Experimental Searches for Neutrinoless Double-Beta Decays and Prospects

Maura Pavan FBCP2021 - Shanghai

a window opened to the unknown

a window opened to the unknown

neutrino oscillations

only clear failure of Standard Model neutrino masses open a new window into Physics

Majorana v

- experimental observations $\mathbf{v} \neq \overline{\mathbf{v}} \rightarrow \mathbf{j}$ ust helicity
- a number of good theoretical motivations for a self-conjugated massive Majorana v
- only one experimental viable way to prove it

Neutrinoless Double Beta Decay

$\beta\beta$ decay $(A, Z) \rightarrow (A, Z+2)$ + something

a number of isotopes A-Z even reach stability only through $\beta\beta$ decay

these are the $\beta\beta$ candidates

a small group of them have high transition energies $Q_{\beta\beta} > 1 \text{ MeV} \dots$ and other nice features

these are the golden $\beta\beta$ candidates

⁷⁶Ge ¹⁰⁰Mo ¹³⁰Te ¹³⁶Xe

$2\nu 2\beta - 0\nu 2\beta$

$(\mathbf{A}, \mathbf{Z}) \rightarrow (\mathbf{A}, \mathbf{Z}+2)+2e^{-}+2\overline{v}$

- $2\nu\beta\beta$ decay observed, rare decay
- 2nd weak process allowed by SM
- measured $T_{1/2} > 10^{18} y$

$(A,Z) \rightarrow (A,Z+2)+2e^{-2}$

- $0\nu\beta\beta$ decay Δ L=2 process
- forbidden in Standard Model
- light mass Majorana v exchange or other non SM diagrams

... + other diagrams

$0\nu2\beta$ signature

 $(A,Z) \rightarrow (A,Z+2)+2e^{2}+2\overline{\nu}$

```
(A,Z) \rightarrow (A,Z+2)+2e^{-}
```


main signature \rightarrow a peak at $Q_{\beta\beta}$

- typically $Q_{\beta\beta} \sim 1-3$ MeV (the higher, the lower is the background of spurious events that mimic the signal)
- 2 e⁻ have a short range \rightarrow detection of their sum energy

processes spoiling the signal and their mitigation:

- $2\nu\beta\beta \rightarrow$ energy resolution
- background \rightarrow particle identification (α rejection, SS vs MS ...)

 \rightarrow daughter identification ...

$$\left(T_{1/2}^{0v}\right)^{-1} = G^{0v}(Q, Z) \cdot g_A^4 \left| M^{0v} \right|^2 \cdot m_{ee}^2$$

Standard (dominant) Mechanism: exchange of a light Majorana v

$0v2\beta$ half-life

decay observation implies:

- → DISCOVERY
- measurement of the half-life
- \rightarrow v in a Majorana particle
- → m_{ee} is measured

$$(T_{1/2}^{0v})^{-1} = G^{0v}(Q, Z) \cdot g_A^4 |M^{0v}|^2 \cdot m_{ee}^2$$

phase space

- is computed
- favors high $Q_{\beta\beta}$ isotopes

phase space is and additional motivation for chosing high $Q_{\beta\beta}$ isotopes (the stronger motivation is background suppression)

$$(T_{1/2}^{0v})^{-1} = G^{0v}(Q, Z) \cdot g_A^4 |M^{0v}|^2 \cdot m_{ee}^2$$

nuclear matrix element - is evaluated on the basis of different nuclear models

- model dependent
- "quenched g_A "? used to correct the systematic over-predictions of β and $2\nu\beta\beta$ measured rates
- does it apply also to $0\nu\beta\beta$? (if so predicted T_{1/2} underestimated by a factor 2-6)

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) \cdot g_A^4 |M^{0\nu}|^2 \cdot m_{ee}^2$$

$$m_{ee} = \sum_{k} U_{ek}^{2} m_{i} = c_{12}^{2} c_{23}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$$

3 neutrinos eigenstates + mixing

- 3 mixing angles → c_{ii} s_{ii}
- 2 mass differences $\rightarrow \Delta m^2_{solar} \Delta m^2_{atm}$
- 2 phases $\rightarrow \alpha$, β (Majorana phases)
- mass ordering \rightarrow lightest neutrino mass

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu}(Q, Z) \cdot g_A^4 |M^{0\nu}|^2 \cdot m_{ee}^2$$

$$m_{ee} = \sum_{k} U_{ek}^{2} m_{i} = c_{12}^{2} c_{23}^{2} m_{1} + s_{12}^{2} c_{13}^{2} e^{i\alpha} m_{2} + s_{13}^{2} e^{i\beta} m_{3}$$

3 neutrinos eigenstates + mixing

- 3 mixing angles $\rightarrow c_{ii} s_{ii}$
- 2 mass differences $\rightarrow \Delta m^2_{solar} \Delta m^2$
- 2 phases $\rightarrow \alpha$, β (Majorana phase
- mass ordering

Vissani et al. Phys Rev D 100, 073003 (2019) probability distribution for m_{ee} obtained using the Likelihood for Σ

On result basis:

• $T_{1/2}$ measurements can't be compared directly, the conversion into m_{ee} is not trivial because of the uncertainties in NME

On result basis:

• $T_{1/2}$ measurements can't be compared directly, the conversion into m_{ee} is not trivial because of the uncertainties in NME

On result basis:

- a pragmatic solution is to convert $\ensuremath{\,T_{1/2}}\xspace \rightarrow m_{ee}$ range and compare the range

0v2β ranking experiments

On result basis:

 neglect correlations (a by model comparison could be better) forget that sometimes a Nuclear Model works better for one isotope

$\rm m_{ee}$ intervals from $\rm T_{_{1/2}}$

this is a personal selection of high sensitivity running or just closed expts.

Majorana mass [eV]

On sensitivity basis (future expts):

- sensitivities or discovery potentials are defined by 3 parameters
 - Mass Time = Exposure
 - Energy Resolution (often extrapolated ..)
 - **Background** (guessed, desired ...)
- extrapolations, guess ... can be strongly biased !
- robustness of hypotheses on the achievement of energy resolution and background is hard to judge

 \rightarrow experiments with a long history of precursors, with clear strategies for background suppression are more reliable (but this is not a number !)

$0\nu 2\beta$ sensitivity

 S_{0v}

Half-life corresponding to the minimum detectable number of events over background at a given confidence level:

M × T = exposure
△ E = energy resolution (ROI)
B = background rate / keV

$$S_{0\nu\beta\beta} \propto \sqrt{\frac{M \times T}{B \times \Delta E}}$$

"zero bkg" $\rightarrow M \times T \times B \times \Delta E < 1$ $S_{0 \nu \beta \beta} \propto M \times T$

Neutrino 2020- Agostini, Benato, Dewiler, Menendez, Vissani

selected experiments (Lapologize for those not included)

running or with a plan for near/far the future
competitive

Experiments

Collaboration	Isotope	Technique	mass (0vββ isotope)	Status
CANDLES-III	⁴⁸ Ca	305 kg CaF2 crystals in liquid scintillator	0.3 kg	Operating
CANDLES-IV	⁴⁸ Ca	CaF ₂ scintillating bolometers	TBD	R&D
GERDA	⁷⁶ Ge	Point contact Ge in active LAr	44 kg	Complete
MAJORANA DEMONSTRATOR	⁷⁶ Ge	Point contact Ge in Lead	30 kg	Operating
LEGEND 200	⁷⁶ Ge	Point contact Ge in active LAr	200 kg	Construction
LEGEND 1000	⁷⁶ Ge	Point contact Ge in active LAr	1 tonne	R&D
SuperNEMO Demonstrator	⁸² Se	Foils with tracking	7 kg	Construction
SELENA	⁸² Se	Se CCDs	<1 kg	R&D
NvDEx	⁸² Se	SeF ₆ high pressure gas TPC	50 kg	R&D
ZICOS	⁹⁶ Zr	10% natZr in liquid scintillator	45 kg	R&D
AMoRE-I	¹⁰⁰ Mo	⁴⁰ CaMoO ₄ scintillating bolometers	6 kg	Construction
AMoRE-II	¹⁰⁰ Mo	Li ₂ MoO ₄ scintillating bolometers	100 kg	Construction
CUPID	100 Mo	Li ₂ MoO ₄ scintillating bolometers	250 kg	R&D
COBRA	¹¹⁶ Cd/130Te	CdZnTe detectors	10 kg	Operating
CUORE	¹³⁰ Te	TeO ₂ Bolometer	206 kg	Operating
SNO+	¹³⁰ Te	0.5% natTe in liquid scintillator	1300 kg	Construction
SNO+ Phase II	¹³⁰ Te	2.5% natTe in liquid scintillator	8 tonnes	R&D
Theia-Te	¹³⁰ Te	5% natTe in liquid scintillator	31 tonnes	R&D
KamLAND-Zen 400	¹³⁶ Xe	2.7% in liquid scintillator	370 kg	Complete
KamLAND-Zen 800	¹³⁶ Xe	2.7% in liquid scintillator	750 kg	Operating
KamLAND2-Zen	¹³⁶ Xe	2.7% in liquid scintillator	~tonne	R&D
EXO-200	¹³⁶ Xe	Xe liquid TPC	160 kg	Complete
nEXO	¹³⁶ Xe	Xe liquid TPC	5 tonnes	R&D
NEXT-WHITE	¹³⁶ Xe	High pressure GXe TPC	~5 kg	Operating
NEXT-100	¹³⁶ Xe	High pressure GXe TPC	100 kg	Construction
PandaX	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
AXEL	¹³⁶ Xe	High pressure GXe TPC	~tonne	R&D
DARWIN	¹³⁶ Xe	natXe liquid TPC	3.5 tonnes	R&D
LZ	¹³⁶ Xe	natXe liquid TPC		R&D
Theia-Xe	¹³⁶ Xe	3% in liquid scintillator	50 tonnes	R&D
R&D	Const	truction Operating	Complete	

Updated from J. Wilkerson

Neutrino 2020- Dewiler

GERDA

- ⁷⁶Ge $Q_{\beta\beta}$ = 2.0 MeV
- enrichement ~ 90%
- 37 enrichGe HPGe in LAr

- resolution FWHM ~ 3.6 keV at Q_{BB}
- **PSA** used to separate SingleSite from MultiSite
- status: CLOSED on Nov 2019
 - exposure I+II: 127.2 kg·yr
- background: ~ 5.2 10⁻⁴ counts/(keV kg y)
 - T_{1/2}^{0νββ} > 1.8 x 10²⁶ yr (90% C.L.)
 - **〈 m_{ββ} 〉 <** (79 180) meV [NMEs]

Risultati di fase II PHYSICAL REVIEW LETTERS 125, 252502 (2020)

LEGEND-200

Upgraded GERDA cryostat: new lock, cabling detector suspension

coupled fibers

New String layout, front end electronics

- **start** in 2022 (delay due to COVID emergency)
- 200 kg in upgraded GERDA infrastructure
 - → new dets = inverted coax \rightarrow large mass
- background
 - → 1-2 10⁻⁴ counts/(keV kg y) (5 times improvement)
 - dominated by ⁴²K β -decays & α -surface emitters

T_{1/2}^{0νββ} ~ 10²⁷ y or m_{ee} 35-75 meV

LEGEND-1000

- @ where ? LNGS or SNOLAB
- **detectors =** inverted coaxial
- **mass =** 1000 kg
- **bkg** = 0.1 cts/(FWHM ton y) \rightarrow 30 times better than GERDA-II

CUORE

- ¹³⁰Te $Q_{\beta\beta}$ = 2.5 MeV
- enrichment NO i.a.~ 30%
- 988 TeO, bolometers @ 10 mK
- FWHM ~ 7 keV at $Q_{\beta\beta}$
- status running (> 1344 kg yr of raw exposure acquire

- exposure: 1038 kg yr
- background:
 - → 1.5 10⁻² counts/(keV kg y)
 - $\textbf{\textbf{+}}$ dominated by α particles
- T_{1/2}^{0νββ} > 2.2 x 10²⁵ yr (90% C.L.)
- **〈 m_{ββ} 〉 <** (90 305) meV

CUPID

- @ where ? LNGS in CUORE infrastructure
- ¹⁰⁰Mo Q_{bb} = 3.0 MeV
- enrichment ~ 90%
- detectors ~1500 Li₂MoO₄ scintillating bolometers

- mass = 250 kg of ¹⁰⁰Mo
- **bkg** = 10⁻⁴ ckky
 - → CUORE without α induced bkg
 - → dominated by $2\nu\beta\beta$ pile-up

 $T_{1/2}^{0\nu\beta\beta} > 10^{27}$

• scintillating ¹⁰⁰Mo crystals deplCa¹⁰⁰MoO₄ or Li₂¹⁰⁰MoO₄ Photon channel MMC Gold wire Ge wafer CMO Crystal MMC Gold film Gold wire Phonon channel

- MMC sensors fast !! techn. challenging !!
- underground lab under excavation

	AMoRE-Pilot	AMoRE-I	AMoRE-II
Mass [kg]	1.9	~6.1	~200
Channels	12	36	~1000
BKG goal [ckky]	0.01	0.001	0.0001
Sensitivity [year]	~10 ²⁴	~10 ²⁵	~5×10 ²⁶
Sensitivity [meV]	380 to 640	120 to 200	17 to 29
Location	Y2L	Y2L	Yemilab
schedule	2017 to 2018	2019~	2021~

PHYSICAL REVIEW LETTERS 123, 161802 (2019)

EXO-200 enrichment 200 kg LXe

• 136 Xe $Q_{\beta\beta}$ = 2.54 MeV

energy measured using two signals: ionization signal drifted to crossed wire planes scintillation (175nm) collected by APD

topology used to separate Signal/Background

separation of SingleSite/MultiSite events

- FWHM ~ 65 keV at Q_{RR}
- status closed
- exposure: 234.1 kg·yr
- $T_{1/2}^{0\nu\beta\beta} > 3.5 \times 10^{25} \text{ yr} (90\% \text{ C.L.})$ •
- **〈 m_{βB} 〉 < (78 239) me**∨ •

- 5000 kg LXe
- $T_{1/2}^{0\nu\beta\beta} > 9 \ 10^{27}$

- **gas TPC** with 2 dedicated readout planes
- event topology
- FWHM ~ 25 keV

KamLAND-Zen

LS with ¹³⁶Xe balloon

KamLAND-Zen

KamLAND-Zen 400

- closed
- limit 1.1 10²⁶ y

KamLAND-Zen 800running since Jan 2019

• Very preliminary results with 132.7 days data $T_{1/2}^{0\nu} > 4 \times 10^{25}$ year (90% C.L.) Sensitivity : 8 × 10²⁵ year

• target 5 yr sensitivity 5 $1\Omega^{26}$

SNO+

- 780 tonne scintillator (47% filled, COVID stopped)
- loaded with Te(0.5%)-butanediol
 1220 kg 130Te
 - → 1330 kg ¹³⁰Te
 - → ¹³⁰Te $Q_{\beta\beta}$ = 2.5 MeV
- predicted 460 p.e./MeV \rightarrow 3% σ/E FWHM=180 keV
- challenge: stability (for 35 I > 26 months)

we will likely have these experiments approaching their design sensitivity

SNO+ and AMORE are still in a very preliminary stage, schedule and sensitivity may be subject to delay ...

⁷⁶Ge LEGEND-1000 10²⁸ yr

future leaders

~ 2030

¹⁰⁰ Mo AMORE II CUPID	5 10 ²⁶ yr 10 ²⁷ yr
¹³⁰ Te SNO+II	10 ²⁷ yr
¹³⁶ Xe nEXO	10 ²⁸ yr

Thanks for your attention !

Majorana D

Latest Release: First unblinding of data 16 kg-yr exposure [PRC 100 025501 (2019)]

Median $T_{1/2}$ Sensitivity: 4.8 × 10²⁵ yr

Full Exposure Limit: $T_{1/2} > 2.7 \times 10^{25}$ yr (90% CL)

Background Index at 2039 keV in lowest background config: 11.9 ± 2.0 cts/(FWHM t yr)

P-type Point-Contact (PPC)

$0\nu2\beta$ candidates

- in most cases driven by **detector characteristic**
 - → ⁷⁶Ge with Ge diodes
 - → ¹³⁶Xe with TPCs
 - > bolometers and scintillators have multiple choices
- isotopic abundance as high as possible

 → (not only) money issue

- Q-value as high as possible
 - → phase space
 - → background

the race to the exclusion of IO region started

- increase detector size ($M_{\beta\beta}$ i.e. the source size)
- reduce background with active rejection techniques

Neutrino 2020- Agostini, Benato, Dewiler, Menendez, Vissani

Discovery Sensitivity Comparison

