

$\begin{array}{c} \textit{HH} \rightarrow 4\ell \text{ analysis} \\ {}_{\text{Data/MC agreement}} \end{array}$

2

We found that the ZZ* backgrounds normalisation on the CR is 1.13.
 So the normalisation is fixed to this value during the fit.

- Blind the signal region and use Asimov data on the fit.
 Adding 1.7% systematic uncertainty on the luminosity.
- $\hfill\square$ And theoretical uncertainty on the signal cross section.

Luminosity	100.0	0.0	0.0	0.0	0.0	0.0	-9.0
$\sigma_{ini}(\mathbf{x}_{ij})$	0.0	100.0	-0.0	-0.0	0.0	-0.0	-0.1
$a_{\rm rel}({\rm PDF})$	0.0	-0.0	100.0	-0.0	0.0	-0.0	-0.1
$\sigma_{ijk}\beta^{k}D^{k}+\kappa_{ij}\beta$	0.0	-0.0	-0.0	100.0	-0.0	-0.0	-0.1
$a_{\mu\nu}$ (scale)	0.0	0.0	0.0	0.0	900.0	4.0	-0.1
$\pi_{in}(\pi_{in})$	0.0	-0.0	-0.0	-0.0	0.0	190.0	-0.1
$\mu(\theta\theta=4t)$	-9.0	4.1	-0.1	-0.1	-0.1	-0.1	100.0
	Uminality	(ru)m o	(and "P	(⁶ 0+104) ⁴	e _{nt} (scale)	Ş	004 - 40

LHCHXSWGHH

$\sqrt{s} = 13$ Te	٧
σ _{NNLO FTapprox} [fb]	31.05
	+2.2%
Scale unc.	
	-5.0%
PDF unc.	±2.1%
αS unc.	±2.1%
PDF+ αS unc.	±3.0%
mtop unc.	±2.6%

	-2σ	-1σ	Median	$+1\sigma$	$+2\sigma$	Significance
No systematic	44.95	60.34	83.74	119.00	168.60	0.0271
With systematic	46.34	62.21	86.34	153.70	210.7	0.0268

□ The impact $\Delta \mu$ of NP θ on the POI μ is given by the shift in the POI between the nominal and another fit where the NP is fixed

$4\ell + E_{\mathrm{T}}^{\mathrm{miss}}$ analysis AZH signal optimisation: cut-based

5

□ Keeping the categories from the RSH signal optimisation.

- \Box At least 2 central jets inside the m_{jj} peak.
- \Box Exactly one central jet with events outside m_{jj} peak.
- □ At least 1/2 b-jets.

	$(m_A, m_H) = (330, 220)$	$(m_A, m_H) = (500, 400)$	$(m_A, m_N) = (1390, 300)$	$(m_A, m_W) = (1310, 220)$	qqZZ"	qqZZ* (EW)	ggZZ*	ttV	Z + jets		VVV	WZ	s/√k · D	s/√k · D	s/√k · D	s/√k · D
4/	60.35±0.13	72.29±0.14	85.04±0.15	79.38±0.15	2516.52±4.50	348.96±0.71	32.85±0.28	10.35±8.28	19.04±0.11	8.60±0.05	5.12±0.34	2.68±0.20	2.47	6.66	4.35	3.25
High- $E_T^{max} \& N_{ints}^{Control} = 0$	5.61±0.04	3.51±0.03	5.03±0.04	4.86±0.04	82.73±0.94	21.12±0.18	0.51±0.03	0.32±0.32	7.22±0.07	0.33±0.01	1.69±0.19	0.53±0.07	1.16	1.64	1.30	1.01
Low- $E_T^{\text{max}} \& N_{\text{ints}}^{\text{Control}} = 0$	2.22±0.02	2.81±0.03	0.30±0.01	0.27±0.01	175.31±1.47	37.18±0.23	0.48±0.03	1.51±1.51	0.96±0.02	0.04±0.00	0.44±0.10	0.12±0.03	0.33	0.96	0.06	0.04
High- $E_T^{max} \& N_{ints}^{Control} \ge 1$	2.88±0.03	1.33±0.02	14.69±0.06	13.40±0.06	10.46±0.23	2.25±0.06	0.30±0.02	0.01±0.01	4.68±0.06	0.93±0.02	0.76±0.13	0.63±0.11	1.43	1.48	9.11	6.65
Low- $E_T^{max} \otimes N_{ints}^{Control} \ge 1$	4.50±0.03	4.00±0.03	2.45±0.03	2.13±0.02	41.09±0.62	8.40±0.11	1.04±0.04	0.00±0.00	1.50±0.03	0.32±0.01	0.32±0.08	0.12±0.03	1.37	2.75	0.94	0.65
$N_{k-jeta} \ge 1$	8.94±0.05	10.21±0.05	18.87±0.07	17.52±0.07	65.07±0.54	7.32±0.11	2.19±0.07	0.00±0.00	0.56±0.02	6.45±0.04	0.16±0.06	0.92±0.13	2.18	5.61	5.76	4.28
$N_{ints}^{Control} \ge 28 m_i^{Control} - m_Z < 60$	10.86±0.05	13.58±0.06	6.18±0.04	6.43±0.04	113.57±0.53	18.48±0.16	3.65±0.08	0.25±0.21	0.50±0.02	0.11±0.01	0.14±0.05	0.03±0.01	2.06	5.81	1.47	1.22
$N_{\text{jets}}^{\text{Control}} = 1 \& m_{\text{j}}^{\text{Control}} - m_2 > 60$	12.31±0.06	16.46±0.07	10.07±0.05	9.40±0.05	526.17±2.00	80.78±0.34	8.83±0.14	0.34±0.28	1.58±0.03	0.19±0.01	0.68±0.12	0.16±0.05	1.10	3.31	1.12	0.84
Rest	13.04±0.06	20.40±0.07	27.45±0.09	25.36±0.08	1502.12±3.49	173.43±0.50	15.85±0.21	7.93±8.13	2.04±0.03	0.22±0.01	0.94±0.16	0.17±0.04	0.70	2.47	1.85	1.36

- $\Box s/\sqrt{kb}$ is used as a sensitivity to judge the optimisation.
- □ It's only calculated for background events under the signal peak.
- \Box Remove the Low- E_{T}^{miss} bin of $N_{iets}^{Central} = 0$ and the Rest categories.
- $\hfill\square$ The combined significance for the 6 categories is 3.93.
- □ The optimisation depends on the signal mass point.
- □ So for different signal samples the sensitivity is quite different.

$4\ell + E_{\mathrm{T}}^{\mathrm{miss}}$ analysis AZH signal optimisation: TMVA

7

 \Box 13 input variables to the TMVA.

$4\ell + E_{\mathrm{T}}^{\mathrm{miss}}$ analysis AZH signal optimisation: TMVA

□ A preliminary result of the upper limit and significance for the $H \rightarrow 4I$ are shown.

10

□ AZH signal optimisation is done using cut-based analysis and TMVA.

Additional slides

Event Selection						
QUADRUPLET	- Require at least one quadruplet of leptons consisting of two pairs of same-flavour					
SELECTION	opposite-charge leptons fulfilling the following requirements:					
	- $p_{\rm T}$ thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV					
	- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruplet					
	- Leading di-lepton mass requirement: $50 < m_{12} < 106 \text{ GeV}$					
	- Sub-leading di-lepton mass requirement: $m_{\text{threshold}} < m_{34} < 115 \text{ GeV}$					
	- $\Delta R(\ell, \ell') > 0.10$ for all leptons in the quadruplet					
	- Remove quadruplet if alternative same-flavour opposite-charge					
	di-lepton gives $m_{\ell\ell} < 5 \text{ GeV}$					
	- Keep all quadruplets passing the above selection					
ISOLATION	- Contribution from the other leptons of the quadruplet is subtracted					
	- FixedCutPFlowLoose WP for all leptons					
IMPACT	- Apply impact parameter significance cut to all leptons of the quadruplet					
PARAMETER	- For electrons: $d_0/\sigma_{d_0} < 5$					
SIGNIFICANCE	- For muons: $d_0/\sigma_{d_0} < 3$					
Best	- If more than one quadruplet has been selected, choose the quadruplet					
QUADRUPLET	with highest Higgs decay ME according to channel: 4μ , $2e2\mu$, $2\mu 2e$ and $4e$					
VERTEX	- Require a common vertex for the leptons:					
SELECTION	- $\chi^2/ndof < 5$ for 4μ and < 9 for others decay channels					

Additional slides

Nuisance parameters

N-19		0.000
	Normalisation	Snape
A. Cor	EL_EFF_ID_CorrUncertaintyNP[0-15] EL_EFF_ID_SIMPLIFIED_UncorrUncertaintyNP[0-17] EL_EFF_Iss_TOTAL_INPCOR_PLUS_UNCOR EL_EFF_Reco_TOTAL_INPCOR_PLUS_UNCOR	EG.RESOLUTION ALL EG.SCALE ALLCORR EG.SCALE EASCINITILATOR EG.SCALE EASCINITILATOR EG.SCALE LARTCALIB EXTRA2015PRE EG.SCALE LARTEMPERATURE EXTRA2015PRE EG.SCALE LARTEMPERATURE EXTRA2016PRE
	Muo	ns
	MUCN, EFF, ISO, STAT MUCN, EFF, ISO, STAT MUCN, EFF, RECO, STAT MUCN, EFF, RECO, STAT MUCN, EFF, RECO, STAS MUCN, EFF, TTVA, STAT MUCN, EFF, TTVA, STAT	MUON_ID MUON_MS MUON_SAGITTA_RESBIAS MUON_SAGITTA_RHO MUON_SCALE
	Jet	8
		JET B.BS. Persponse JET Elective% JFraf JET JEAN CONSTANT JET JEAN CON
	Missing transv	erse energy
		MET_SoftTirk_ResoPara MET_SoftTirk_ResoPerp MET_SoftTirk_Scale
	Oth	er
	HOEW_OCD_syst HOEW_syst HOQCD_scale_syst PRW_DATASF	