The analysis of $Bs \rightarrow \phi \nu \bar{\nu}$ At CEPC

Yudong Wang, Lingfeng Li, Manqi Ruan

Motivation

- Investigation of flavor-changing neutral current (FCNC) decays is of fundamental interest.
- SM prediction for the FCNC decay $b \rightarrow s \nu \bar{\nu}$ is nearly free from strong interaction effects and has very small theoretical uncertainty.
- An observation of this decay at a level significantly above the SM prediction would provide unambiguous evidence for new physics.

$$B_s \to \phi \nu \bar{\nu}$$

$$b \rightarrow s \nu \bar{\nu}$$
:

Flavor-change-neutral-current(FCNC) process. Be suppressed by the loop factor and heavy weak boson mass .

 $B_s \to \phi \nu \bar{\nu}$

The measure of the inclusive decay rate probably can not be achieved due to the missing neutrinos.

The exclusive channels(such as $B_S \rightarrow \phi v v$) are more promising as far as the branching ratios with related observables and main background are concerned.

	Experimental $[1]$	SM Prediction [2]	
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 \times 10^{-5}$	$(2.17 \pm 0.30) \times 10^{-6}$	
${ m BR}(B^0 o K^{*0} u ar{ u})$	$< 1.8 \times 10^{-5}$	$(9.48 \pm 1.10) imes 10^{-6}$	
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 imes 10^{-5}$	$(4.68 \pm 0.64) imes 10^{-6}$	
${ m BR}(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 \times 10^{-5}$	$(10.22 \pm 1.19) \times 10^{-6}$	
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$\sim 10^{-5}$	
Table 1: Constraints and predictions for various $b \to s \nu \bar{\nu}$ decays.			

[1] M. Tanabashi et al., "Review of Particle Physics," Phys. Rev., vol. D98, no. 3, p. 030001, 2018.

[2] D. M. Straub, " $b \to k^{(*)} \nu \bar{\nu}$ sm predictions," Dec 2015.

The Bs at CEPC

At Z pole at CEPC ($N_Z = 10^{12}$),

$$N(B_s) = 2 \times N_Z \cdot Br(Z \to b\bar{b}) \cdot Br(\bar{b} \to B_s)$$
$$= 3 \times 10^{10}$$

 $Br(\phi \to K^+K^-) = 49.2\%$

B-hadron fractions in Z decays

<i>b</i> -hadron species	fraction in <i>Z</i> decays	correlation with <i>f(B_s)</i>	correlation with <i>f(b</i> – baryon <i>)</i>
B _s	$f(B_s) = 0.101 \pm 0.008$		
<i>b</i> baryons	$f(b-baryon) = 0.085 \pm 0.011$	+0.065	
B^0 or B^+	$f(B_d) = f(B_u) = 0.407 \pm 0.007$	-0.628	-0.817
$B_s / (B^0 \text{ or } B^+) \text{ ratio}$	$f(B_s)/f(B_d) = 0.249 \pm 0.023$		

The signal up limit:

SM prediction : $Br(Bs \rightarrow \phi \nu \bar{\nu}) \sim 10^{-5}$ $N(B_s \rightarrow \phi \nu \bar{\nu}) \sim 1.5 \times 10^5$

The Events samples

Truth level MC performance:

Background: whizard + pythia6 $b\bar{b}: 5 \times 10^{8}$, $c\bar{c}: 3.6 \times 10^{8}$, $\tau^{+}\tau^{-}: 1 \times 10^{8}$

Signal: Pythia8 + EvtGen1.30 $B_s \rightarrow \phi \nu \bar{\nu} : 10^6$

The Events Analysis

The whole space is divided into two hemisphere by the plane perpendicular to the thrust

$$T = \frac{\sum_{i} |\overrightarrow{p}_{i} \cdot \hat{n}_{i}|}{\sum_{i} |\overrightarrow{p}_{i}|}$$

Signal and tag hemisphere definition:

The visible energy at the signal-semi is smaller than other side.

The preliminary cut chosen:

$N_{\phi}(K^+K^-)$: Number of ϕ reconstructed by K^+K^- pair.		
α	: The ratio defined by $\alpha = \frac{E_{vis}}{E_{hemi}} / \frac{E_{\phi}}{E_{vis}}$.	
D_{ϕ}	: Position of ϕ production.	
Elepton	: Energy of lepton(e, μ) at signal hemisphere.	
m _{vis}	: Invariant mass of visible particles at signal sphere.	
m _{inv}	: Invariant mass of all invisible particles.	
$E_{isolated}$: The energy of particles with direction close to ϕ .	

The lepton(μ , e) cut

$$D_{\phi} > 0.5 \text{ mm}$$

 $E_{asymmetry} > 10 \, \text{GeV}$

$$m_{\text{vis}}^{\text{sig}} = \left(\sum_{i} p_{i}^{\text{sig}}\right)^{2}$$

where p_{i}^{sig} is the momentum of
visible particles.

$$m_{miss} = \sqrt{\left(p_0 - \sum_i p_i\right)}$$

 p_i is the momentum of visible particles of both tag and signal-side.

For single neutrino in bkg:

$$m_{miss} \sim m_{\nu}^2 = 0.$$

Constrains for E_{ϕ} and E_{vis}^{sig}

$$\alpha = \frac{E_{vis}^{sig}}{E_{beam}} / \frac{E_{\phi}}{E_{vis}^{sig}}$$

Where E_{vis}^{sig} is total energy of visible particles at signal-hemisphere.

As the large miss energy for $\nu \bar{\nu}$ pair in signal,

 $E_{vis}^{sig}/E_{beam} \rightarrow \text{low ratio}$

 $E_{\phi}/E_{vis}^{sig} \rightarrow 1$

And should exits correction between the two variables.

Signal events

The ϕ production in each $b\bar{b}$ event.

Parents	В	D	Jets	Others
Num/Events	0.055	0.159	0.086	0.004

The ϕ with missing particles.

 $b\bar{b}: b \to B \to Dl\nu_l$ with $D \to \phi X$

Especially: $B_s \rightarrow D_s l \nu_l$ with $D_s \rightarrow \phi l \nu_l$ (two neutrinos)

The optimized cut chain

Conditions	Signal	$bar{b}$	$c\bar{c}$	Total	$\sqrt{S+B}/S$
Total	150000	3e+11	2.4e+11	5.4e+11	3.651
$N_{\phi} > 0$	68798	8.15e+09	5.37e+09	13.52e+10	1.312
$E_{lepton}=0~{ m GeV}$	64851	3.41e+09	3.60e+09	7.01e+9	0.901
m_{inv} >2.2 GeV	51421	9.07e+07	3.25e+06	9.39e+7	0.185
lpha < 0.8	20294	127827	5333	133150	0.019
Efficiency	0.14	4.26e-07	2.22e-08		

bb background : selected after above cut conditions.

 $E_{isolate}$ is defined as the sum of both tracks and neutral which the direction with ϕ less than 0.2 rad. And E_{track} and $E_{neutral}$ corresponding to above two kinds of particles.

Next scheme

The simulation and reconstruction performance.

- Reconstruction efficiency of ϕ
- Particle identification(between μ^{\pm} , π^{\pm} and K^{\pm})performance.
- The energy resolution of the calorimeter system.
- Dependence on the missing energy/momentum reconstruction.
- Impact parameter resolution of charged particles.
- •

End Thanks

The reconstruction of ϕ

The main background: $b\bar{b}$

By the definition of signal-hemisphere, at least one ϕ reconstructed via K^+K^- pair.

$$B_s \to \phi \nu \bar{\nu}, \quad \phi \to K^+ K^-$$

The truth K^+K^- pairs are selected. The efficiency of reconstruction Would be considered in the following reconstruction step.

Bakup

 $E_{isolate}$ is defined as the sum of both tracks and neutral which the direction with ϕ less than 0.2 rad. And E_{track} and $E_{neutral}$ corresponding to above two kinds of particles.

Particle properties

 B_{s}

ϕ :
$m_{\phi} = 1019.46 \text{MeV}$
$Br(K^+K^-) = 49.2\%$
$Br(K_L K_S) = 34\%$
$m_{D_s} = 1968.34 \text{ MeV}$

 $m_{B_s} = 5366.89 \text{ MeV}$ $Br(D_s^-X) = 93 \pm 25\%$ $Br(D_s^- l^+ \nu_l X) = 8.1 \%$ $Br(D_{s}^{-*}l^{+}\nu_{l}X) = 5.4\%$ τ^{\pm} $Br(\phi \pi^- \nu_{\tau}) = 3.4 \times 10^{-5}$ $Br(\phi K^- \nu_{\tau}) = 4.4 \times 10^{-5}$

 $m_{D_s} = 1908.34$ MeV Br(ϕX) = 15.7 %

The optimization of cut boundary

The up limit for energy of lepton chosen. The best point is about 0.1 GeV, but considering that the main bkg come from $B \rightarrow Dl\nu \rightarrow \phi Xl\nu$, the cut "No lepton" is better.

