
+\left[g_{X} \overline{X_{E}} \tilde{H} X_{N}+g_{L} \overline{X_{E}} \varphi^{*} L+g_{N} \overline{X_{N}} \varphi^{*} N+\text { h.c. }\right] .
$$

UV complete model

Matching at 1 loop

(a)
(a)

$i \mathcal{M}_{U V}=\frac{i g^{\prime} g_{N}^{2}}{96 \pi^{2} M^{2}} \bar{u}\left(p_{N}-p_{B}\right) P_{L}\left[\gamma^{\mu}\left(p_{B}^{2}-p_{B} p_{N}+\not p_{B} \not \phi_{N}\right)\right.$
$\left.-p_{B}^{\mu} \phi_{B}-p_{B}^{\mu} \phi_{N}+p_{N}^{\mu} \phi_{B}\right] u\left(p_{N}\right) \epsilon_{\mu}^{*}\left(p_{B}\right)$
$i \mathcal{M}_{E F T}=\frac{i}{\Lambda^{2}} \bar{u}\left(p_{N}-p_{B}\right) P_{L}\left[\gamma^{\mu}\left(\alpha_{D N}^{3} p_{B}^{2}-2 \alpha_{D N}^{2} p_{B} p_{N}+2 \alpha_{D N}^{2} \not \phi_{B} \not \phi_{N}\right)\right.$
$\left.-\alpha_{D N}^{3} p_{B}^{\mu} \phi_{B}-2 \alpha_{D N}^{2} p_{B}^{\mu} \phi_{N}+2 \alpha_{D N}^{2} p_{N}^{\mu} \phi_{B}\right] u\left(p_{N}\right) \epsilon_{\mu}^{*}\left(p_{B}\right)$

UV complete model

UV complete model

10 Wilson coefficients in terms of 4 couplings of the UV model:

$$
\begin{aligned}
\frac{\alpha_{N B}}{\Lambda^{2}} & =\frac{e g_{L} g_{X} g_{N}}{256 \pi^{2} c_{W} M^{2}} \\
\frac{\alpha_{H N}}{\Lambda^{2}} & =\frac{g_{N}^{2}\left(e^{2}-4 c_{W}^{2} g_{X}^{2}\right)}{384 \pi^{2} c_{W}^{2} M^{2}}, \\
\frac{\alpha_{L N}}{\Lambda^{2}} & =-\frac{g_{N}^{2}\left(e^{2}+2 c_{W}^{2} g_{L}^{2}\right)}{384 \pi^{2} c_{W}^{2} M^{2}} \\
\frac{\alpha_{N N}}{\Lambda^{2}} & =-\frac{g_{N}^{4}}{384 \pi^{2} M^{2}} \\
\frac{\alpha_{u N}}{\Lambda^{2}} & =\frac{e^{2} g_{N}^{2}}{288 \pi^{2} c_{W}^{2} M^{2}}
\end{aligned}
$$

$$
\frac{\alpha_{N W}}{\Lambda^{2}}=\frac{e g_{L} g_{X} g_{N}}{768 \pi^{2} s_{W} M^{2}}
$$

$$
\frac{\alpha_{L N H}}{\Lambda^{2}}=-\frac{g_{L} g_{X} g_{N}}{192 \pi^{2} M^{2}}\left[\frac{m_{h}^{2}}{v^{2}}+2\left(g_{X}^{2}-\lambda_{\varphi H}\right)\right]
$$

$$
\frac{\alpha_{e N}}{\Lambda^{2}}=-\frac{e^{2} g_{N}^{2}}{192 \pi^{2} c_{W}^{2} M^{2}}
$$

$$
\begin{aligned}
\frac{\alpha_{Q N}}{\Lambda^{2}} & =\frac{e^{2} g_{N}^{2}}{1152 \pi^{2} c_{W}^{2} M^{2}} \\
\frac{\alpha_{d N}}{\Lambda^{2}} & =-\frac{e^{2} g_{N}^{2}}{576 \pi^{2} c_{W}^{2} M^{2}}
\end{aligned}
$$

UV complete model

Prospect on $\alpha_{L N H}$ from the $h \rightarrow \gamma+p_{T}^{\text {miss }}$ analysis

