Higgs CP property measurement via Higgs－ Vector boson coupling in high energy collider

开题报告报告人：郭方毅 202018000907042
导师：娄辛丑，方亚泉
中国律等院高能物沼矿究所

Introduction

Higgs production in LHC and CEPC

- At LHC(pp collider):

(c)
- At CEPC($e^{+} e^{-}$collider):

Higgs Decay

- Higgs decay to fermion pair and vector boson pair (Leading order)

- Higgs decay to $\gamma \gamma, Z \gamma, g g$

Introduction background

Standard Model Higgs: $J^{P C}=0^{++}$.
Relative experiments in LHC:

- The hypothesis of spin-1 or spin-2 Higgs has been excluded by ATLAS and CMS at $>99 \% \mathrm{CL}$ in $\sqrt{s}=7 \& 8 \mathrm{TeV}, 25 \mathrm{fb}-1$ data.
- Totally CP-even Higgs also has been excluded, the CL depends on theory model (>95\%).
- SM+BSM Higgs CP mixing model is still under testing.

All in inclusive Higgs production mode(i.e. ggF dominant). Present results show the great agreement with SM Higgs.

VBF mode provides a glance for finding CP violation in Higgs-vector boson coupling.

First look for VBF Higgs: VBF $H \rightarrow \tau \tau$ analysis.

Introcuction Theory

6-dimension Effective Lagrangian framework

$$
\begin{aligned}
\mathcal{L}_{e f f} & =\mathcal{L}_{S M}+\frac{f_{\widetilde{B} B}}{\Lambda^{2}} \mathcal{O}_{\tilde{B} B}+\frac{f_{\widetilde{W} W}}{\Lambda^{2}} \mathcal{O}_{\widetilde{W} W}+\frac{f_{\widetilde{B}}}{\Lambda^{2}} \mathcal{O}_{\tilde{B}} \quad \mathcal{O}_{\tilde{B}} \text { term is neglected based on LEP } \\
& =\mathcal{L}_{S M}+\tilde{g}_{H A A} H A A+\tilde{g}_{H A Z} H A Z+\tilde{g}_{H Z Z} H Z Z+\tilde{g}_{H W W} H W W
\end{aligned}
$$

CP-odd operator
Only 2 of \tilde{g} are independent due to constraints imposed by $\mathrm{U}(1) \times \mathrm{SU}(2)$ invariance, so express \tilde{g} to \tilde{d} and \tilde{d}_{B} :

$$
\begin{aligned}
& \tilde{g}_{H A A}=\frac{g}{2 m_{W}}\left(\tilde{d} \sin ^{2} \theta_{W}+\tilde{d}_{B} \cos ^{2} \theta_{W}\right), \tilde{g}_{H A Z}=\frac{g}{2 m_{W}} \sin 2 \theta_{W}\left(\tilde{d}-\tilde{d}_{B}\right), \\
& \tilde{g}_{H Z Z}=\frac{g}{2 m_{W}}\left(\tilde{d} \cos ^{2} \theta_{W}+\tilde{d}_{B} \sin ^{2} \theta_{W}\right), \tilde{g}_{H W W}=\frac{g}{2 m_{W}} \tilde{d}
\end{aligned}
$$

In HIGZ basis: $\tilde{d}=\tilde{d}_{B}$, so that $\tilde{g}_{H A A}=\tilde{g}_{H Z Z}=\frac{1}{2} \tilde{g}_{H W W}=\frac{g}{2 m_{W}} \tilde{d}, \tilde{g}_{H A Z}=0$
Other Higgs interactions (fermion and gluon) are as predicted in SM.

Analysis in ATLAS

VBF Higgs CP test in $H \rightarrow \gamma \gamma$ channel in ATLAS experiment

- Study in $H \rightarrow \gamma \gamma$ final state

Relatively clean background in p-p collider
Good Higgs mass resolution
Developed analysis framework and toolkit
Can probe Higgs-Vector boson coupling both in production and decay mode.

- Data and particle reconstruction Data in full ATLAS Run2 period ($139 \mathrm{fb}^{-1}$) Reconstructed with ATLAS software (athena) At least 2 photons and 2 jets in final state.

Analysis in ATLAS

BSM Effect in VBF $H \rightarrow \gamma \gamma$:

- VBF Higgs production:

Increase VBF cross section.
Some kinematic distribution, e.g. $\Delta \Phi_{j j}$, Optimal Observable.
Independent CP-even observable Optimal Observable $O O_{1}=\frac{2 \Re\left(\mathcal{M}_{S M}^{*} \mathcal{M}_{C P-o d d}\right)}{\left|\mathcal{M}_{S M}\right|^{2}}$, which can be calculated with 4vector of Higgs and 2 VBF jets by HAWK

- $\operatorname{Br}(H \rightarrow \gamma \gamma)$

Direct BSM Higgs-photon vertex.

Analysis in ATLAS

Analysis strategy

- Divide events into several bins based on Optimal Observable.
- Model $m_{\gamma \gamma}$ shape with Monte Carlo and control region data.
- Perform a maximum likelihood fit in CP-mixing parameter \tilde{d}.

Optimal Observable distribution for SM VBF, BSM VBF, ggF, background process.

$m_{\gamma \gamma}$ distribution for side-band data and MC simulation.

NLL curve for maximum likelihood fit.

Analysis in ATLAS

Facing challenge

- Analysis optimization: binning, modelling, etc.
- Background modelling: restricted by CR data statistics.
- Systematic uncertainty from new model and new observable.

Expect result

- Without normalization: a reasonable result with full Run2 data.
- With normalization: the most precise restriction in BSM Higgs-Vector Boson coupling ($\operatorname{Br}(H \rightarrow \gamma \gamma$) provides most contribution).

Analysis in CEPC

Similar strategy could be performed in CEPC

- Dominant Higgs production in CEPC: ee $\rightarrow Z H$
- Introduce Optimal Observable in CEPC analysis, see it's performance.
- Use Monte Carlo simulation to get an expected measurement precision in future CEPC experiment.

Working list

- Migrate HAWK to CEPC condition.
- Choose one(or more) best channel for CP study.
- Perform analysis like did in ATLAS experiment.
- Combine the result in different channels.

