Status report on CEPC Performance study: corresponding to the 2019 IAC recommendation

From IAC report 2019

Other recommended detector and physics studies:

<u>Recommendation 16</u>:

- Perform detailed simulation studies to better understand the physics needs from the detector at the various CEPC energy stages; draw consequences about the corresponding detector performance requirements (e.g. photon resolution, jet resolution, added value of PID) and study how this influences the detector design.
- Study the physics case for performing flavor physics including the tau lepton at the Z-peak. Draw conclusions on a possible impact on the detector design.
- Given that time-of-flight detectors with a time resolution in the 30-50 ps are becoming available, study their potential added value for a CEPC detector by assessing a few key physics benchmarks.
- Assess the added value of dE/dx capabilities in the tracker.
- Assess the added value of the muon detector system. As a result, define the number of muon detection layers to include, together with their required performance.

From IAC report 2019

Other recommended detector and physics studies:

<u>Recommendation 16</u>:

- Perform detailed simulation studies to better understand the physics needs from the detector at the various CEPC energy stages; draw consequences about the corresponding detector performance requirements (e.g. photon resolution, jet resolution, added value of PID) and study how this influences the detector design.
- Study the physics case for performing flavor physics including the tau lepton at the Z-peak. Draw conclusions on a possible impact on the detector design.
- Given that time-of-flight detectors with a time resolution in the 30-50 ps are becoming available, study their potential added value for a CEPC detector by assessing a few key physics benchmarks.
- Assess the added value of $\frac{dE}{dx}$ capabilities in the tracker.
- Assess the added value of the muon detector system As a result, define the number of muon detection layers to include, together with their required performance.
 - Key words: Requirement, and Flavor

From IAC report 2019

Other recommended detector and physics studies:

<u>Recommendation 16</u>:

- Perform detailed simulation studies to better understand the physics needs from the detector at the various CEPC energy stages; draw consequences about the corresponding detector performance requirements (e.g. photon resolution, jet resolution, added value of PID) and study how this influences the detector design.
- Study the physics case for performing flavor physics including the tau leptor at the Z-peak. Draw conclusions on a possible impact on the detector design.
- Given that time-of-flight detectors with a time resolution in the 30-50 ps are becoming available, study their potential added value for a CEPC detector by assessing a few key physics benchmarks.
- Assess the added value of dE/dx capabilities in the tracker.
- Assess the added value of the muon detector system. As a result, define the number of muon detection layers to include, together with their required performance.
 - Key Physics Objects...

pi-0: truth level analysis

Yuexin

pi-0: truth level analysis

Yuexin

Impact of ECAL resolution on pi-0 finding

Performance dependency on pi-0 energy

Figure 13: Energy differential maximal $\epsilon \times p$ for $Z \to \tau^+ \tau^-$ (left) and $Z \to q\bar{q}$ (right). ...Surely the low energy pi-0 is more sensitive to a better ECAL... 8

pi-0: energy spectrum of different components

Figure 13: Energy spectrum of π^0 from different origins in $Z \rightarrow c\bar{c}$.

pi-0 reco

- ECAL resolution is critical: improving the ECAL resolution from 15%/sqrt(E) to 5%/sqrt(E) (with 1% constant term) significantly improve the inclusive pi-0 reconstruction efficiency at jet final state
 - From 85% to 92% at $Z \rightarrow$ tautau
 - From 30% to 50% at $Z \rightarrow qq$
- Low energy pi-0 is more sensitive to ECAL energy resolution.
- Further quantification needs physics benchmarks
 - Narrow States \rightarrow n*pi0 + X, X are a set of charged Particle
 - Existed States?

Pid & dEdx

Fenfen, Taifan, Zhiyang, etc

MC result of single-particle events with the theoretical prediction by the Bethe equation [16] overlaid. In the right plot the dots are from simulation of $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ events

Fig. 6 The scaled spectra of $(I - I_K)/\sigma_I$ using dE/dx measurements alone for particles with a momentum of 5 GeV/c, assuming a 20% degradation. The relative populations are $N_{\pi} = 4.4N_K$ and $N_K = 2.3N_p$ according to MC simulation. The intersections marked by the arrows are chosen as the cut points

Kaon: energy up to 20 GeV ... even higher

Fig. 3 Kinematic distribution of kaons in $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ MC events as a function of log(p) and cos θ (a), p (b), and cos θ (c)

Pid & Objective Hadron finding

10

 $S_{\pi K}$

10

 $S_{\pi K}$

8

8

Pid & dEdx

- Physics: Kaon up to 20 GeV should be identified...
- For objects with kaon and/or proton in its decay product: performance depends on
 - Momentum (fully charged final state)
 - Hadron separation, especially pi-K separation
 - VTX reco. (for heavy flavor hadrons)
- Preliminary: 3-sigma separation of pi-Kaon, corresponding to 2% of dEdx resolution, is appreciated

VTX reconstruction: Diagnosis

should been reconstructed vertex && have been reconstructed vertex should been reconstructed vertex

• At vvH, $H \rightarrow cc$ events.

C-hadron with given charge multiplicity && corresponding tracks reconstructed

Light Lepton Identification

Dan Yu

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

7

Eur. Phys. J. C (2017) 77: 591

FCC Workshop 2020

Light Lepton Identification

- LICH uses TMVA methods to summarize 24 input variables into two likelihoods, corresponding to electrons and muons.
- The efficiency for electron and muon is higher than 99.5% (E>2 GeV). Pion efficiency ~ 98%.

Jet lepton

Compared the single particle sample, the jet lepton (at Z->bb sample at sqrt = 91.2 GeV) Performance will be slightly degraded. At the same working point,

The efficiency can be reduced by up to 3%; while mis-id rate increases up to 1%. Marginal Impact on Flavor Physics measurements as Bc->tauv.

Jet lepton: identification performance dependence on calorimeter clustering

Relative difference reduced once require a good Calorimeter Clustering Performance

Event topology

* llH channel / $Z \rightarrow \tau \tau$ * qqH (isolate τ with jets) * τ inside jets

- (Veto the two isolate lepton)
- Divide the whole space into 2 part
- Multiplicity & Impact parameter

- Tau jet reconstruction package: TAURUS
- TAURUS with different parameters

Taurus

- Double cone based algorithm
 - Find seeds(Tracks with enough energy)
 - Collect particle in two cones
 - Use the multiplicity, energy ratio between two cones, invariant mass for τ tagging

Event topology

* llH channel / $Z \rightarrow \tau \tau$ * qqH (isolate τ with jets) * τ inside jets

- (Veto the two isolate lepton)
- Divide the whole space into 2 part
- Multiplicity & Impact parameter
- Efficiency > 90%

Lepton & Tau at the baseline

- Leptons: identified with LICH
 - Isolated ones: (eff ~ 99.5-99.9%, mis-id < 1%) the best for e+e- Higgs factories full simulation, approaching the physics limit
 - Jet leptons: ~o(1%) degrading w.r.t. Isolated ones
 - not signifiant impact on current physics benchmarks
 - caused by calorimeter clustering performance, in-turn become an estimator on clustering performance
- Taus: identified with Taurus
 - Isolated ones: eff*purity ~ 0.7;
 - Inside jets (as Z->bb): eff*purity ~ 0.5;
 - Further optimization on going.
 - Next step: Identification of tau decay modes at different benchmark.

Requirement from benchmark analysis: BMR < 4%

- Boson Mass Resolution: relative mass resolution of vvH, H→gg events
 - Free of Jet Clustering
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
σ(vvH, H→inv)	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→тт)	0.85%	0.9%	1.0%	1.1%

18/09/19

CEPC WS@Chicago U

14

BMR: an example from Higgs measurements Goal: Provide similar plots for Flavor Benchmarks

BMR V.S. Geometry

2020-10-19

New Progress: Differential jet response on Jet energy & Polar angle

Peizhu

26

Jet Response

- Significantly better than LHC experiments (at 0 PU);
- Jet Calibration: control the W mass measurements at Higgs run ~ 10 MeV
- Thrust based JC could improve JER ~ 5-10% w.r.t baseline (ee-kt);

Flavor Benchmark analyses: status

- Bc -> tau+v -> e + 3v (In finalization, by Taifan Zhen, Fenfen An, Lu. Cao)
 - Rely on the flavor tagging (Z->bb), jet lepton identification
 - Percentage level accuracy could be achieved at the CEPC
 - Current identification of jet lepton is good enough for this channel
- B0 -> J/psi + Phi -> mumu KK (by Mingrui Zhao of 401)
 - Rely on the Jet Charge measurement,
 - MCTruth level study, to mount/Xcheck corresponding performance study
- Tau -> muon + photon (by Yudong Wang, etc)
 - Photon energy resolution, lepton id
 - MCTruth + Smearing level.
- b -> stautau (by Linfeng Li of HKUST)
 - Reducible background might strongly limit the final accuracy

Bc->Tauv

Taifan, etc, Submitted to CPC.

Example 1: $b \rightarrow s \tau \tau$ measurements

Use
$$\tau \to \pi^{\pm}\pi^{\pm}\pi^{\mp}\nu$$

decay, locate each vertex
and reconstruct

$$\label{eq:BR} \begin{array}{l} {\sf BR}(B^0\to K^{*0}\tau^+\tau^-)\sim \\ 10^{-7} \mbox{ in the SM} \end{array}$$

Overwhelmingly large background from $D_{(s)}^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp} + X$ decays: $\frac{\text{Example}}{b \rightarrow c\bar{c}s \text{ Type}}$ e.g. $B_s \rightarrow K^{*0}D_s^{(*)+}D^{(*)-} \quad \mathcal{O}(10^{-2}-10^{-3})$ $b \rightarrow c\tau\nu$ Type e.g. $B^0 \rightarrow K^{*0}D_s^{(*)-}\tau^+\nu \quad \mathcal{O}(10^{-3}-10^{-5})$ $b \rightarrow c\bar{u}d$ Type e.g. $B^0 \rightarrow D^{(*)-}\pi^+\pi^+\pi^- \quad \mathcal{O}(10^{-2}-10^{-3})$

No relevant background studies before!

7 / 12

Result of $b \rightarrow s \tau \tau$ at Z Pole (Preliminary)

Constraining LFUV new physics:

T. Ho, T. Kwok, L. Li, T. Liu

Testing LFU at Z pole

Oct. 2, 2020, Snowmass RF1 9 / 12

$$b \to s \nu \bar{\nu}$$

Flavor-change-neutral-current(FCNC) process. Be suppressed by the loop factor and heavy weak boson mass .

One-loop level in the Standard Model (SM) via "penguin" and "box" diagrams.

	Experimental $[1]$	SM Prediction $[2]$
$BR(B^0 \to K^0 \nu \bar{\nu})$	$< 2.6 imes 10^{-5}$	$(2.17 \pm 0.30) imes 10^{-6}$
${ m BR}(B^0 o K^{*0} u ar{ u})$	$< 1.8 imes 10^{-5}$	$(9.48 \pm 1.10) imes 10^{-6}$
$BR(B^{\pm} \to K^{\pm} \nu \bar{\nu})$	$< 1.6 imes 10^{-5}$	$(4.68\pm0.64) imes10^{-6}$
$BR(B^{\pm} \to K^{*\pm} \nu \bar{\nu})$	$< 4.0 imes 10^{-5}$	$(10.22 \pm 1.19) imes 10^{-6}$
$BR(B_s \to \phi \nu \bar{\nu})$	$< 5.4 \times 10^{-3}$	$(11.84 \pm 0.19) imes 10^{-6}$

Yudong

[1] M. Tanabashi et al., "Review of Particle Physics," Phys. Rev., vol. D98, no. 3, p. 030001, 2018.

[2] D. M. Straub, " $b \rightarrow k^{(*)} \nu \bar{\nu}$ sm predictions," Dec 2015.

Conditions	Signal	$b\overline{b}$	$\sqrt{S+B}/S$
Total	150000	3e+11	3.651
$N_{\phi}>0$	68798	8.15e+09	1.312
$E_{lepton} > 0.2~{ m GeV}$	66039	3.55e+09	0.902
<i>m_{inv}</i> >2.2 GeV	52385	1.06e+08	0.197
lpha < 0.8	20578	204783	0.023
$M^*_{B_s}$ > 4.5 GeV	20571	163044	0.021
$M^*_{B_s}$ < 6.5 GeV	10153	2608	0.011
Efficiency	0.068	8.70e-09	

2020-10-19

Summary

- Much better understanding to IAS recommendation 2019 topics.
- Pi-0 (photon...)
 - ECAL impact on different benchmark analyzed
 - Increasing the pi-0 reconstruction eff*purity from 30% to 50% at Z->qq sample once stochastic term improved from 15%/sqrt(E) to 5%/sqrt(E).
 - Significantly depends on the process (abundance of photon) & pi-0 energy
 - Benchmark physics channel analysis is needed
- Charged Kaon
 - Decent Kaon id required, up to 20 GeV
 - VTX, Momentum resolution & Pid: complementary to each other
 - Preliminary: dE/dx of o(2%) will be needed.

Summary

- Leptons
 - A solved problem for both isolated leptons and Jet lepton
 - Taus, both isolated and inside jet, can be decently identified; further optimization is expected to improve the performance significantly;
- Jet
 - BMR: standard, physics requirements, geometry dependence.
 - Differential Jet response analyzed, confirming
 - Jet energy response (JER/JES) ~3 times better than LHC experiments;
 - W mass could be measured ~ o(10) MeV using Higgs run data
 - Jet Clustering is essential
- Several Flavor Physics benchmarks are processing as the Snowmass Lols. One is submitted; others need ~1 year to converge.

Back up

BMR oriented Optimization

- BMR = 3.8%, 3.6% seems reachable without fundamental change..
 - Preliminary... HCAL optimal size ~ 2 cm → reduce the HCAL # Channel to a quarter (digital read mode at AHCAL...)
- Allowance of 4%, BMR = 3.6/3.8% means:
 - Reduce the tracker R&Z by 24/12%
 - Reduce the ECAL #Channels to a quarter or more: either by double Cell size, or reduce the #Layer
 - Reduce the B-Field from 3T to 1T/1.5T
 - Increase the HCAL Cell size ~ 5 cm or even larger! HCAL #Cell reduced to 4%...
 - Reduce the HCAL #Layer by 50%
 - Optimal geometry can be determined once cost dependence on above parameters is clear.
- Improving BMR... is the key objective for reconstruction.

Working Group and Conveners

Flavor: Performance and Analysis

- Flavor: Tera Z data cannot all be processed with Full simulation
- Method
 - Performance via Full Simulation:
 - Understand the dependence on detector, provide different working curve/working points
 - Physics analysis relies strongly on Fast Simulation.
 - MCTruth level analysis ideal detector analysis the irreducible background;
 - Smearing: irreducible background with different detector resolution;
 - Identification: contamination by mis-id (using different working point provided by the full sim studies)
 - Theory interpretation (i.e. Wei Wang from SJTU)

Performance

- Isolated Leptons (EPJC 2017):
 - Baseline provides excellent identification for isolated Lepton with energy > 2 GeV, without muon chamber.
- VTX Optimization on Flavor tagging (JINST 2018)
 - Closer > Lighter > Smaller Pixel
- Pid (EPJC 2018)
 - eff & purity of 95% at Z->qq samples, for tracks with E > 2 GeV
- K_long, Lambda performance (EPJP accepted, 2020)
 - Inclusive eff of 40%/30% achieved with purity > 90%
- Photon/pi-0 reconstruction performance (EPJP submitted)
 - *pi-0 with E < 30 GeV can be successfully reconstructed*
- Jet lepton identification (On going)
 - Degrading induced by the separation/calorimeter clustering performance

Jet Charge measurement using Kaon, Lepton, and VTX charge (initiated)
 ²⁰²⁰⁻¹⁰⁻¹⁹ Subtle, Critical for CP and EW (AFB) measurements!

Flavor Physics benchmarks

- Many Benchmarks proposed at PKU meeting (July 2019)
 - Sebastian Descotes-Genon: B->tau physics
 - Marek Karliner: Pc, 4/5 quark states, ISR return
 - Lorenzo Calibbi & Haibo: Tau exotic decays
 - Abi Soffer: semileptonic b-decay and CP violation
 - Wenbing: CP measurement via J/psiphi
 - Yu-Kuo: Baryonic B-decay...
- Half of these topics are covered by current flavor physics analysis effort

Benchmark analyses: status

- Bc -> tau+v -> e + 3v (In finalization, by Taifan Zhen, Fenfen An, Lu. Cao)
 - Rely on the flavor tagging (Z->bb), jet lepton identification
 - Percentage level accuracy could be achieved at the CEPC
 - Current identification of jet lepton is good enough for this channel
- B0 -> J/psi + Phi -> mumu KK (by Mingrui Zhao of 401)
 - Rely on the Jet Charge measurement,
 - MCTruth level study, to mount/Xcheck corresponding performance study
- Tau -> muon + photon (by Yudong Wang, etc)
 - Photon energy resolution, lepton id
 - MCTruth + Smearing level.
- b -> stautau (by Linfeng Li of HKUST)
 - Reducible background might strongly limit the final accuracy

Flavor Physics benchmarks + Key performances

	B->tau	B semileptonic	B Baryonic	Tau	СР	Рс
Flavor Tagging	Y	Y	Y		Y	
Jet lepton	Y	Y		Y		
Pid			Y		Y	Y
Jet Charge					Y	
ECAL	Y	Y	Y	Y	Y	Y
Tracker			Y	Y	Y	Y
Current Benchmark	Bc→tauv→ evvv; B→stautau			Tau exotic decays	B0 → J/psi + Phi → mumu KK	

Goal: CEPC Flavor Physics white paper (report)

- The IAC recommendation shall be addressed by this report and corresponding supporting studies/citables
 - Landscape of CEPC flavor program + A series of Benchmark analysis
 - Performance requirement analysis
 - Physics interpretation and comparison with other facilities
- Timeline: Many performance/benchmark studies will take lots of time. Status report can be made in 2020 IAC meeting.
- Difficulties: Lacking of manpower and communication
 - Many topics important topics, such as the VTX reconstruction and jet charge measurement, are very subtle and need lots of experiences.
 - The current analysts for example my students are good at performance but lacking flavor physics experiences
 - Key physics benchmark analysis would be, ideally composed of actually analysts from other experiments, analysts, and theorists

 $_{2020-10-19}$ Topical WS would be very helpful – not easy now

Conclusion

- The IAC recommendation is highly consistent with current CEPC simulation efforts: requirements, performance, analysis, and flavor physics
- Plan to address the IAC recommendation by the CEPC flavor physics white paper and corresponding documents. Performance – accuracy plots analogy to the BMR – Higgs accuracy plots shall be included.
- CEPC flavor simulation/analyses need to combine different methods:
 - Performance via Full Simulation and Analysis relies on Fast Simulation.
 - Proper modeling of the identification & reducible background contamination
- Significant progress on the flavor physics simulation
 - Good progress/coverage in Performance & object reconstruction
 - Multiple benchmark channels proposed, and half are covered by existing analysis

Conclusion

- Strong collaboration interests
 - Involvement of HKUST, 401, SJTU, Shanxi Normal University, etc
 - Domestic experts can be further activated...
 - Many international leading experts
- Difficulties: manpower & communication
 - The flavor physics is very rich and sometime complicated, and facing strong competition from LHCb/Belle-II
 - Dedicated Workshops, to review the progress on physics studies, conclusions, and report writing are essential
 - The Corona Virus brings extra difficulties/uncertainties
 - Extra manpower, Postdoc analysts, and supporting for the WS would be really helpful.