Introduction

Basic theory: 6-dimension EFT $\mathcal{L}_{e f f}=\mathcal{L}_{S M}^{(4)}+\frac{1}{\Lambda^{2}} \sum \alpha_{K} \mathcal{O}_{K}$,

$$
m_{Z}=m_{Z}^{S M}(1+\delta Z), G_{F}=G_{F}^{S M}\left(1+\delta G_{F}\right), \alpha_{e m}=\alpha_{e m}^{S M}(1+\delta A)
$$

- In CEPC $e^{+} e^{-} \rightarrow H Z\left(\rightarrow l^{+} l^{-}\right)$process:

$$
\begin{aligned}
\mathcal{L}_{\mathrm{eff}} \supset & c_{Z Z}^{(1)} H Z_{\mu} Z^{\mu}+c_{Z Z}^{(2)} H Z_{\mu \nu} Z^{\mu \nu}+c_{Z \tilde{Z}} H Z_{\mu \nu} \widetilde{Z}^{\mu \nu}+c_{A Z} H Z_{\mu \nu} A^{\mu \nu}+c_{A \tilde{Z}} H Z_{\mu \nu} \widetilde{A}^{\mu \nu} \\
& +H Z_{\mu} \bar{\ell} \gamma^{\mu}\left(c_{V}+c_{A} \gamma_{5}\right) \ell+Z_{\mu} \bar{\ell} \gamma^{\mu}\left(g_{V}-g_{A} \gamma_{5}\right) \ell-g_{\mathrm{em}} Q_{\ell} A_{\mu} \bar{\ell} \gamma^{\mu} \ell,
\end{aligned}
$$

- Ditterential cross section could be written as:
$\frac{d \sigma}{d \cos \theta_{1} d \cos \theta_{2} d \phi}=\frac{1}{m_{H}^{2}} \mathcal{N}_{\sigma}\left(q^{2}\right) \mathcal{J}\left(q^{2}, \theta_{1}, \theta_{2}, \phi\right), \quad \mathcal{J}\left(q^{2}, \theta_{1}, \theta_{2}, \phi\right)=J_{1}\left(1+\cos ^{2} \theta_{1} \cos ^{2} \theta_{2}+\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}\right)$

$$
+J_{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2}+J_{3} \cos \theta_{1} \cos \theta_{2}
$$

- $J_{i}\left(c_{H, A, Z}, g_{A, V}\right)$ contains the couplings in EFT.
$+\left(J_{4} \sin \theta_{1} \sin \theta_{2}+J_{5} \sin 2 \theta_{1} \sin 2 \theta_{2}\right) \sin \phi$
- 6 of $9 J_{i}$ are independent, within them J_{4}, J_{5}, J_{8} are CP-odd.
$+\left(J_{6} \sin \theta_{1} \sin \theta_{2}+J_{7} \sin 2 \theta_{1} \sin 2 \theta_{2}\right) \cos \phi$
- Parameterize σ into CP-even and CP-odd term: $\quad+J_{8} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \sin 2 \phi+J_{9} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \cos 2 \phi$.
$\frac{d \sigma}{d \cos \theta_{1} d \cos \theta_{2} d \phi}=N \times\left(J_{C P-\text { even }}\left(\theta_{1}, \theta_{2}, \phi\right)+p \times J_{C P-\text { odd }}\left(\theta_{1}, \theta_{2}, \phi\right)\right)$
where p is an additional global CP-mixing parameter.

Analysis strategy

Basic setting in theory:

- fix some perturbation parameters to $10^{-3}: \delta G_{F}=-\alpha_{4 l}+2 \alpha_{\Phi l}^{(3)}, \alpha_{\Phi l}^{V}, \alpha_{\Phi l}^{A}, \alpha_{A \tilde{Z}}, \alpha_{Z \tilde{Z}}$.
- Others are all 0.
- In $J_{i} \mathrm{CP}$-odd and CP-even contribution are totally de-coupled.

Optimal variable:

- With parameterized differential cross section

$$
\begin{aligned}
& \frac{d \sigma}{d \cos \theta_{1} \operatorname{dcos} \theta_{2} d \phi}=N \times\left(J_{C P-\text { even }}\left(\theta_{1}, \theta_{2}, \phi\right)+p \times J_{C P-\text { odd }}\left(\theta_{1}, \theta_{2}, \phi\right)\right), \\
& \text { define: } \omega=\frac{J_{C P-\text { odd }}\left(\theta_{1}, \theta_{2}, \phi\right)}{J_{C P-\text { even }}\left(\theta_{1}, \theta_{2}, \phi\right)} \text { as Optimal variable. }
\end{aligned}
$$

- ω combines the information from $\theta_{1}, \theta_{2}, \phi$, is supposed to be more sensitive.

Validation of theory calculation

Compare the performance of angles:

- Events generated by Wizhard1.95+MokkaC, ee $\rightarrow Z H \rightarrow \mu \mu \gamma \gamma$ process
- Shape generated from differential cross section formula.

Performance in SM vs BSM

Separation power(SM vs. $\mathrm{p}=1$):
$\cos \theta_{1}: 3.78 \times 10^{-4}$
$\cos \theta_{2}: 2.38 \times 10^{-4}$
$\phi: 4.89 \times 10^{-2}$
$\omega: 5.75 \times 10^{-2}$
$1 / \omega: 6.62 \times 10^{-2}$

