开题报告

Shuiting Xin

- ▶国内外本学科领域的发展现状与趋势
- ▶课题的主要研究内容、预期目标
- ▶拟采用的研究方法、技术路线、实验方案及其可行性分析▶实验方案及可行性
- ▶已有研究基础与所需的研究条件▶参考文献

•希格斯粒子对寻找

- 标准模型预言了在自发对称性破缺后的希格斯势
- 与希格斯自耦合参数λ₃相关:仍是未知,并能影响单希格斯的衰变率

3

• 标准模型预言的主要产生模式 : 胶子融合

领头阶费曼图:三角图:提供了直接探测λ₃的可能;箱图:非共振

$$\sigma_{\rm ggF}(pp \to HH) \propto \int \kappa_t^4 \left[|\mathcal{A}_1|^2 + 2\left(\frac{\kappa_\lambda}{\kappa_t}\right) \Re(\mathcal{A}_1^*\mathcal{A}_2) + \left(\frac{\kappa_\lambda}{\kappa_t}\right)^2 |\mathcal{A}_2|^2 \right]$$

• $\frac{\kappa_{\lambda}}{2020}$:决定了运动学分布, κ_t^4 :影响总截面

- 超出标准模型新物理的研究
 - 利用共振态寻找重玻色子
 - 许多模型预言的重的类希格斯粒子的存在,能极大的增加衰变到HH的产生截面
 - 例如 2HDM, MSSM, 等等

• ATLAS 实验

- 多轻子末态寻找希格斯离子对
 - 存在问题
 - 众多分支比较小的过程
 - 单独分析的结果对combination作用微乎其微
 - 复杂的组合和重叠移除是严重的挑战
 - 解决方案
 - 不关心末态粒子的来源(WWTT 还是TTTT)
 - 对所有末态分类,考虑相同的分析策略

	v						
	WWWW	ZZbb	WWττ	ττττ	ΖΖττ	ZZZZ	Total
$2\ell + X$	1.4%	0.4%***	1.1%	-	0.3%	0.06%	3.3%
3ℓ + X	0.4%	-	1.1%	-	-	-	1.6%
4ℓ + X	0.05%	0.03%	0.3%	0.4%	0.06%	0.012%	0.8%
$\geq 5\ell + X$	-	-	-	-	0.003%	0.004%	0.007%

Total branching ratios HH \rightarrow AABB $\rightarrow N\ell + X$ (N ≥ 2 , $\ell = e/\mu/\tau$)

- 相同电荷轻子末态(2LSS) : $HH \rightarrow l^{\pm}l^{\pm}+X$
 - X可以是中微子, 喷柱等 (W,Z玻色子的衰变产物)
 - 多轻子末态中最灵敏的分析道

202扇鬼荷轻子特征极大压低QCD本底

	~					
HH decay mode		bb	WW	ττ	ZZ	γγ
	bb	33%				
	WW	25%	4.6%			
	ττ	7.4%	2.5%	0.39%		
	ZZ	3.1%	1.2%	0.34%	0.076%	
	γγ	0.26%	0.10%	0.029%	0.013%	0.0005%

HH 衰变分支比

国内外本学科领域的发展现状与趋势

- Di-higgs 的寻找
 - Run1结果:~10xSM xs limits
 - Run2: ATLAS 成立了6个分析小组
 - VBF HH 过程的研究
- Run1 2LSS分析

- *HH* → *WWWW* → $l^{\pm}vl^{\pm}vqqqq$ 4W道的主要贡献
- 同时研究了HSh模型,给出了截面上限
- 多轻子道其他末态
 - 接近给出统计误差的联合结果(大多数分析道)
 - 2LSSOau, 1|1au, 1|2au
 - 31
 - 41
 - X+γγ

bb**tt**

bbVV

课题的主要研究内容、预期目标

- 主要内容
 - 2LSSOtau分析 : $pp \rightarrow HH \rightarrow l^{\pm}l^{\pm}+X$ 及BSM共振态的研究
 - 信号,本底的蒙卡产生
 - 事例定义与筛选
 - 背景建模, 信号区域优化
 - 系统误差和统计分析
- 预期目标
 - 2LSS道的HH的观测产生截面上限
 - BSM 共振态的寻找,设置截面*分支比统计学上限
 - 联合其他多轻子道,最终包含在Di-higgs联合结果中

拟采用的研究方法、技术路线、实验方案及其可行性分析

- •标准的ATLAS 数据分析流程
- 工作流

实验方案及可行性

- 本底估计
 - prompt轻子对, Vgam过程, 电荷误判轻子 (QmisID),以及假轻子过程 (fakes), 前两过程利用MC 模拟
 - QmisID, fakes MC 不可信, 需要数据驱动方法估计
 - QmisID:
 - 电子电荷被误判, 缪子误判率太小 (10-5) 而忽略
 - •利用Z玻色子双轻衰变过程,得到较纯净的Z玻色子不变质量峰
 - 构建相应似然函数

$$\ln L(\varepsilon | N_{SS}, N) = \sum_{i,j} \ln [N^{ij}(\varepsilon_i + \varepsilon_j - 2\varepsilon_i \varepsilon_j)] N_{SS}^{ij} - N^{ij}(\varepsilon_i + \varepsilon_j - 2\varepsilon_i \varepsilon_j)$$

• 根据观察到的SS,OS粒子数对得到估计值

实验方案及可行性

- Fakes 本底
 - 被误认为电子或者缪子的可能来源有:重、轻味夸克衰变,光子由光电转换产生电子,轻质量强子形成的类似电子的簇团,K、pi在飞行过程中衰变出的缪子。
 - 市面上存在的估计Fakes方法
 - 误判率法 Factor Factor Method
 - 定义tight/Anti-tight 轻子,以及另一组对ff不敏感用于区分SR/CR的变量 (Njets)
 - 用CR 估计的ff = TightTight/TightAnti-tight 应用在 SR区间
 - 矩阵法 Martix Method
 - 考虑了真轻子和假轻子都通过/不通过 严格筛选的效率
 - 认为真轻子的效率为1时,退化为FF 情形
 - 模板拟合法 Template Fit Method
 - 本质为浮动对fakes本底敏感的归一化常数

实验方案及可行性

- 信号区间优化
 - 其他技术手段:利用多变量分析优化的用于压低QmisID和Fakes本底的变量:
 - QmisID BDT:将电子的误判率降低了十倍
 - PromptLeptonVeto:极大改善了控制区间由于fakes造成的蒙卡数据不一致
 - 完成上述初选和背景估计后,利用BDT进一步优化信号

- 统计分析
 - 使用BDT score作为观测量来拟合 profile Likelihood function
 - 软件包TrexFitter可以很好的处理系统误差和多个区间的拟合

已有研究基础与所需的研究条件

• 经过初选后的Data/MC 对比

• Data driven 本底的估计

Dats
VV
trV
trV
trV
trV
trH
V₇
DY
tt
Wjets
Zjets

ÅR_{min}(1,j)

已有研究基础与所需的研究条件

信号区间优化和统计检验

• 几种多变量分析方法的尝试:BDT, BDTG, xgboost

信号区间: BDT>-0.02

• 95%置信度对应的截面上限

-2sigma	-1sigma	Median	1 sigma	2sigma
22.4057	30.0797	41.7452	58.5601	79.4719

2020/9/28

研究工作计划与进度安排

- 2020.9-2020.11 完成不考虑系统误差的初步结果
- 2020.11-2021.9 完成SH分析和系统误差分析,准备supporting note
- 2021.9-2022.2 按合作组的意见改进结果
- 2022.2-2022.8 论文的撰写和修改

参考文献

[1] Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC, ATLAS Collaboration, arXiv:1207.7214

[2] Review of physics, M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018).

[3] Constraints on the Higgs boson self-coupling from the combination of single-Higgs and double-Higgs production analyses performed with the ATLAS experiment, ATLAS-CONF-2019-049

[4] Combined measurements of Higgs boson production and decay using up to 80 fb–1 of proton-proton collision data at $\sqrt{s}=13$ TeV collected with the ATLAS experiment

Phys. Rev. D 101, 012002

[5] Higgs pair production at the LHC with NLO and parton-shower effects. arXiv: 1401.7340

[6] Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector

[7] Combination of searches for Higgs boson pairs in pp collisions at s=13TeV with the ATLAS detector

[8] Searching Heavier Higgs Boson via Di-Higgs Production at LHC Run-2, arXiv: 1507.02644

[9] Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence, Phys.

<u>Rev. Lett. 117, 079901 (2016)</u>

2020/9/28