

CEPC ECAL: considerations and rough estimates for DAQ

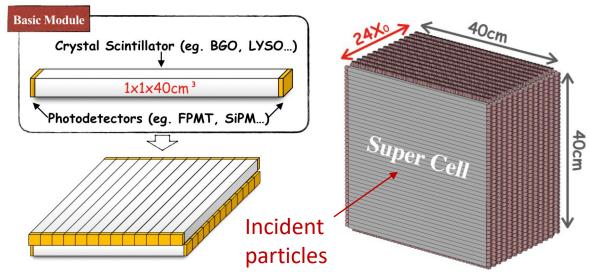
Yong Liu (IHEP), for the CEPC-Calo conveners Sep. 30, 2020

CEPC CDR: DAQ for ECAL

- Maximum event rate: 100 kHz
 - Peak event rate: ~32kHz at Z-pole
 - Safety margin: a factor of ~3
 - 10 µs time window for readout


- ECAL: 2 options in CDR
 - Si-W ECAL: $10 \times 10 \text{ mm}^2$ silicon pads
 - Sc-W ECAL: $45 \times 5 \text{ mm}^2$ scintillator strips
 - Longitudinal depth: 24X0

ECAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
SiW ECAL Barrel	17	0.17	32	28.8 k	117 kByte	11.7 GBytes/s
SiW ECAL Endcap	7.3	0.31	32	22.4 k	90 kByte	9.0 Gbytes/s
ScW ECAL Barrel	7.7	0.17	32	13.1 k	53 kByte	5.3 GBytes/s
ScW ECAL Endcap	3.3	0.31	32	10.2 k	41 kByte	4.1 Gbytes/s


Crystal ECAL: a new concept

Design 1

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

Design 2 (current focus)

- Long bars: 1×40cm, double-sided readout
 - Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels
- Timing at two sides: positioning along bar

DAQ for crystal ECAL: considerations

- Based on the CDR values: scaling exercise
- 2 Major scaling factors
 - #channels: generally crystal ECAL will have much less channel count (higher occupancy)
 - #bit per channel: higher precision to cover a large dynamic range
- Considerations
 - Design 2: detector layout with long crystal bars
 - e.g. 24 longitudinal layers, $40 \times 1 \times 1 \text{ cm}^3$ long bars
 - 2 readout channels for a $40 \times 1 \times 1 \ cm^3$ crystal bar
 - A factor of 20 less in terms of #channels -> (Roughly) a factor of 20 increase of occupancy
 - Need to cover (on the order of) 10 GeV energy deposition in a single crystal
 - Trigger threshold: 0.15 MeV (1.5% of MIP) -> Energy Dynamic range: 60000 -> 16 bit ADC
 - Rough estimate on timing resolution: ~100ps; bunch spacing: 680ns at Higgs -> 12 bit TDC
 - Reserve 4-bit for channel/module ID and redundancy

DAQ for crystal ECAL: considerations

- Based on the CDR values: scaling exercise
- 2 Major scaling factors
 - #channels: generally crystal ECAL will have much less channel count (higher occupancy)
 - #bit per channel: higher precision to cover a large dynamic range
- Considerations
 - Design 1: detector layout with short crystal bars
 - e.g. 10 longitudinal layers, $2 \times 2 \text{ cm}^2$ transverse size (Note: the granularity not finalised)
 - 1 readout channel for a $2 \times 2 \times 2$ cm³ crystal cube
 - A factor of 8 less in terms of #channels -> (Roughly) a factor of 8 increase of occupancy
 - Need to cover (on the order of) 20 GeV energy deposition in a single crystal (from simluation)
 - Trigger threshold: 0.3 MeV (1.5% of MIP) -> Energy Dynamic range: 60000 -> 16 bit ADC
 - Rough estimate on timing resolution: ~100ps; bunch spacing: 680ns at Higgs -> 12 bit TDC
 - Reserve 4-bit for channel/module ID and redundancy

DAQ for crystal ECAL: considerations

ECAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
Crystal ECAL with long bars (Barrel)	0.85	3.4	32	28.9 k	116 kByte	11.6 GBytes/s
Crystal ECAL with long bars (Endcap)	0.36	6.2	32	22.4 k	90 kByte	9.0 Gbytes/s
Crystal ECAL with short bars (Barrel)	2.13	1.36	32	28.9 k	116 kByte	11.6 GBytes/s
Crystal ECAL with short bars (Barrel)	0.913	2.48	32	22.4 k	90 kByte	9.0 Gbytes/s

- #channels is reduced in crystal ECAL, but occupancy gets increased.
- If the occupancy scales up linearly with reducing #channels (to be verified), the data rate remains unchanged
- Another open issue: how much data volume required for high-bandwidth waveform sampling for better timing resolution