Mixing and CP violation in charm at LHCb

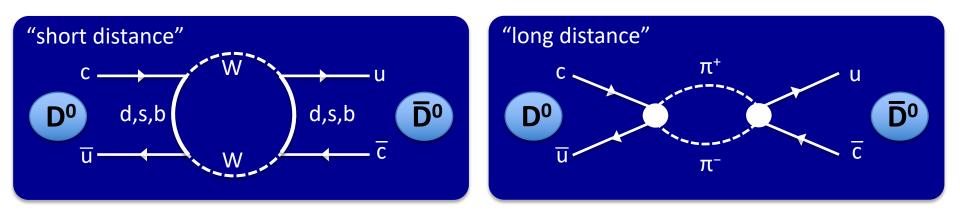
Mark Williams on behalf of the LHCb collaboration

Conference on Flavor Physics and CP Violation (FPCP 2021) Fudan University, Shanghai, China 7 – 11 June 2021

ROYAL

THE

- What, why? background and motivation
- Where, how? charm physics at LHCb
- What now? The post-discovery era
- CPV in decay:
 - $D_{(s)}^+ \rightarrow h^+h^0$ decays (<u>https://arxiv.org/abs/2103.11058</u>)
 - $D^0 \rightarrow K_S^0 K_S^0$ decays (<u>https://arxiv.org/abs/2105.01565</u>)
- Mixing and mixing-induced CPV:
 - ΔY in $D^0 \rightarrow h^+h^-$ (<u>https://arxiv.org/abs/2105.09889</u>)
 - $D^0 \rightarrow K_S^0 \pi^+\pi^-$ with 'bin flip' approach (<u>https://arxiv.org/abs/2106.03744</u>)
- Summary and Outlook



NFW

Neutral charm meson mixing

Mass states are superposition of flavor states:

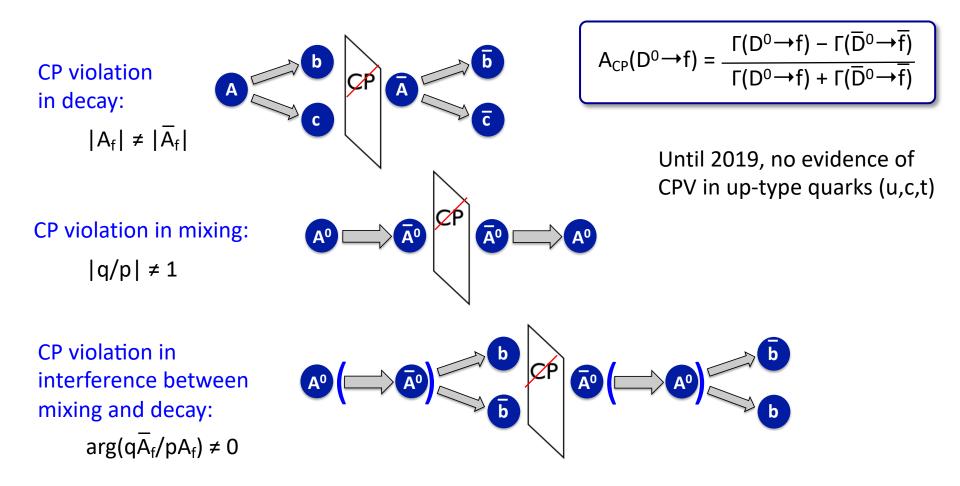
$$|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$$

Oscillations characterized by four parameters:

$$x = (m_1 - m_2)/\Gamma$$

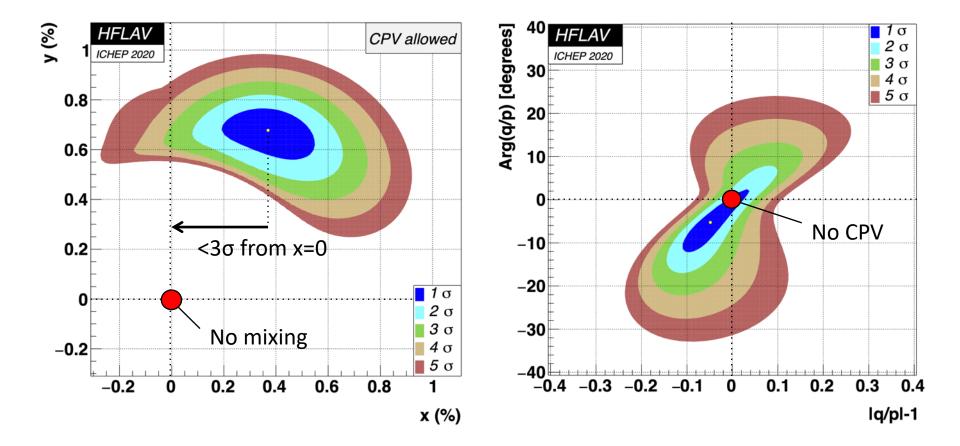
$$y = (\Gamma_1 - \Gamma_2)/2\Gamma$$
meson mixing

$$|q/p|$$


$$\varphi = \arg(q/p)$$
CP violation
or $\Delta x, \Delta y$

- **Unique** up-type quarks
- **NP-sensitive** CPV very small (~10⁻⁴) in SM
- **Poorly experimentally-constrained** x=0 not yet ruled out

CP violation



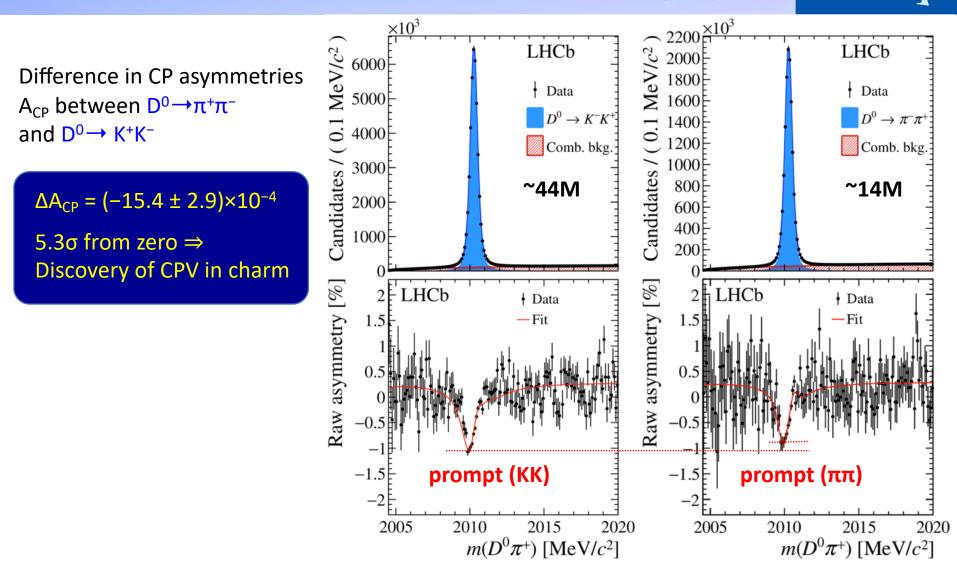
State-of-the-art: Mixing

Charm physics at LHCb

arXiv:1412.6352 Int. J. Mod. Phys. A 30 (2015) 07

Too charming?

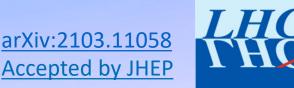
 $\sigma(pp \rightarrow D^{0}X) = 2072 \pm 2 \pm 124 \,\mu\text{b}$ $\sigma(pp \rightarrow D^{+}X) = 834 \pm 2 \pm 78 \,\mu\text{b}$ $\sigma(pp \rightarrow D_{s}^{+}X) = 353 \pm 9 \pm 76 \,\mu\text{b}$ $\sigma(pp \rightarrow D^{*+}X) = 784 \pm 4 \pm 87 \,\mu\text{b}$


~2 MHz~1 MHz~15 kHzCharm mesons in
acceptanceLHCb Hardware
trigger limitLHCb Event rate
written to tape

Solution: Turbo triggers, fast (and accurate!) simulation, high-yield control modes (+ excellent vertexing, tracking, PID, magnet polarity reversal, ...)

The 2019 discovery: ΔA_{CP}

PRL 122 (2019) 211803



- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including those previously unexplored at LHCb
- More (and more precise) time-dependent analyses to search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects

$A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

Measure A_{CP} in 7 modes with $h^{\pm} = \{K^{\pm}, \pi^{\pm}\}, h^{0} = \{\pi^{0}, \eta\}$

 $\begin{aligned} \mathcal{A}_{CP}(D^+ \to \pi^+ \pi^0) &= (-1.3 \pm 0.9 \pm 0.6)\% \text{ SCS *} \\ \mathcal{A}_{CP}(D^+ \to K^+ \pi^0) &= (-3.2 \pm 4.7 \pm 2.1)\% \text{ DCS *} \\ \mathcal{A}_{CP}(D^+ \to \pi^+ \eta) &= (-0.2 \pm 0.8 \pm 0.4)\% \text{ SCS *} \\ \mathcal{A}_{CP}(D^+ \to K^+ \eta) &= (-6 \pm 10 \pm 4 \)\% \text{ DCS *} \\ \mathcal{A}_{CP}(D_s^+ \to K^+ \pi^0) &= (-0.8 \pm 3.9 \pm 1.2)\% \text{ SCS *} \\ \mathcal{A}_{CP}(D_s^+ \to \pi^+ \eta) &= (-0.8 \pm 0.7 \pm 0.5)\% \text{ CF} \\ \mathcal{A}_{CP}(D_s^+ \to K^+ \eta) &= (-0.9 \pm 3.7 \pm 1.1)\% \text{ SCS} \end{aligned}$

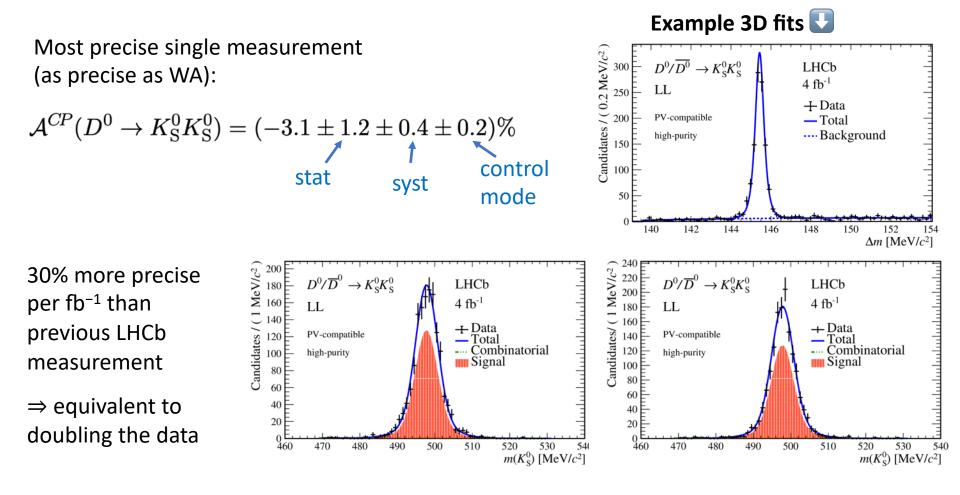
Use all available data

Probe a range of processes, with strong constraints from SM

No evidence for CPV

Several world-leading measurements (*)

MeV/c² 3000 2500 ²3500 3000 WeVC LHCb 6 fb⁻¹ LHCb I Data 6 fb⁻ - Total **Example 2D fits** $- D^{\pm} \rightarrow \pi^{\pm} \eta$ ℃2500 $-D_s^{\pm} \rightarrow \pi^{\pm} n$ C²2000 ···· Pure comb. Candidates / Candidates / Candidates / Condition / Con Candidates 1200 2000 Candidates 2000 2000 Candidates 2000 Part-reco. 500 1800 1900 2000 2100 500 550 600 $m(\pi^+\eta)$ [MeV/ c^2] $m(e^+e^-\gamma)$ [MeV/ c^2]



 $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$

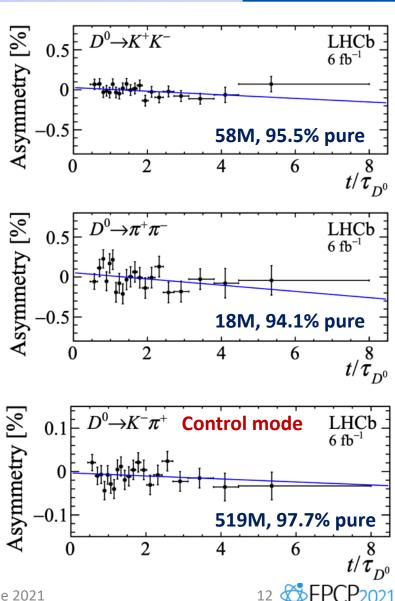
arXiv:2105.01565

Full Run 2 analysis of "Discovery mode" \Rightarrow Upgrade (data + tools) of previous analysis

Mixing and CPV in Charm at LHCb

Mark Williams

- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including those previously unexplored at LHCb
- More (and more precise) time-dependent analyses to search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects


Time-dep. CPV: ΔY (≈−A_Γ)

Same channels as ΔA_{CP} discovery \Rightarrow **Time-dependent asymmetry**

Full Run 2 sample

Careful correction of detector effects (e.g. trigger-induced correlations)

Data-driven validation with CF $D^0 {\rightarrow} K^- \pi^+$

arXiv:2105.09889

Time-dep. CPV: $\Delta Y (\approx -A_r)$

Same channels as ΔA_{CP} discovery \Rightarrow Time-dependent asymmetry

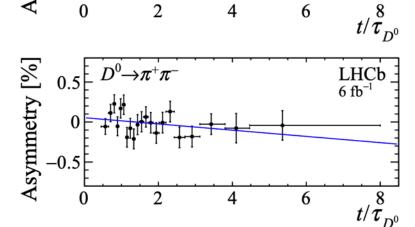
Full Run 2 sample

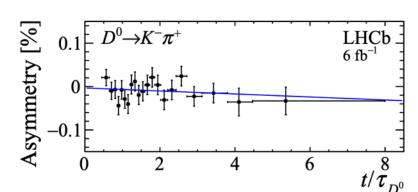
Careful correction of detector effects (e.g. trigger-induced correlations)

Data-driven validation with CF $D^0 \rightarrow K^-\pi^+$

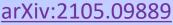
>2x more precise than existing best measurement

Combine with previous LHCb results:


$$\Delta Y_{K^+K^-} = (-0.3 \pm 1.3 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{\pi^+\pi^-} = (-3.6 \pm 2.4 \pm 0.4) \times 10^{-4}$$
$$\Delta Y = (-1.0 \pm 1.1 \pm 0.3) \times 10^{-4}$$
$$\Delta Y_{K^+K^-} - \Delta Y_{\pi^+\pi^-} = (+3.3 \pm 2.7 \pm 0.2) \times 10^{-4}$$


No CPV observed, constrained at 10⁻⁴ level

 $D^0 \rightarrow K^+ K^-$ LHCb 6 fb⁻¹


4

6

13

2

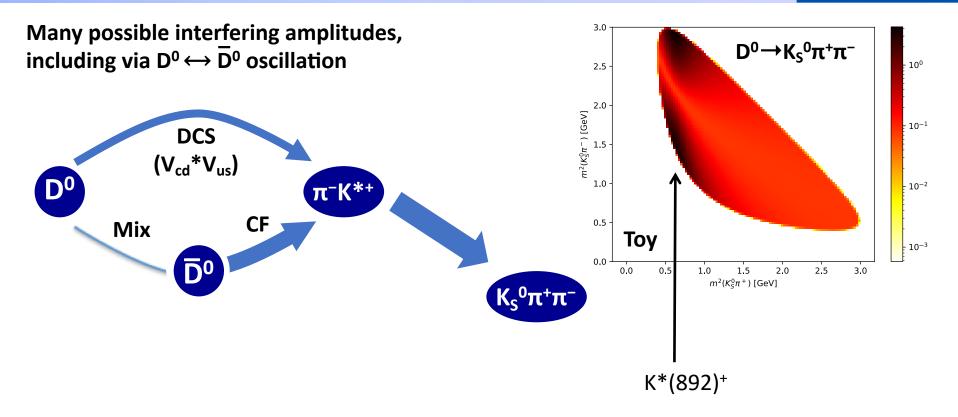
<u>[</u>%]

Asymmetry

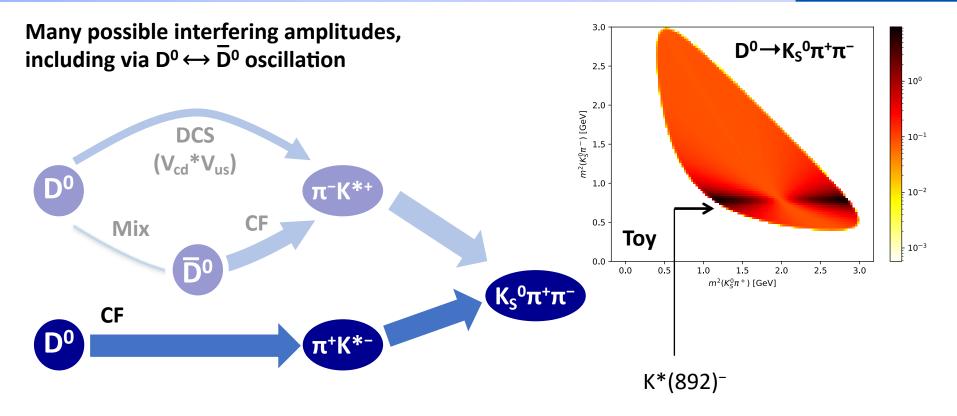
0.5

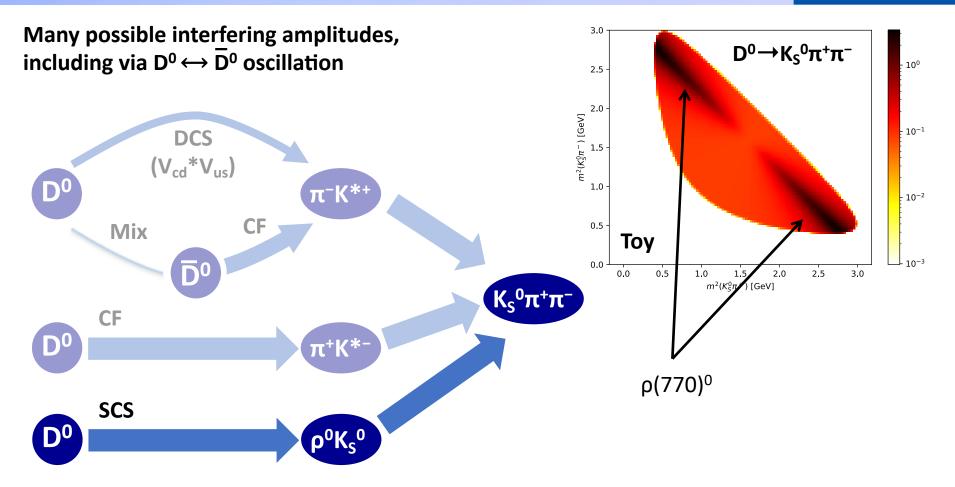
-0.5

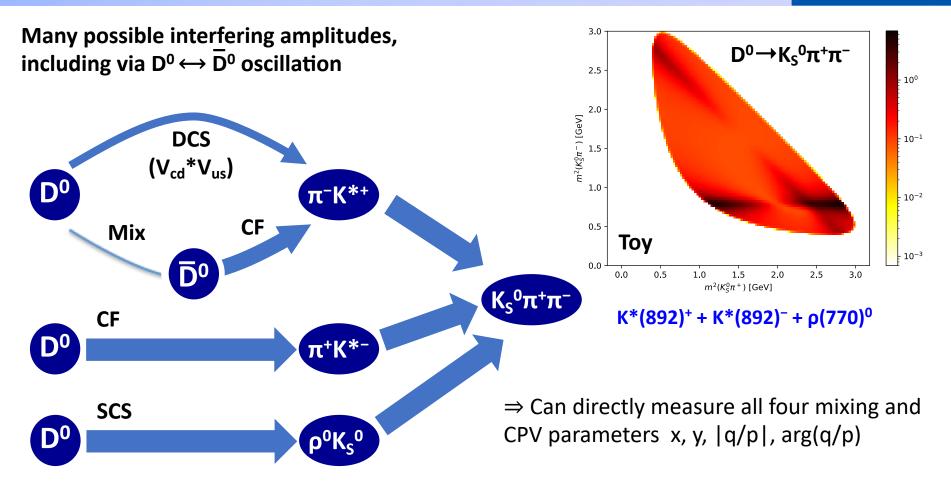
n



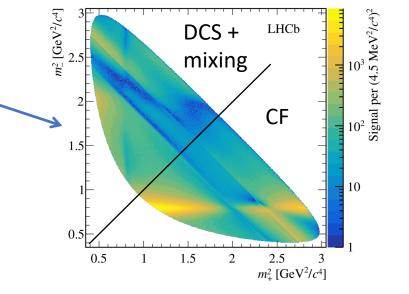
- More (and more precise) measurements of CPV in decay
 ⇒ add new channels, including those previously unexplored at LHCb
- More (and more precise) time-dependent analyses to search for mixing-induced CPV
- Exploit multibody final states sensitive to 'local' CPV through interference effects







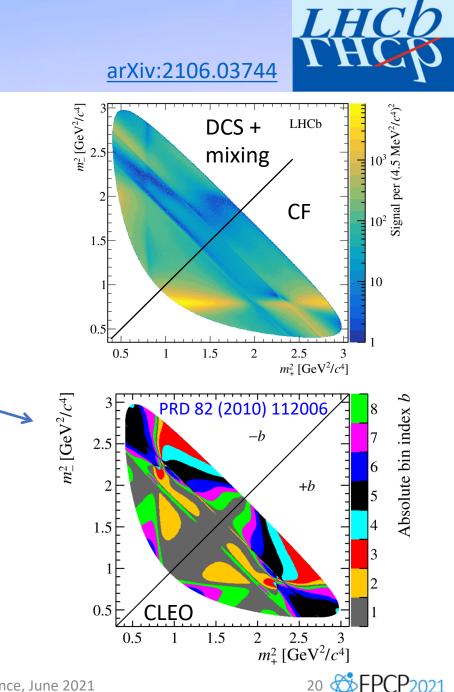
Requires time and phase-space dependent analysis



arXiv:2106.03744

Exploit symmetry in final state:

(1) Oscillated contributions mainly in upper half →
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters



Exploit symmetry in final state:

(1) Oscillated contributions mainly in upper half
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters

(2) Divide into 8 bins per half
 ⇒ boosts sensitivity, reducing dilution from strong phase variation

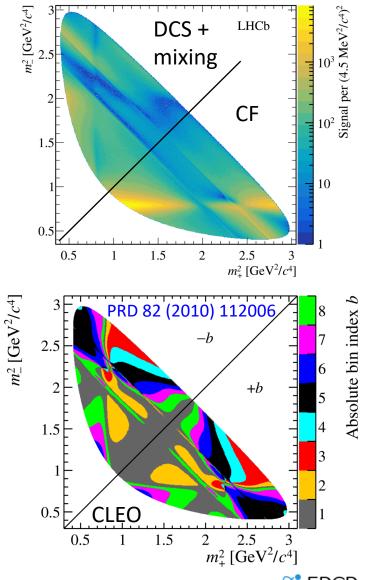
Strong phases constrained from CLEO & BESIII

Exploit symmetry in final state:

(1) Oscillated contributions mainly in upper half
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters

(2) Divide into 8 bins per half
 ⇒ boosts sensitivity, reducing dilution from strong phase variation

Strong phases constrained from CLEO & BESIII


Analysis overview:

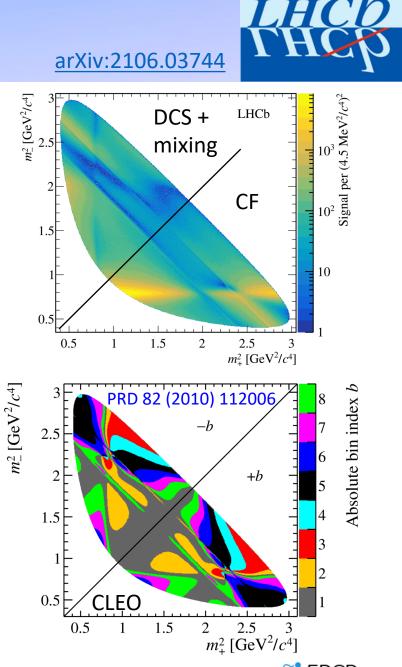
⇒ Measure 8 time-dependent ratios $R_i(t)$ ⇒ Fit these ratios for D⁰ and \overline{D}^0 separately, and averaged

 \Rightarrow Fit parameters include x, y, Δx , Δy

 \Rightarrow Can then translate to |q/p| and ϕ

arXiv:2106.03744

Exploit symmetry in final state:


(1) Oscillated contributions mainly in upper half
 ⇒ Ratio of yields in upper/lower versus time is sensitive to mixing parameters

(2) Divide into 8 bins per half
 ⇒ boosts sensitivity, reducing dilution from strong phase variation

Strong phases constrained from CLEO & BESIII

(3) Most detector effects ~cancel in the ratio

Careful data-driven reweighting to remove residual nuisance effects

arXiv:2106.03744

Data Fit Full Run 2 sample (5.4 fb⁻¹) ----- Fit $(x_{cp} = 0)$ 0.099 70.225 LHCb 0.096 5.4 fb^{-1} -]0.22 R_{7} ∞ \approx 0.0933 0.215 **Clear time dependence from mixing** (Dalitz bin specific) 0.21 0.61 0.2 R_5 ^{0.195} $x_{CP} = [0.397 \pm 0.046 \pm 0.029]\%$ 0.19 $y_{CP} = [0.459 \pm 0.120 \pm 0.085]\%$ 0.59 0.3 0.66 R_{3} \mathbf{S}_{4} 0.64 0.2 0.62 $\begin{array}{c} 0.28\\ 0.465\end{array}$ 0.265 R_2 0.26 $R_{_{I}}$ 0.455 0.255 0.45

2

4

6

8

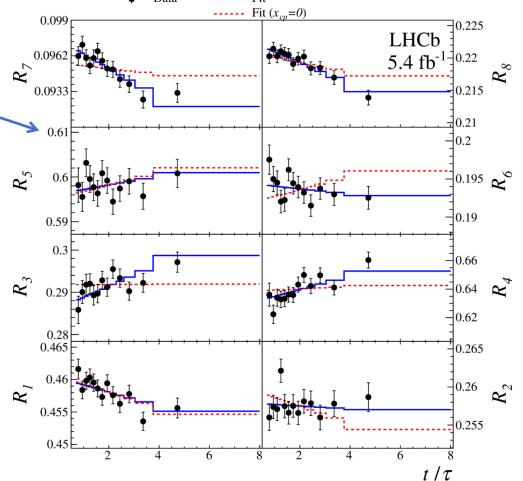
2

 Δ

8

 t/τ

6

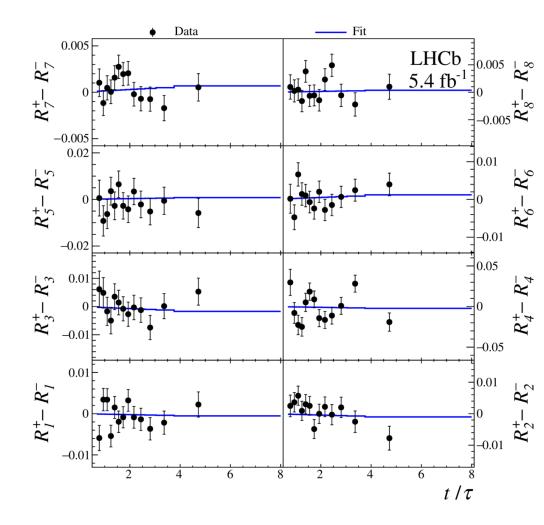

• Data - Fit Fit $(x_{cp}=0)$

Clear time dependence from mixing (Dalitz bin specific) $x_{CP} = [0.397 \pm 0.046 \pm 0.029]\%$ $y_{CP} = [0.459 \pm 0.120 \pm 0.085]\%$ First measurement of non-zero x

(>7σ significance)

Oscillation period ~630ps (D⁰ lifetime 0.4ps)

Full Run 2 sample (5.4 fb⁻¹)

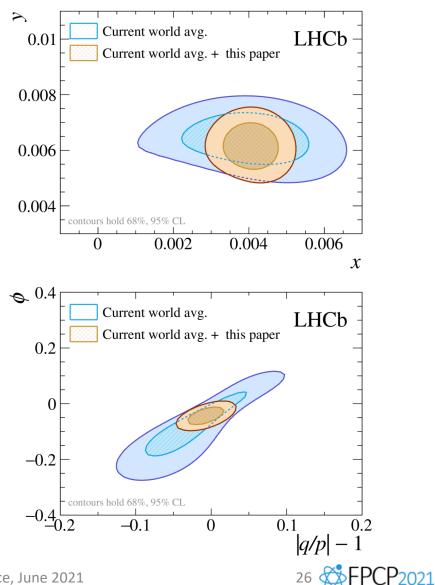


Full Run 2 sample (5.4 fb⁻¹)

Clear time dependence from mixing (Dalitz bin specific)

No significant differences D^0 vs $\overline{D}^0 \longrightarrow$

 $\Delta x = [-0.027 \pm 0.018 \pm 0.001]\%$ $\Delta y = [+0.020 \pm 0.036 \pm 0.013]\%$


arXiv:2106.03744

Full Run 2 sample (5.4 fb⁻¹)

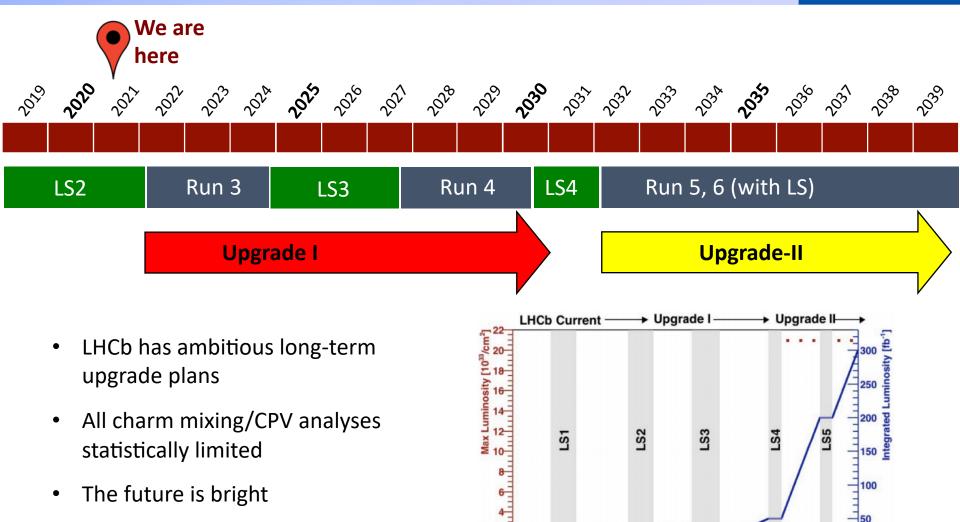
Clear time dependence from mixing (Dalitz bin specific)

No significant differences D^0 vs \overline{D}^0

Significant improvements in WA for both mixing and CPV parameters

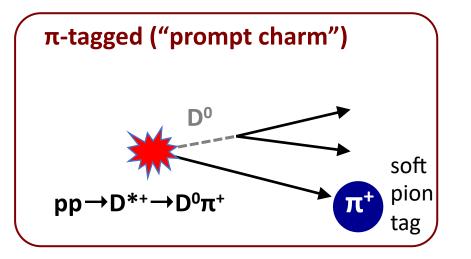
Summary & Outlook

- CPV discovery the start of a new adventure in charm
- Squeezing the most out of LHCb Run 1-2 data
 ⇒ New channels, new techniques
- Large gains in precision on CPV and mixing parameters ⇒ reaching 10⁻⁴ level
- First measurement of charm mixing frequency (x ∝ Δm)
 ⇒ important step to discovering mixing-induced CPV
- Many other measurements in progress, e.g. \Rightarrow In decay: $A_{CP}(D^0 \rightarrow K^+K^-)$, $A_{CP}(D_{(s)}^+ \rightarrow \eta'h^+)$, \Rightarrow In mixing: $D^0 \rightarrow K^+\pi^-$ 'WS' mixing, γ_{CP} \Rightarrow Local CPV in multibody D decays
 - \Rightarrow Baryon CPV
 - \Rightarrow Asymmetries in rare decays: D⁰ \rightarrow h⁺h⁻ μ ⁺ μ ⁻



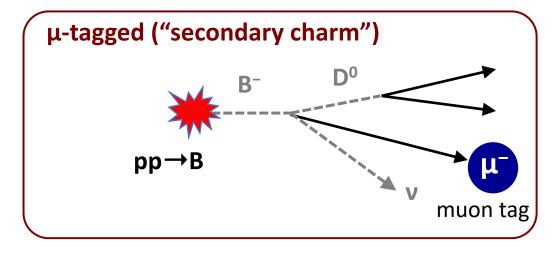
Run 3 and beyond

 $FPCP_{2021}$



Extra Slides

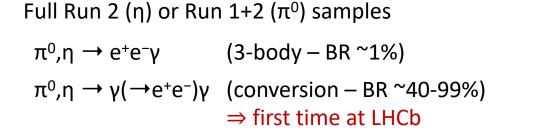
1

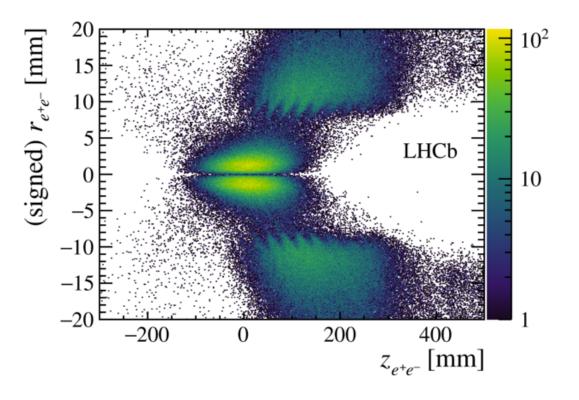

Charm flavour tagging

Lifetime-biasing trigger

High signal yield & purity

Lifetime unbiased trigger


Higher backgrounds, lower yields

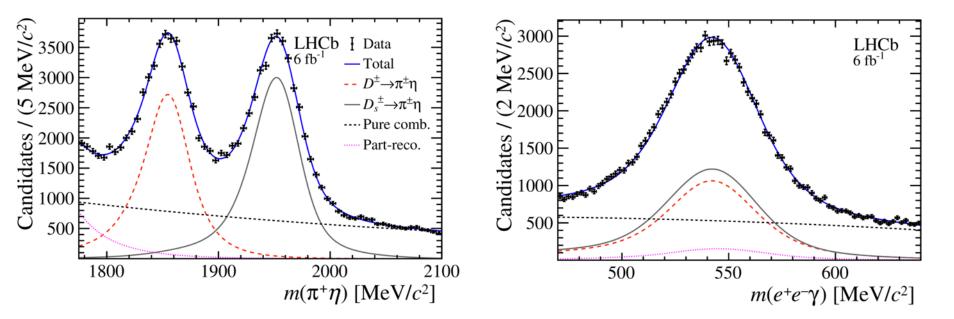

Contributes important background to prompt analyses!

$\mathbf{A}_{\mathsf{CP}}(\mathbf{D}_{(s)}^{+} \rightarrow \mathbf{h}^{+}\mathbf{h}^{0})$

arXiv:2103.11058 Accepted by JHEP

Mark Williams

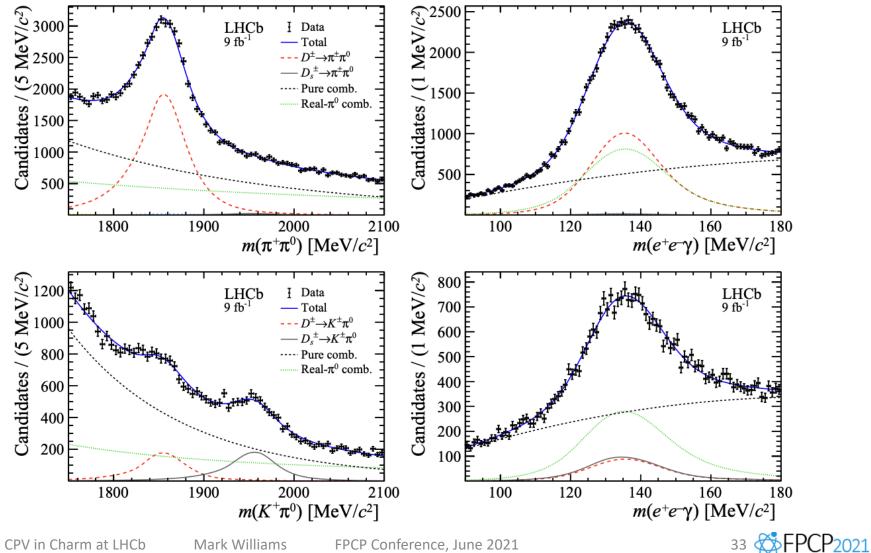
FPCP Conference, June 2021



 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

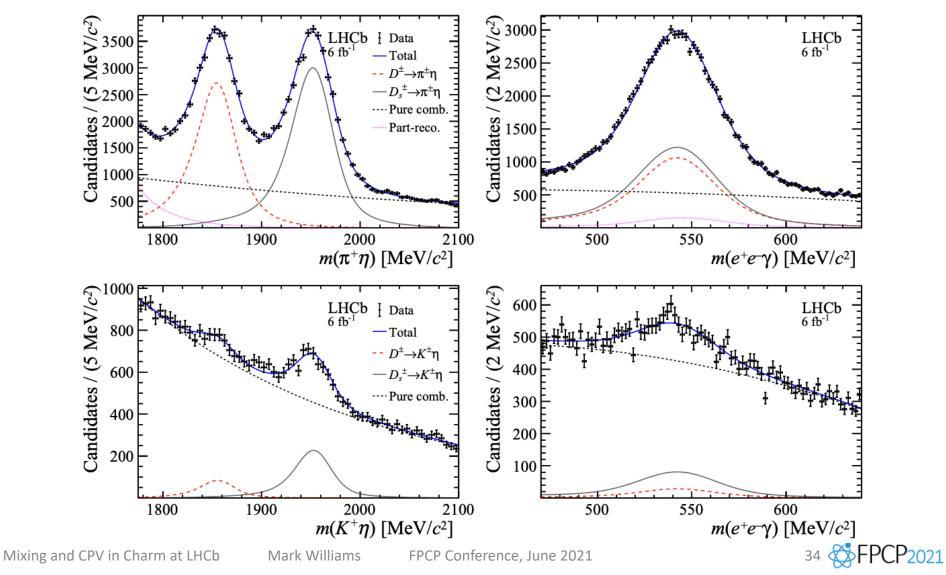
Yields and raw asymmetries from 2D UML fits to $m(e^+e^-\gamma)$ and $m(h^+h^0)$

where $m(h^{+}h^{0}) \equiv m(h^{+}e^{-}\gamma) - m(e^{+}e^{-}\gamma) + m_{PDG}(h^{0})$


Use $D_{(s)}^{+} \rightarrow K_{s}^{0}h^{+}$ as control mode to correct nuisance asymmetries

Main systematic uncertainties from fit model (primary), control mode (secondary)

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$


Fit projections (π^0 modes)

Mark Williams Mixing and CPV in Charm at LHCb FPCP Conference, June 2021

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

Fit projections (η modes)

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

Yields & raw asymmetries:

Mode		Yield		$A_{ m Raw}$ (%)
	2011	2012	Run 2	
$D^+\!\to\pi^+\pi^0$	740 ± 60	2240 ± 120	25750 ± 430	-1.64 ± 0.93
$D_s^+ \rightarrow \pi^+ \pi^0$	20 ± 30	-50 ± 50	450 ± 120	-
$D^+ \rightarrow K^+ \pi^0$	10 ± 13	90 ± 30	2440 ± 110	-2.53 ± 4.75
$D_s^+\!\to K^+\pi^0$	54 ± 13	150 ± 30	2580 ± 90	$-0.25\pm~3.87$
$D^+ \rightarrow \pi^+ \eta$	-	-	32760 ± 380	-0.55 ± 0.76
$D_s^+ \rightarrow \pi^+ \eta$	-	-	37950 ± 340	$0.75\pm~0.65$
$D^+ \rightarrow K^+ \eta$	-	-	880 ± 70	-5.39 ± 10.40
$D_s^+\!\to K^+\eta$	-	-	2520 ± 70	$1.28\pm~3.67$

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

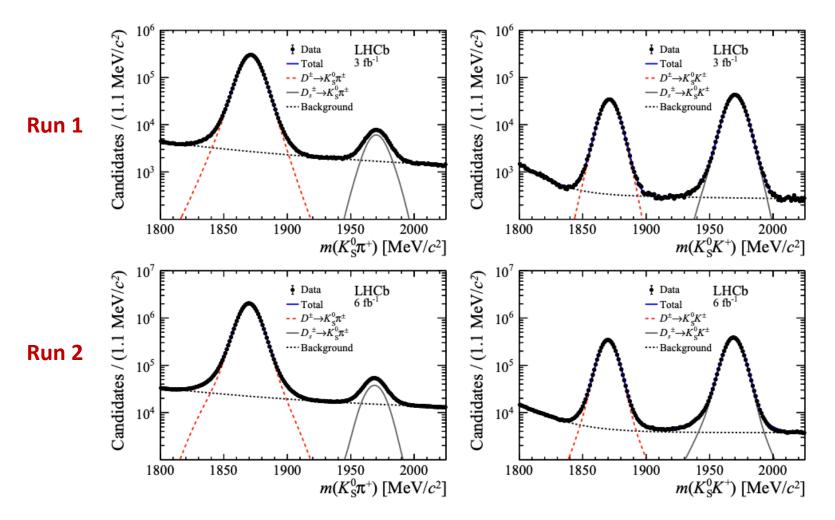
Signal asymmetry:

$$A_{\text{Raw}}(D^+_{(s)} \to h^+ h^0) \approx \mathcal{A}_{CP}(D^+_{(s)} \to h^+ h^0) + A_{\text{Prod}}(D^+_{(s)}) + A_{\text{Det}}(h^+),$$

Control mode asymmetry:

$$A_{\text{Raw}}(D^+_{(s)} \to K^0_{\text{S}}h^+) \approx \mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\text{S}}h^+) + A_{\text{Prod}}(D^+_{(s)}) + A_{\text{Det}}(h^+) + A_{\text{Mix}}(K^0),$$

Correction procedure:


$$\begin{aligned} \mathcal{A}_{CP}(D^+_{(s)} \to h^+ h^0) &= A_{\text{Raw}}(D^+_{(s)} \to h^+ h^0) - A^{\text{w}}_{\text{Raw}}(D^+_{(s)} \to K^0_{\text{S}} h^+) \\ &+ \mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\text{S}} h^+) + A_{\text{Mix}}(K^0), \end{aligned}$$

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

arXiv:2103.11058 Accepted by JHEP

Control mode

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

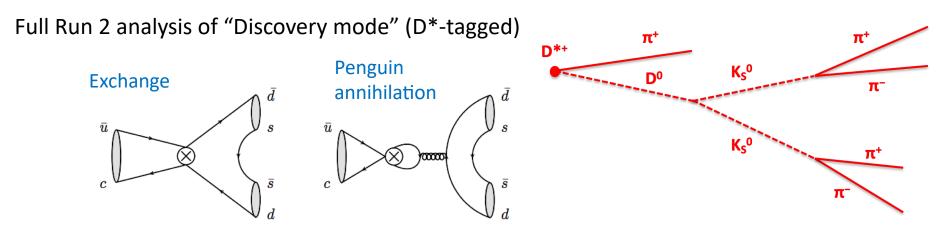
arXiv:2103.11058 Accepted by JHEP

Systematic uncertainties:

	Source		$D^+\!\to\pi^+\pi^0$	$D^+\!\to K^+\pi^0$	$D_s^+\!\to K^+\pi^0$
π ⁰ modes	Fit model		0.59	1.55	1.01
	PID asymmetry		0.06	0.27	0.15
	Secondary decays		< 0.01	0.01	0.02
	Combined A_{Raw} Run 1 and Run 2		0.23	0.65	0.30
	Control modes		0.03	1.18	0.59
	$A_{ m Mix}(K^0)$		< 0.01	< 0.01	< 0.01
	$\mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$		0.12	0.08	0.26
	Total		0.65	2.07	1.24
	Source	$D^+\!\to\pi^+\eta$	$D_s^+\!\to\pi^+\eta$	$D^+\!\to K^+\eta$	$D_s^+\!\to K^+\eta$
	Fit model	0.35	0.15	4.04	1.08
	PID asymmetry	0.06	0.01	0.87	0.16
η modes	Secondary decays	< 0.01	0.02	0.01	0.04
	Control modes	0.05	0.39	0.14	0.12
	$A_{ m Mix}(K^0)$	< 0.01	< 0.01	< 0.01	< 0.01
	$\mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$	0.12	0.20	0.08	0.26
	Total	0.38	0.46	4.13	1.13

 $A_{CP}(D_{(s)}^{+} \rightarrow h^{+}h^{0})$

arXiv:2103.11058 Accepted by JHEP

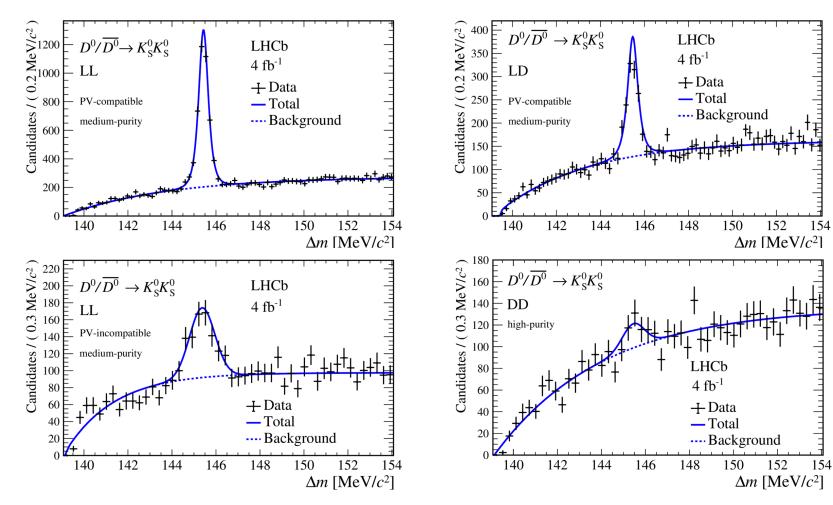

	$D^+\!\to\pi^+\pi^0$	$D^+\!\to K^+\pi^0$	$D_s^+\!\to K^+\pi^0$
$A_{ m Raw}(D^+_{(s)} ightarrow h^+ \pi^0)$	-1.64 ± 0.93	-2.53 ± 4.75	-0.25 ± 3.87
$A^{\mathrm{w}}_{\mathrm{Raw}}(D^{(+)}_{(s)} \to K^0_{\mathrm{S}}h^+)$	-0.45 ± 0.02	$0.58 \hspace{0.2cm} \pm \hspace{0.2cm} 0.08 \hspace{0.2cm}$	$0.60 \hspace{0.2cm} \pm \hspace{0.2cm} 0.07 \hspace{0.2cm}$
$\mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$	-0.02 ± 0.12	$-0.01 \ \pm 0.08$	$0.09 \hspace{0.2cm} \pm 0.26$
$A_{ m Mix}(ec{K^0})$	-0.070 ± 0.004	-0.072 ± 0.004	-0.072 ± 0.004
$\mathcal{A}_{CP}(D^+_{(s)} o h^+ \pi^0)$	$-1.3\pm0.9\pm0.6$	$-3.2 \pm 4.7 \pm 2.1$	$-0.8 \pm 3.9 \pm 1.2$
	D ⁺ -	$ ightarrow \pi^+ \eta$	$D_s^+\!\to\pi^+\eta$
$A_{ m Raw}(D^+_{(s)} \rightarrow h^+\eta)$	-0.55	-0.55 ± 0.76	
$A^{\mathrm{w}}_{\mathrm{Raw}}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$	-0.46	-0.46 ± 0.04	
$\mathcal{A}_{CP}(D^+_{(\underline{s})} \to K^0_{\mathrm{S}}h^+)$	$-0.02 \ \pm 0.12$		$0.13 \hspace{0.2cm} \pm 0.20$
$A_{\mathrm{Mix}}(K^{0})$	-0.070 ± 0.004		-0.070 ± 0.00
$\mathcal{A}_{CP}(D^+_{(s)} o h^+\eta)$	$-0.2\pm0.8\pm0.4$		$0.8 \pm 0.7 \pm 0.1$
	D ⁺ -	$\rightarrow K^+ \eta$	$D^+_s \to K^+ \eta$
$A_{\rm Raw}(D^+_{(s)} \rightarrow h^+\eta)$		-5.39 ± 10.40	
$A^{\mathrm{w}}_{\mathrm{Raw}}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$	0.33 ± 0.10		$\begin{array}{ccc} 1.28 & \pm \ 3.67 \\ 0.36 & \pm \ 0.10 \end{array}$
$\mathcal{A}_{CP}(D^+_{(s)} \to K^0_{\mathrm{S}}h^+)$	-0.01 ± 0.08		0.09 ± 0.26
$A_{\mathrm{Mix}}(K^0)$	-0.073 ± 0.004		-0.073 ± 0.00
$\mathcal{A}_{CP}(D^+_{(s)} \to h^+\eta)$	$-6\pm10\pm4$		$0.9 \pm 3.7 \pm 1.2$

Input asymmetries:

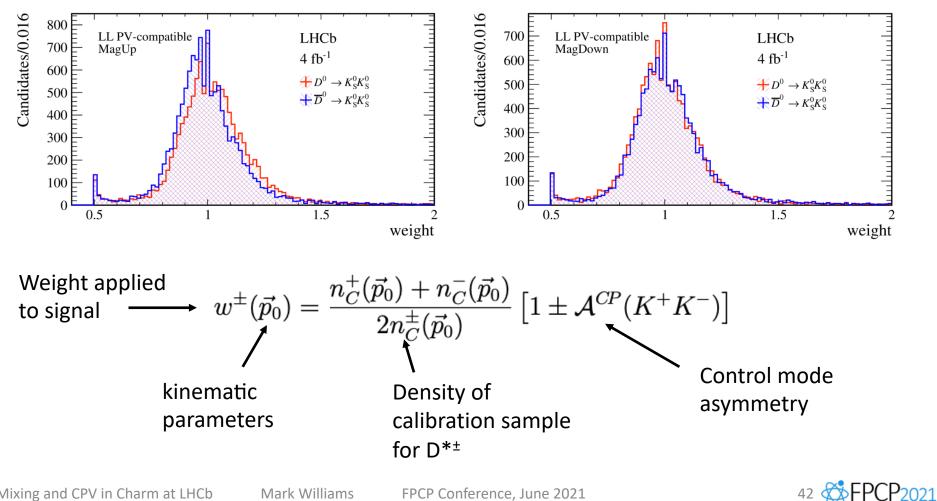
 $A_{CP}(D^0 \rightarrow K_s^0 K_s^0)$

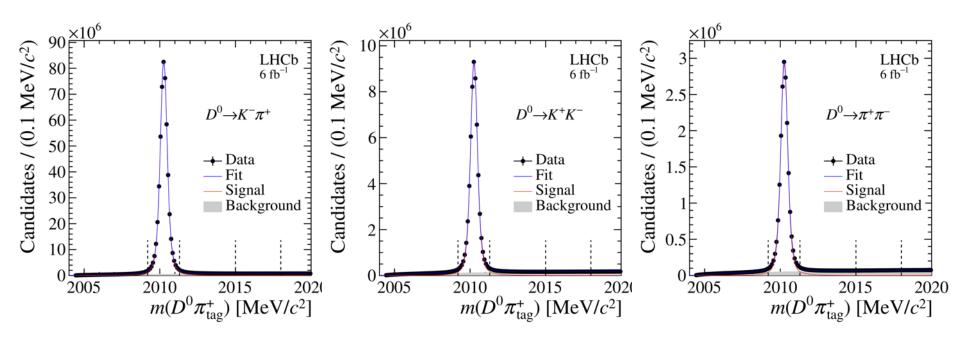
CP-conserving component suppressed by SU(3) symmetry \Rightarrow CPV can be large even if solely due to CKM phase

Sophisticated analysis – the power of marginal gains


- Cuts \rightarrow categories (split by K_{s^0} signature, run period, purity, PV consistency)
- Nuisance asymmetries corrected through MVA classifier and $D^0 \rightarrow K^+K^-$ control mode
- 3D fit to $\Delta M \equiv [M(D^{*+}) M(D^0)]$, $M_1(K_S^0)$, $M_2(K_S^0)$ to separate signal & backgrounds

 $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$

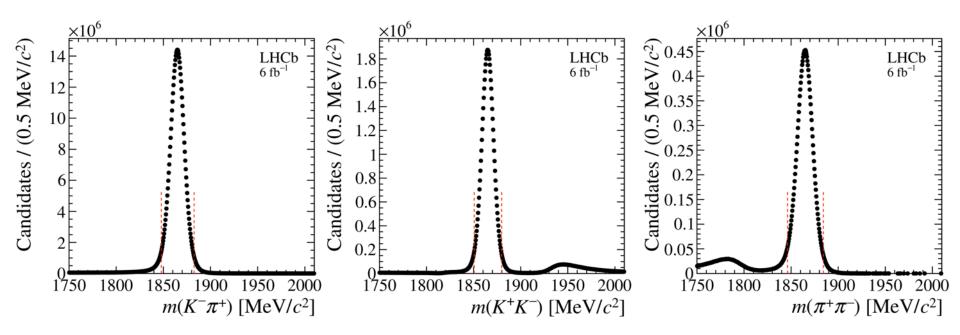

ΔM fit projections for different categories:


 $A_{CP}(D^0 \rightarrow K_S^0 K_S^0)$

Reweighting procedure to equalize nuisance asymmetries between signal and control mode $(D^0 \rightarrow K^+K^-)$

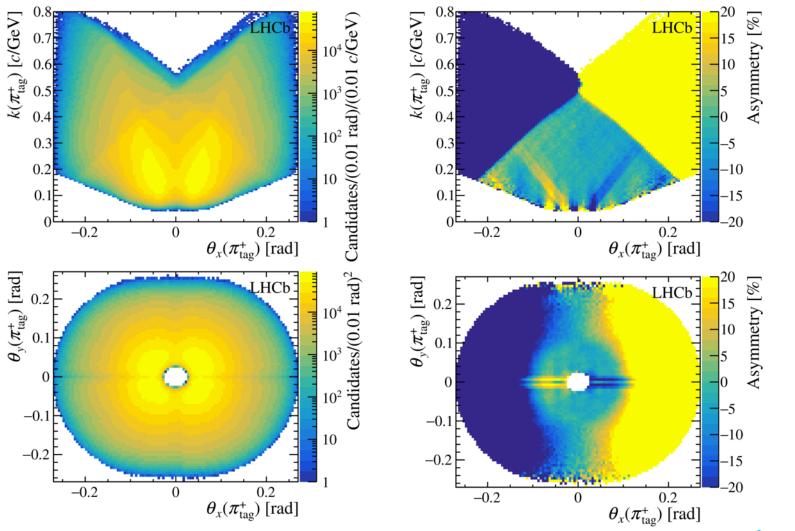
arXiv:2105.09889

Time-integrated mass fits (D*+)



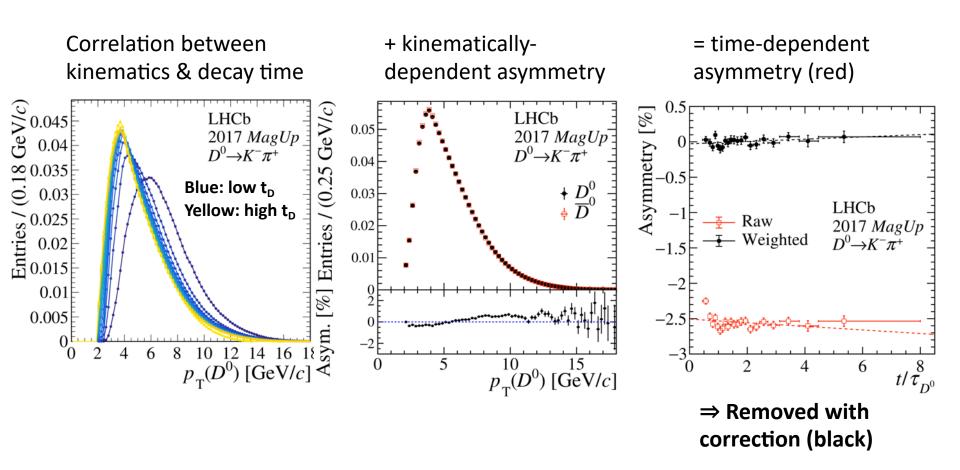
LHCb

arXiv:2105.09889


Time-integrated mass distributions (D⁰)

arXiv:2105.09889

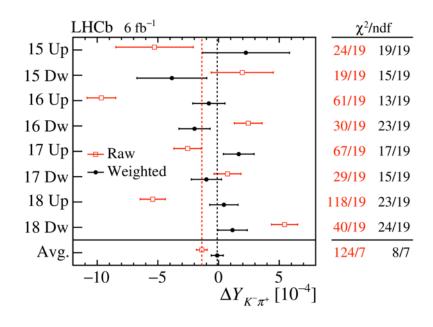
Nuisance asymmetries (tagging pion)

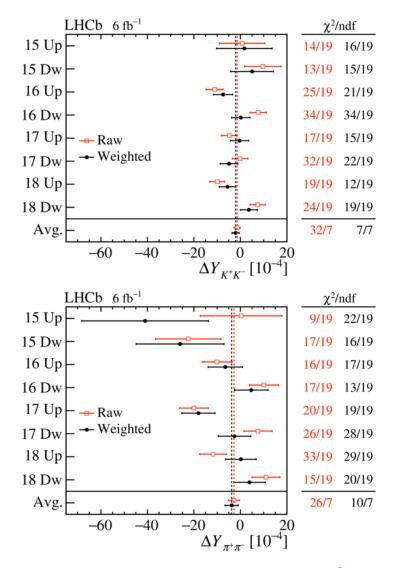


Mark Williams

45 **FPCP2021**

arXiv:2105.09889



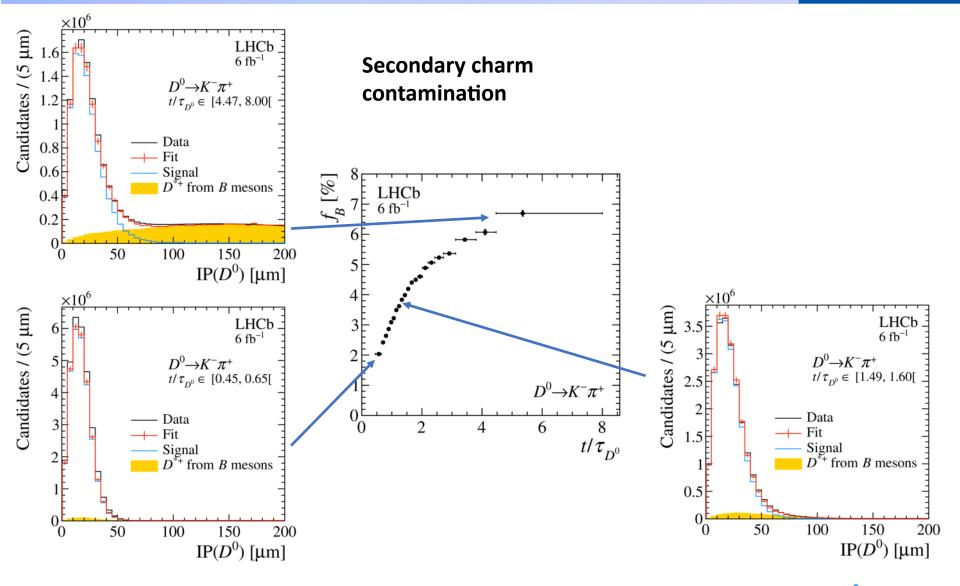

Mark Williams

Results per subsample

Time-dep. CPV: $\Delta y (\approx A_r)$

Red: before weighting Black: after weighting

arXiv:2105.09889



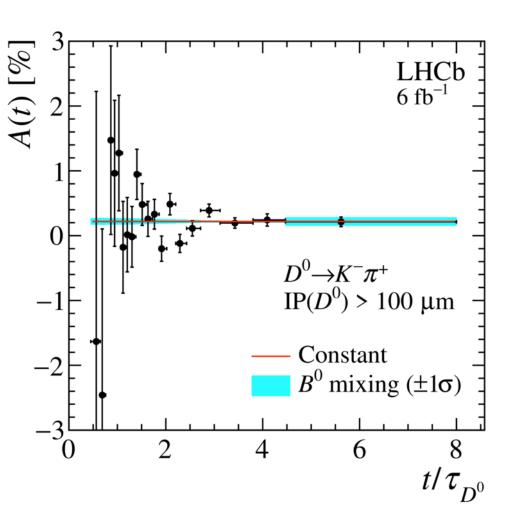
Mark Williams

arXiv:2105.09889

Mixing and CPV in Charm at LHCb N

Mark Williams

FPCP Conference, June 2021


48 **FPCP2021**

Asymmetry from secondaries

$$A(t) = A_{\rm sig}(t) + f_B(t)[A_B(t) - A_{\rm sig}(t)]$$

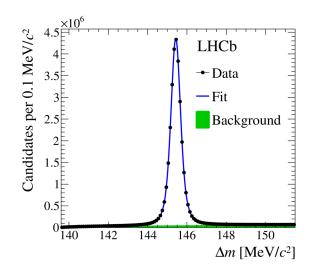
Measured in pure secondary sample:

$$A_B - A_{sig} = (2.2 \pm 0.4) \times 10^{-3}$$

arXiv:2105.09889

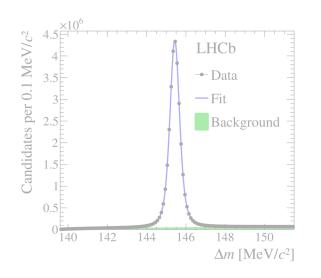
Time-dep. CPV: Δy (≈A_Γ)

Systematic uncertainties


Source	$\Delta Y_{K^+K^-}[10^{-4}]$	$\Delta Y_{\pi^+\pi^-}[10^{-4}]$
Subtraction of the $m(D^0\pi^+_{\text{tag}})$ background	0.2	0.3
Flavour-dependent shift of D^* -mass peak	0.1	0.1
D^{*+} from <i>B</i> -meson decays	0.1	0.1
$m(h^+h^-)$ background	0.1	0.1
Kinematic weighting	0.1	0.1
Total systematic uncertainty Statistical uncertainty	$\begin{array}{c} 0.3 \\ 1.5 \end{array}$	$\begin{array}{c} 0.4 \\ 2.8 \end{array}$

'Bin-flip' analysis: details

~31M signal candidates (>10x larger than LHCb Run 1 sample)


Fit Δm distribution in bins of Dalitz plane and decay time to get R_i values ⇒ Remains **statistically limited** (including strong-phase inputs)

'Bin-flip' analysis: details

~31M signal candidates (>10x larger than LHCb Run 1 sample)

Fit Δm distribution in bins of Dalitz plane and decay time to get R_i values ⇒ Remains **statistically limited** (including strong-phase inputs)

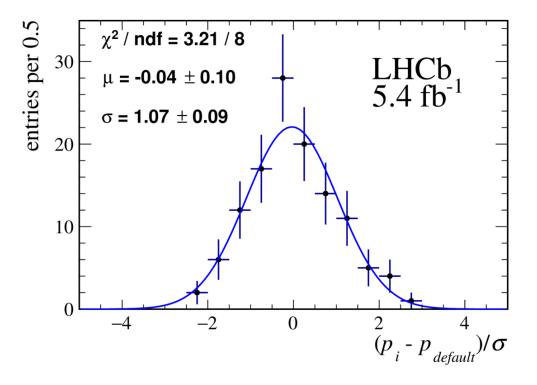
Correct for experimental effects:

- (1) Correlations between time and PhSp
- (2) Charge detection asymmetries

Main systematics from:

- Treatment of experimental effects
- 'Secondary' charm background
- Mass fit procedure, ...

Source	x_{CP}	y_{CP}	Δx	Δy
Reconstruction and selection	0.199	0.757	0.009	0.044
Secondary charm decays	0.208	0.154	0.001	0.002
Detection asymmetry	0.000	0.001	0.004	0.102
Mass-fit model	0.045	0.361	0.003	0.009
Total systematic uncertainty	0.291	0.852	0.010	0.110
Strong phase inputs	0.23	0.66	0.02	0.04
Detection asymmetry inputs	0.00	0.00	0.04	0.08
Statistical (w/o inputs)	0.40	1.00	0.18	0.35
Total statistical uncertainty	0.46	1.20	0.18	0.36



'Bin-flip' analysis: cross-checks

Repeat analysis in many disjoint samples (e.g. split by kinematics, magnet polarity, etc)

Pull distribution of measured parameters consistent with unit Gaussian

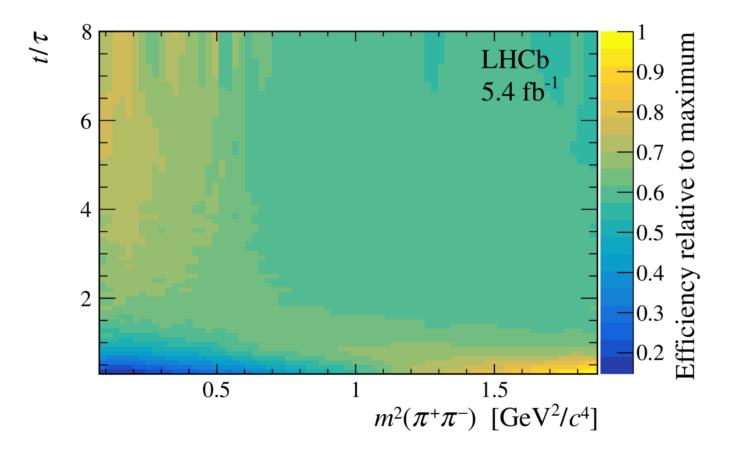
'Bin-flip' analysis: Formalism

Ratio of signal decays in upper/lower **Dalitz bin** *b*, and **time bin** *j*, given by:

$$R_{bj}^{\pm} \approx \frac{r_b + \frac{1}{4} r_b \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b^*(z_{CP} \pm \Delta z)]}{1 + \frac{1}{4} \langle t^2 \rangle_j \operatorname{Re}(z_{CP}^2 - \Delta z^2) + r_b \frac{1}{4} \langle t^2 \rangle_j \left| z_{CP} \pm \Delta z \right|^2 + \sqrt{r_b} \langle t \rangle_j \operatorname{Re}[X_b(z_{CP} \pm \Delta z)]}$$

Where:

- \pm denotes the case for D⁰ (+) and \overline{D}^{0} (-)
- r_b: value of ratio at t = 0
- X_b: amplitude-weighted average strong phase difference between 'flipped' bins ⇒ Use external constraints from quantum correlated charm production (CLEO, BESIII) ⇒ c_b ≡ Re(X_b), s_b ≡ -Im(X_b)
- $z_{CP} \pm \Delta z = -(q/p)^{\pm 1}(y + ix)$
- $<t>_j (<t^2>_j)$: average (squared) decay time of unmixed decays in each Dalitz plot bin, in units of D⁰ lifetime $\tau \equiv 1/\Gamma$

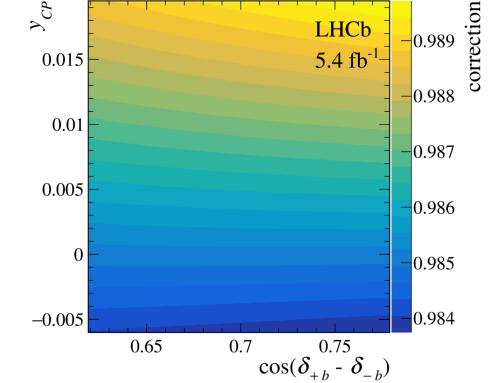

'Bin-flip' analysis: Correlations

55

 $FPCP_{2021}$

Example of correlations between decay time and phase-space $m^2(\pi^+\pi^-)$

'Bin-flip' analysis: Corrections

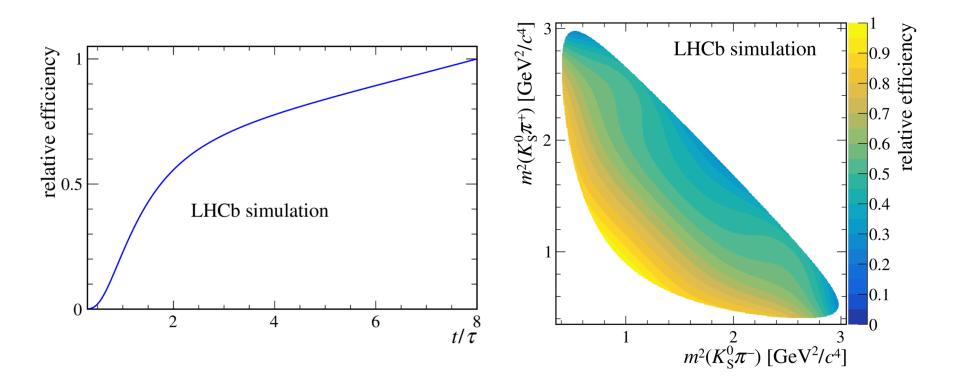

Example of correction map (for Dalitz bin b=1, decay time bin j=1)

Correction is applied to symmetrise the decay-time efficiency as a function of $m^2(\pi\pi)$

 \Rightarrow No impact on x (which preserves m²(ππ) distribution)

⇒ Small impact on y and strong phases, so correction depends on these values

 \Rightarrow So, correction depends on values of y and $c_{\rm b}$ in fit

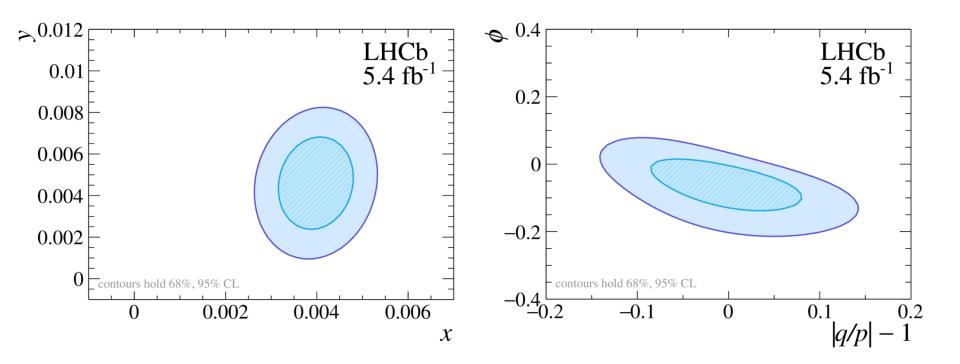


'Bin-flip' analysis: Efficiencies

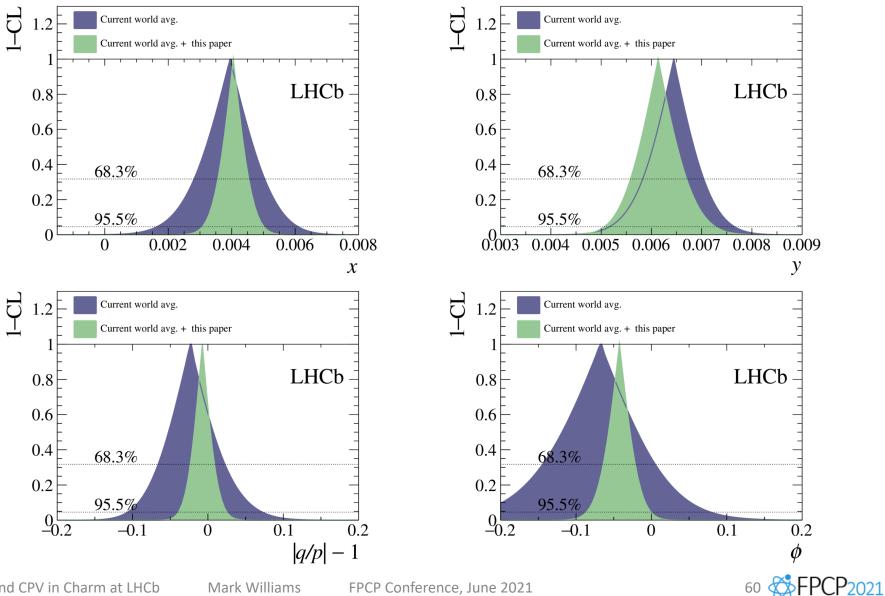
Efficiency vs decay time and Dalitz plane

'Bin-flip' analysis: Strong phases

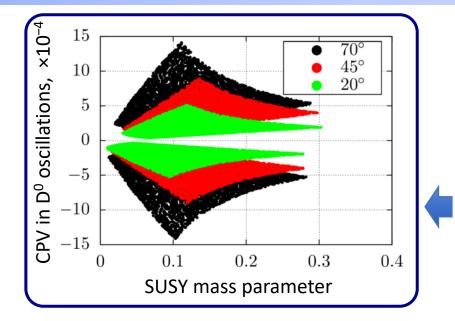
Initial and final values of strong phase inputs (Gaussian constrained in fit)


	Initial	Final
c_1	0.699 ± 0.020	0.702 ± 0.020
c_2	0.643 ± 0.036	0.641 ± 0.036
c_3	0.001 ± 0.047	0.006 ± 0.047
c_4	-0.608 ± 0.052	-0.613 ± 0.052
c_5	-0.955 ± 0.023	-0.955 ± 0.023
c_6	-0.578 ± 0.058	-0.568 ± 0.058
c_7	0.057 ± 0.057	0.047 ± 0.055
c_8	0.411 ± 0.036	0.413 ± 0.036
s_1	0.091 ± 0.063	0.014 ± 0.054
s_2	0.300 ± 0.110	0.341 ± 0.094
s_3	1.000 ± 0.075	0.956 ± 0.069
s_4	0.660 ± 0.123	0.767 ± 0.112
s_5	-0.032 ± 0.069	-0.073 ± 0.063
s_6	-0.545 ± 0.122	-0.627 ± 0.106
s_7	-0.854 ± 0.095	-0.828 ± 0.081
s_8	-0.433 ± 0.083	-0.449 ± 0.072

'Bin-flip' analysis: Contours



2D contours


'Bin-flip' analysis: New WA Combo

Mixing and CPV in Charm at LHCb Mark Williams FPCP Conference, June 2021

So, why Charm?

Warped extra dimensions

"the bounds from D⁰ mixing play a crucial role"

"The flavor constraints are then stronger e than those from the electroweak precision measurements for a large portion of the parameter space." (Gedalia *et al,* arXiv:0906.1879)

Supersymmetry

"...any experimental signal of CP violation in D⁰ mixing above the per mill level would probably point towards a NP effect"

"the LHCb experiment ... is starting now to probe the natural predictions of alignment models" (Ghosh *et al*, arXiv:1512.03962)

Little-Higgs models

"an observation of large mixing induced CP asymmetries in D decays ... would be a clear signal of New Physics"

"we have just entered a regime where one can realistically hope for an effect to emerge" (Bigi *et al*, arXiv:0904.1545)

> + Flavoured dark matter, 4th generation, ...

ΔA_{CP} interpretation

 $\Delta A_{\rm CP} = (-15.4 \pm 2.9) \times 10^{-4}$

5.3 σ from zero \Rightarrow Discovery of CPV in charm Is this asymmetry from the standard model alone? \Rightarrow no clear consensus!

BSM corner:

JHEP 1907 (2019) 161 Chala, Lenz, Rusov, Scholtz $|\Delta A_{CP}|_{SM} \le 3.6 \times 10^{-4}$ Propose flavour violating Z'

arXiv:1909.11242 Dery, Nir Need O(10) enhancements to explain result (e.g. 2HDM, MSSM, vector-like quarks)

SM corner:

JHEP 1907 (2019) 020 Grossman, Schacht

PRD 99 (2019) 113001 Buccella, Paul, Santorelli

arXiv:1903.10638 *Li, Lu, Yu*

arXiv:1905.00907 *Soni*

arXiv:1909.03063 Cheng, Chiang

