Performance of TPC operation at Z peak and 2 Tesla

Huirong Qi Zhiyang Yuan, Gang Li, Manqi Ruan 19, October, 2020

Outline

- Motivation of TPC detector
- IBF suppression
- $\mathbf{d}\mathbf{E}/\mathbf{d}\mathbf{x} \ \mathbf{R}\mathbf{\&}\mathbf{D}$
- Magnetic field@3T/2T

Motivation

TPC limitations for Z

- Ions back flow in chamber
- Calibration and alignmens^{FC} Low power consumption **FIDE**^{T1} ASIC chip

	Hig	ggs	Z (2T)	
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120		45.5	
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	
Piwinski angle	2.58	3.78	23.8	33
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000
Beam current (mA)	17.4	17.8	461.0	1081.4
Synchrotron radiation power /beam (MW)	30		16.5	38.6
Cell number/cavity	2		2	1
β function at IP β _x * / β _y * (m)	0.36/0.0015	0.33/0.001	0.2/0.001	
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	17.1/0.042	6.0/0.04	
Bunch length σ_z (mm)	3.26	3.93	8.5	11.8
Lifetime (hour)	0.67	0.22	2.1	1.8
Luminosiiy/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	

IP

TPC detector concept

IBF simulation study at Z

Goal:

- Operate TPC at higher luminosity
- No Gating options
- **Gimulation**
 - **IBF**×Gain default as the factor of 5
 - 9 thousand Z to qq events
 - 60 million hits are generated in sample
 - □ Average hit density: 6 hits/mm²
 - Voxel size: $1mm \times 6mm \times 2mm$
 - □ Average voxel occupancy: 1.33 × 10⁻⁸
 - □ Voxel occupancy at TPC inner most layer: ~2×10⁻⁷
 - Validated with 3 ions disks
 - Simulation of the multi ions disk in chamber under the continuous beam structure
 - Without the charge of the beam-beam effects in TPC

DOI: 10.1142/S0217751X19400165, 2019 DOI: 10.1088/1748-0221/12/07/P07005, 2017

Deviation with the different TPC radius - 4 -

PID requirements

Highly appreciated in flavor physics @ CEPC Z pole TPC dEdx + ToF of 50 ps

At inclusive Z pole sample:

Conservative estimation gives efficiency/purity of 91%/94% (2-20 GeV, 50% degrading +50 ps ToF) Could be improved to 96%/96% by better detector/DAQ performance (20% degrading + 50 ps ToF)

IBF suppression R&D

TPC detector module@ IHEP

DOI: 10.1088/1748-0221/12/04/P0401 JINST, 2017.4 DOI: 10.1088/1674-1137/41/5/056003 , CPC,2016.11 DOI: 10.7498/aps.66.072901Acta Phys. Sin. 2017,7

• Study with GEM-MM module

- New assembled module
- Active area: 100mm × 100mm
- **X-tube ray and 55Fe source**
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM:128μm
- Transfer gap: 2mm
- Drift length:2mm~200mm
- pA current meter: Keithley
 6517B
- Current recording: Auto-record interface by LabView
- **Standard Mesh: 400LPI**
- High mesh: 508 LPI

Micromegas(Saclay)

GEM(CERN)

Cathode with mesh

GEM-MM Detector - 7 -

GEM+MM VS DMM@USTC

Lower gain and lower IBF ratio

Different concepts with IBF suppression

Pixel TPC with double meshes	Triple or double GEMs	Resistive Micromegas	GEM+ Micromegas	Double meshes Micromegas
IHEP, Nikehf	KEK, DESY	Saclay	IHEP	USTC
Pad size: 55um-150um square	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm	Pad size: 1mm×6mm (If resistive layer)
Advantage for TPC: Low gain: 2000 IBF×Gain: -1	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain: 5000-6000 IBF×Gain: <10	Advantage for TPC: Gain:5000- 6000 IBF×Gain: <5	Advantage for TPC: High gain: 10^4 Gain: 5000-6000 IBF×Gain: 1-2
Electrons cluster size for FEE: About Ø200um	Electrons cluster size for FEE: About Ø5mm	Electrons cluster size for FEE: About Ø8mm	Electrons cluster size for FEE: About Ø6mm	Electrons cluster size for FEE: About Ø8mm
Integrated FEE in readout board Detector Gain: 2000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000	FEE gain: 20mV/fC Detector Gain: 5000-6000

Prospects for a TPC at Z

- Rough estimations at L = $35 \cdot 10^{35}$ cm⁻² s⁻¹ indicate primary ionisation at a ILC250 level $\Rightarrow < 5 \mu m$ distortions (This equals 8 μm with IBF = 1) See <u>Arai Daisuke</u>
- Simulation from CEPC TPC with Gain \times IBF = 1 and L = 32·10³⁴ cm⁻² s⁻¹ \Rightarrow < 16 µm distortions (Gain \times IBF = 1 and L = 32·10³⁴ cm⁻² s⁻¹) from Zhiyang Yuan
- FCCee/TLEP studies at Gain \times IBF = 1 and 16.8 kHz hadronic Zs by <u>Philippe Schwemling</u> \Rightarrow < 22 µm distortions

Rough esitimation of primary ionisation

- 10 kHz Z event rate
- 500 ms will accumulate 5000 Z events
- 20 tracks / Z event and 10 000 e / track will make 10⁸ ions in volume
- Volume is ~4 10⁷ resulting in 25 e/cm³
- Similar to ILC250 accumulated charge

Slides@RD51 and TPC meeting 2020

Prospects for a TPC at future collider

Peter Kluit@TPC meeting

Potential issues →	Ions in drift chamber		Readout	
Future colliders↓	Primary ions	Backflow ions	Occupancy	
ILC 1 TeV	Acceptable	GEM ion gate	Low (< 1% voxel)	
CLIC 3 TeV	Requires investigation	Gating is possible	100% pads (30% voxel)	
			40% pixel (lower voxel)	
CEPC 91 GeV (L = 32 · 10 ³⁴ cm ⁻² s ⁻¹)	Acceptable	IBF*Gain =1 Need calibration?	Low (< 2 · 10 ⁻⁵ voxel)	

Slide from Peter and some considerations

$\mathbf{D} d\mathbf{E}/d\mathbf{x} \mathbf{R} \mathbf{\&} \mathbf{D}$

dE/dx of Flaver tag, pion, kaon

Uli Einhaus@ILD meeting

Beam test results@5GeV/1T/Pad TPC

Jochen@ILD meeting

- 5GeV e- beam at DESY
- **TPC** detector with GEMs readout Micromegas readout

Beam test results@5GeV/1T/Pixel TPC

Peter@ILD meeting

2.7% resolution is within prospects of PixelTPC [arXiv:1902.01987]

dE/dx by 266nm UV laser@IHEP

Yiming Cai, Zhiyang Yuan@ILD meeting

Experiment result using laser and expanded to CEPC TPC

Magnetic field@3T/2T

Full simulation at Z

Gang Li and Zhiyang Yuan

Full simulation @3 Tesla vs. 2 Tesla @240 GeV

- The δ_m of $\mu\mu$ recoil mass increases ~50% as expected when B = 2 T
- It needs at least 125% more data to get the same δ_m at 3 T

TPC transverse r\u00c6 resolution

Summary

- Some motivations of TPC detector for collider at Z pole run listed.
- Some update results and performance of IBF, dE/dx, Magnetic field listed.
- TPC can meet most requirements of PID and moment resolution, and others should be optimized and R&D.

Thanks!