
FPCP2021

Test of lepton universality and lepton flavor violation in Y(3S) decays at BABAR

Nafisa Tasneem

ntasneem@uvic.ca, ntasneem@stfx.ca

On behalf of the BaBar Collaboration June 7-11, 2021.

Outline of the Talk

• Analysis-1: Testing Lepton Universality

Phys. Rev. Lett. 125, 241801 (2020) by BaBar Collaboration.

- Analysis-2: Charged Lepton Flavour Violation A journal paper will be submitted in the near future.
- Data and MC Samples
- Analysis Strategy
- Results
- Conclusion

Motivation for the Testing Lepton Universality

$$\Gamma_{\Upsilon \to \ell \ell} = 4\alpha^2 e_q^2 \frac{|\Psi(0)|^2}{M^2} (1 + 2m_\ell^2/M^2) \sqrt{1 - 4m_\ell^2/M^2} \quad (1)$$
$$R_{\tau \mu} = \frac{\Gamma_{\Upsilon \to \tau \tau}}{\Gamma_{\Upsilon \to \mu \mu}} = \frac{(1 + 2m_\tau^2/M^2) \sqrt{1 - 4m_\tau^2/M^2}}{(1 + 2m_\mu^2/M^2) \sqrt{1 - 4m_\mu^2/M^2}} \quad (2)$$

• A CP-odd Higgs boson A^0 would couple more strongly to τ 's and thus have leave		Data sample	On resonance	Off resonance	
a new physics signal in the measurement 1			fb ⁻¹	fb^{-1}	
• A new physics contribution in $b \rightarrow c \tau \nu$ decays to resolve the existing tension in		Run 7 $\Upsilon(3S)$	27.96 = 25.55 + 2.41	2.62	
R(D(*)) measurements will also have a signature in this ratio ²		Run 6 $\Upsilon(4S)$	78.3	7.75	
There is one prior measurement from CLEO ³ at $R_{\tau\mu} = 1.05 \pm 0.08_{stat} \pm 0.05_{sys}$					
• Standard model predicts, after radiative corrections, $R_{\tau\mu} = 0.9948 \pm \mathcal{O}(10^{-5})$	 Blind analysis technique - only 2.41 fb⁻¹ of Υ(3S) on resonance and Υ(3S) and Υ(4S) off resonance data are used to tune selection Υ(3S) off resonance statistic is small, Run 6 Υ(4S) on resonance data with same detector configuration used to get the final result 				
¹ M. A. Sanchis-Lozano, Int. J. Mod. Phys. A 19, 2183(2004) ² D. Aloni <i>et al.</i> , J. High Energ. Phys. 06, 019 (2017) ³ D. Besson <i>et al.</i> (CLEO), Phys. Rev. Lett.98, 052002 (2007).				nce	

Ratio and Systematics

 \blacksquare The full ratio $R_{\tau\mu}$ is calculated from the fit results

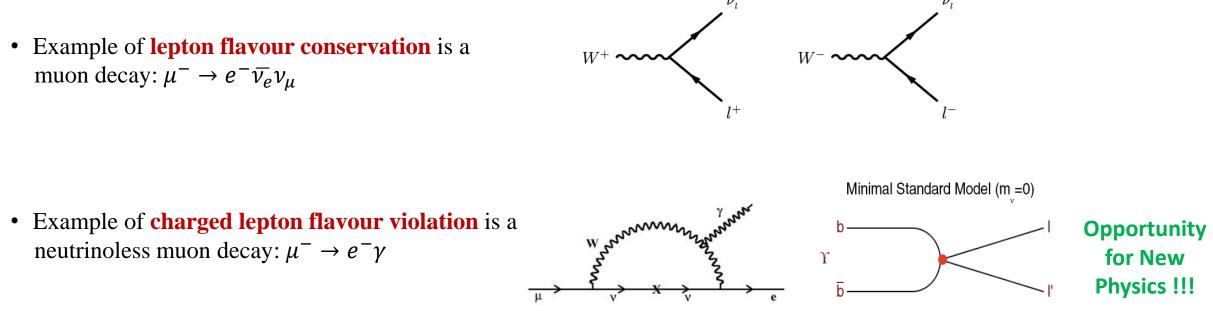
$$R_{\tau\mu} = \tilde{R}_{\tau\mu} \frac{\varepsilon_{\mu\mu}}{\varepsilon_{\tau\tau}} \frac{1}{C_{MC}} (1 + \delta_{BB}) = 0.966 \pm 0.008_{\text{stat}} \pm 0.014_{\text{sys}}$$
(3)

- $\frac{\varepsilon_{\mu\mu}}{\varepsilon_{\tau\tau}}$ accounts for the different event selection efficiencies, ~0.11 • C_{MC} is the data-driven data/MC correction, $\mathcal{O}(1\%)$
- $\delta_{B\bar{B}}$ corrects for a small amount of $B\bar{B}$ in the final selection, $\mathcal{O}(0.4\%)$

Source	Uncertainty(%)
Particle identification	0.9
Cascade decays	0.6
Two-photon production	0.5
$\Upsilon(3S) ightarrow hadrons$	0.4
MC shape	0.4
$B\bar{B}$	0.2
ISR	0.2
Total	1.4

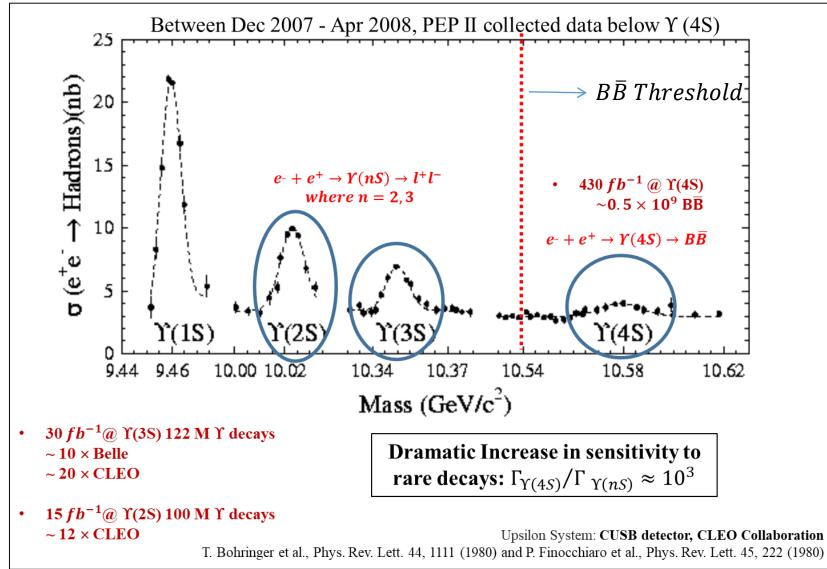
Concluding Remark

■ Using 27.96 fb⁻¹ $\Upsilon(3S)$ data sample with $\Upsilon(4S)$ and off resonance data controls to describe continuum, *BABAR* measures:


 $R_{\tau\mu} = 0.966 \pm 0.008_{\rm stat} \pm 0.014_{\rm sys}$

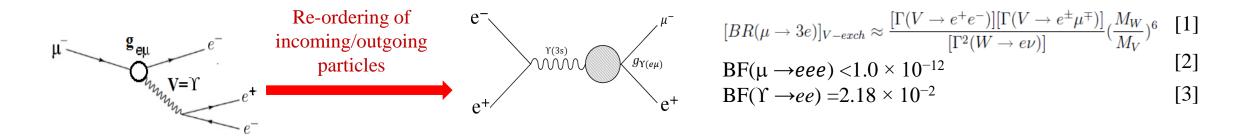
- The methodology described resulted in a measurement 6x more precise than the CLEO measurement
- The final ratio is with 2σ of the SM value of 0.9948

Phys. Rev. Lett. 125, 241801 (2020) BABAR Collaboration


Charged Lepton Flavour Violation

- Charged Lepton Flavour Violation is a transition among e, μ, τ that doesn't conserve lepton family number.
- In Standard Model, Lepton Flavour is conserved for zero degenerate \mathbf{v} masses and now we have clear indication that \mathbf{v} 's have finite mass.

- In the charged lepton sector, Lepton Flavor Violation is heavy suppressed in the Standard Model $l_{\alpha} \rightarrow l_{\beta} \approx O(10^{-54})$
- Various BSM models such as Supersymmetry, Compositeness, Heavy neutrino, Leptoquarks, Heavy Z', Anomalous boson Coupling, Higgs/top loops etc. predict CLFV.


Charged Lepton Flavour Violation in Upsilon Decays

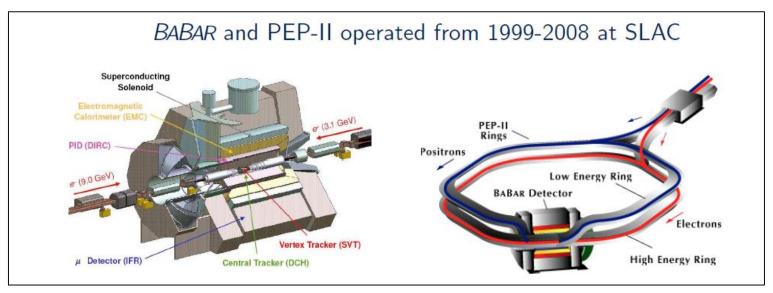
No published experimental measurement of the decay on $\Upsilon(3S) \rightarrow e^{\pm} \mu^{\mp}$ yet!

Theoretical Expectations and Experimental Limit

• S.Nussinov, et. al. estimated that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M^2_{\mu}/(2 M^2_{\Upsilon})$ leading to a recalculated indirect bound: $BF(\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}) < 1 \times 10^{-3}$

Existing Measurements	Results	CL (%)	Collaboration	
$BF(\Upsilon(3S)\to e^\pm\tau^\mp)$	$< 4.2 \times 10^{-6}$	90	LD Loop at al. DD D80 111102	
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 3.1 × 10 ⁻⁶	90	J.P. Lees et al. PR D89 111102 [BaBar Collaboration]	
$BF(\Upsilon(3S) \to \mu^{\pm}\tau^{\mp})$	< 20.3 × 10 ⁻⁶	95	Love et al. PRL 101, 201601 [CLEO Collaboration]	

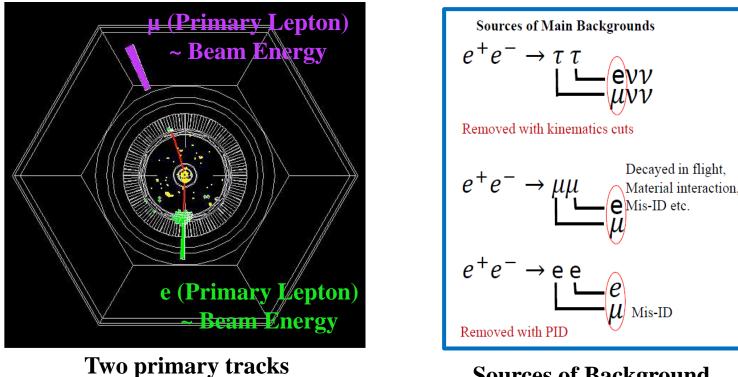
[1] S.Nussinov, et. al. PRD 63 (2001)


[2] Bellgardt, et al., Nucl.Phys. B299 (1988)

7

[3] P.A. Zyla et al. (Particle Data Group)

• We report a limit several orders of magnitude more sensitive than this indirect limit.


Data, MC Sample

On resonance (fb ⁻¹)	Off resonance (fb ⁻¹)
27.9 = 27.0 + 0.93	2.62
	To validate the systematic study
78.31	7.75
Systematic study	To validate the systematic study
pre-selected as $e^{\pm}\mu^{\mp}$ and $\mu^{\pm}\mu^{\mp}$	
	27.9 = 27.0 + 0.93 78.31

MC signal: $e^+e^- \rightarrow \Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: 103000 events

Signal and Background Characteristics

Sources of Background

• $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$: Required two primary track signal of e^{\pm} and μ^{\mp}

• CM Momentum:
$$P_{e^{\pm}} \sim \frac{\sqrt{s}}{2}$$
 and $P_{\mu^{\pm}} \sim \frac{\sqrt{s}}{2}$

Analysis Scheme

- Blind Analysis: To eliminate experimenter's bias.
- **Pre-Selection:** Needs a special background filter to collect $e^{\pm}\mu^{\mp}$ events efficiently.
- Final Selection by the analyst: Applied on the pre-selected events
- **PID Selection:** Multivariate Technique applied, tested 16 different PID selectors.
- Optimized Electron and Muon selectors: $\frac{\varepsilon_{e\mu}}{\sqrt{(1+N_{BG})}}$ where

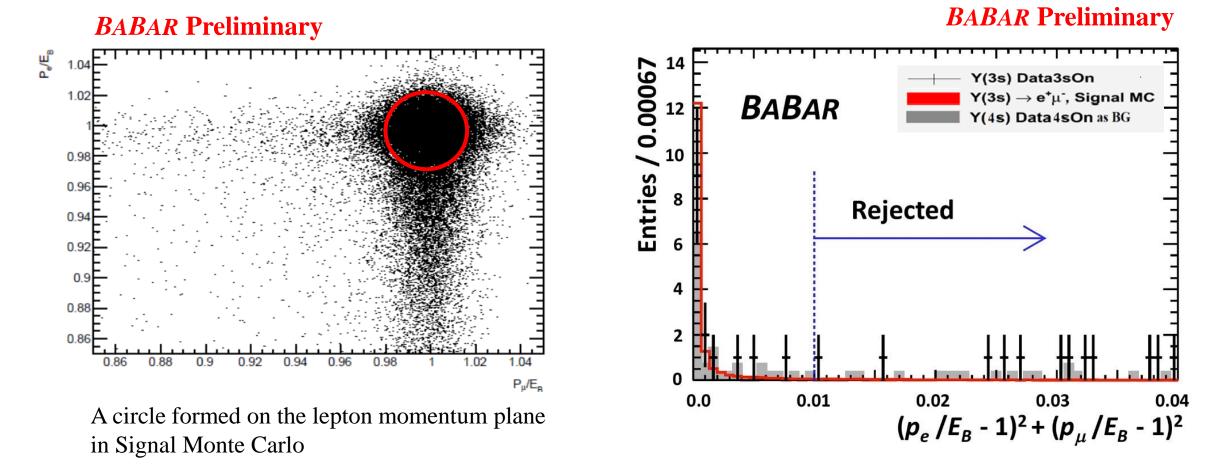
 $\varepsilon_{e\mu}$ is the final efficiency as determined by signal MC and

 N_{BG} is the number of expected background events

Final Selection:

2 tracks (1 electron and 1 muon in the final state), one in each hemisphere;

 $24^{\circ} < \theta_{Lab} < 130^{\circ}$ EMC acceptance for both tracks.

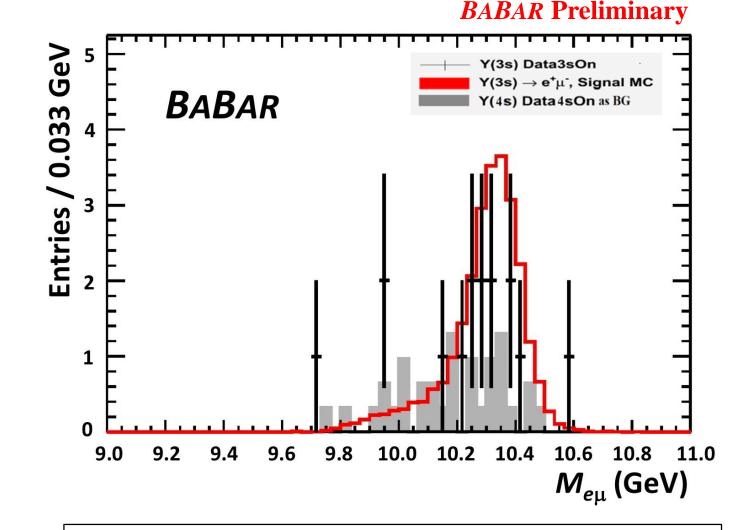

The lepton momenta must satisfy the following condition

$$\left(\frac{p_e}{E_{Beam}} - 1\right)^2 + \left(\frac{p_{\mu}}{E_{Beam}} - 1\right)^2 < 0.01 \text{ where } E_{Beam} = \frac{\sqrt{s}}{2}$$

Angle between the two lepton tracks must satisfy $\theta_{12}^{CM} > 179^{\circ}$ to ensure they emerged as back to back.

Energy deposit by Muon track on the Electromagnetic Calorimeter should be greater than 50 MeV.

Selection Criteria in (N-1) plots



Selection Criteria: The lepton momenta must satisfy the following condition which is defining a circle of radius $\left(\frac{p_e}{E_B}-1\right)^2 + \left(\frac{p_{\mu}}{E_B}-1\right)^2 < 0.01$ where $E_B = \frac{\sqrt{s}}{2}$

Invariant Mass of $e^{\pm}\mu^{\mp}$

Mass distribution of $e^{\pm}\mu^{\mp}$ **before applying any user defined selection** criteria, Only preselection criteria has been applied on the 3% preunblinded data.

Mass distribution of $e^{\pm}\mu^{\mp}$ after all selection criteria are applied

Summary: Background, Uncertainty, Candidate

Source of Background	Data Driven Continuum Background <i>Y</i> (4S)	Peaking Background from Generic Y(3S) MC
Tight PID selection	12.2 ± 2.1 (actual number of events seen 34 in 78 fb ⁻¹)	0
Loosen PID selection	N/A	1.80 ± 0.9 (actual number of events seen 34 in 61.44 fb ⁻¹)
Values		Uncertainties BABAR Preliminary
Equa (systemati	ics)	

ε_{SIG} (systematics)	
• In the "Lepton Momentum" cut	0.029 (2.9%)
• In the "Back to back" cut	0.011 (1.1%)
• In all other cuts on the "Side bands"	0.012 (1.2%)
$\varepsilon_{\rm SIG}$ (total)	$\begin{array}{l} 0.2342 \pm (0.0077_{SYST} \pm 0.0013_{STAT}) \\ 0.2342 \pm 0.0078_{TOTAL} \ (3.3\%) \end{array}$
$N_{\Upsilon} (27.0 \text{ fb}^{-1})$	$(117.7 \pm 1.18) \times 10^{6} (1.02\%)$ [Phys. Rev. Lett. 104, 151802.(2010).]
Total Background (equivalent to 27.0 fb ⁻¹)	12.2 ± 2.3 (18.9%)
Candidate Seen in Data Sample	15

Results on Lepton Flavour Violating Decays

BABAR Preliminary

- Data: $(27.0 \, f b^{-1})$
- Branching Fraction:

$$\frac{N_{\text{Candidate}} - N_{BG}}{\varepsilon_{sig} \times N_{\Upsilon}} \qquad (1.0 \pm 1.4_{stat(N_{Candidate})} \pm 0.8_{syst}) \times 10^{-7}$$

• Upper Limits with Confidence Level of 90%:

 $< 3.6 \times 10^{-7}$ CLs Method

[J.Phys.G 28 (2002) 2693-2704]

New Physics on Lepton Flavour Violating Decays BABAR Preliminary

- Lepton flavour violating decays are predicted by many beyond SM processes. Thus a clear experimental signature = "New Physics"
- A measurement of BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) can be used to place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavour violation.

where, $\frac{g_{NP}^2}{\Lambda_{NP}} = \frac{\text{effective coupling of the new physics}}{\text{energy scale of the NP, given by the mass of the NP propagator.}}$

• Place constraints on $\frac{g^2_{NP}}{\Lambda_{NP}}$ of new physics processes that include lepton flavor violation using **BF**(Υ (**3S**) $\rightarrow e^{\pm}\mu^{\mp}$) < **3.6** × **10**⁻⁷ @90%CL

$$\left(\frac{g_{NP}^2}{\Lambda_{NP}}\right)^2 / \left(\frac{4\pi\alpha_{QED}Q_b}{M_{\Upsilon(3S)}}\right)^2 = \frac{BF(\Upsilon(3S) \to e\mu)}{BF(\Upsilon(3S) \to \mu\mu)}$$
$$\Lambda_{NP}/g_{NP}^2 \ge 80 \,\text{TeV} @90\% \,\text{CL}$$

Conclusion

• This is the first reported experimental upper limits on $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$

$$\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp} < 3.6 \times 10^{-7} @ 90\%$$
 C.L. BABAR Preliminary

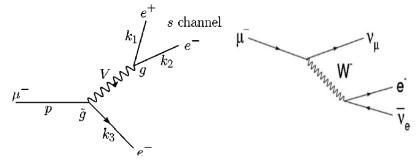
- Our reported result is several orders of magnitude lower than this limit according to the ref [S.Nussinov, et. al. PRD 63, 016003 (2001)].
- This result can be interpreted as a limit on NP: $\Lambda_{NP}/g_{NP}^2 \ge 80 \,\mathrm{TeV}$ **BABAR Preliminary**
- A journal paper will be submitted in the near future.
- Thanks to my BaBar and PEPII Colleagues for providing support for this analysis.

Thanks

Back up: Theoretical Upper limit (Indirect)

Nussinov, Peccei, Zhang [1]

- Assume coupling of Υ to eµ looks like: $L_{eff} = gV_{e\mu}\bar{\mu}\gamma_{\alpha}eV^{\alpha}$
- Through Fig 1. this coupling contributes to $A (\mu \rightarrow 3e)$


$$A(\mu \to 3e) = (\bar{u}_{\mu}(p)\gamma^{\alpha}u_{e}(k_{3}))(\bar{v}_{e}(k_{1})\gamma_{\alpha}u_{e}(k_{2}))\frac{g_{V_{e\mu}}g_{V_{ee}}}{M_{V}^{2}-S} \quad ---(1)$$

Since
$$[\Gamma(V \to e^+e^-)] \sim g^2 V_{ee} M_V$$
 and
 $[\Gamma(V \to e^{\pm}\mu^{\mp})] \sim g^2 V_{e\mu} M_V$, while $[\Gamma(W \to e\nu)] \sim g_W^2 M_W$

$$[BR(\mu \to 3e)]_{V-exch} \approx \frac{[\Gamma(V \to e^+e^-)][\Gamma(V \to e^\pm \mu^\mp)]}{[\Gamma^2(W \to e\nu)]} (\frac{M_W}{M_V})^6 \quad ---(3)$$

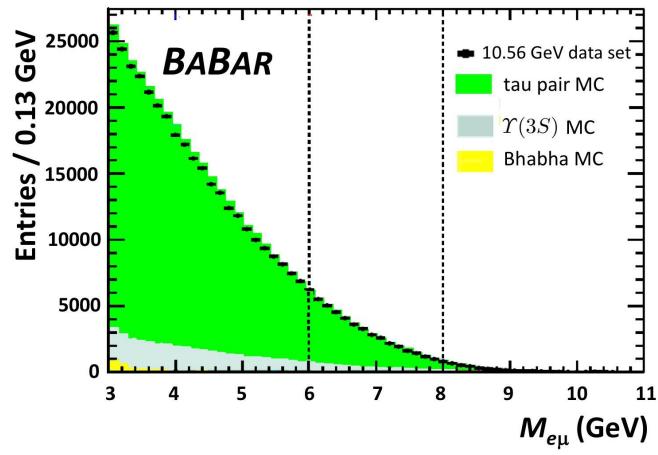
$$\mathrm{BR}(\Upsilon(3S) \to e^\pm \mu^\mp \leq 2.5\,\times\,10^{-8}.$$

S.Nussinov, et. al. estimate that the contribution of the virtual $\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$ to the $\mu \rightarrow eee$ rate would be reduced by approximately $M^2_{\mu}/(2 M^2_{\Upsilon})$ leading to a re-calculated indirect bound: BF($\Upsilon(3S) \rightarrow e^{\pm}\mu^{\mp}$) < 1× 10⁻³

(Left) A vector exchange diagram contributing to $\mu \rightarrow 3e$ (Right) Ordinary muon decay, $\mu \rightarrow ev\bar{v}$, which proceeds via W exchange.

- BF($\mu \rightarrow \text{eee}$) $\leq 1.0 \times 10^{-12}$
- BF($\mu \rightarrow e \nu \bar{\nu}$) $\simeq 100 \%$
- BF(W $\rightarrow e^+ \nu) \simeq (10.71 \pm 0.09) \%$
- $\mathrm{BF}(\Upsilon(3S) \to l^+l^-) \simeq (2.18 \pm 0.21) \%$
- $\Gamma(\Upsilon(3S) = (20.32 \pm 1.85) \ keV$
- $\Gamma(W) = (2.046 \pm 0.049) \ GeV$

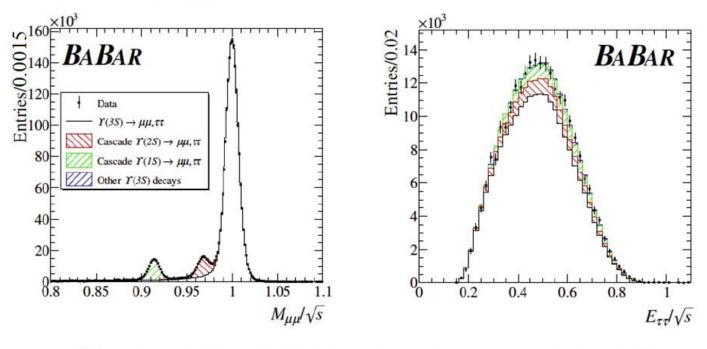
[1] Nussinov, et. al. PRD 63, 016003 (2001)


Back Up: Impact of each component of the selection on the signal efficiency, background and data.

- The first row provides information on the pre-selection.
- The last row provides information after applying all selection criteria.
- Rows 2-7 provides information when all requirements are applied except the criterion associated with the particular row. The luminosity-normalized expected number of events in the third and forth columns are for the background events from the $e^+e^- \rightarrow \Upsilon(3S)$ EvtGen MC and the data-driven continuum background events estimated from the $e^+e^- \rightarrow \Upsilon(4S)$ sample, respectively.
- The last column represented the number of events in the 27.02 fb⁻¹ data sample after unblinding.

Selection	Efficiency	$\Upsilon(3S)$	Continuum	Events
Criterion	$\varepsilon_{e\mu}$	BG	BG	in Data
Pre-Selec.	0.8020	75516	725003	945480
	± 0.0012	± 180	\pm 500	
Optimized	0.5074	5178	320911	358322
PID	± 0.0015	± 49	\pm 333	
2 tracks	0.2354	0	14.1	18
in final	± 0.0013		± 2.2	
state				
Lep. Mom.	0.2684	86.5	253.3	302
	± 0.0012	± 6.3	± 9.4	
Back-to-	0.2402	0.46	36.2	39
back	± 0.0013	± 0.46	± 6.0	
EMC	0.2495	0	13.5	17
Accept.	± 0.0013		± 2.2	
Energy on	0.2452	0	16.9	19
EMC	± 0.0013		± 2.4	
All Criteria	0.2342	0	12.2	15
	± 0.0013		± 2.1	

Back Up: Systematic Uncertainty on Signal Efficiency



- Controlled Sample: A data set where two major cuts were reversed to check the data/MC agreement.
- Disagreement arises due to uncertainties in PID, Tracking, kinematics, trigger etc.
- Uncertainty in "Side Bands": 1.2%

Backup: Results on Lepton Universality

Fit Results, Continuum Fit Subtracted

- $\blacksquare~M_{\mu\mu}/\sqrt{s}$ and $E_{\tau\tau}/\sqrt{s}$ are simultaneously fit using MC and data derived templates
- The free parameters of the fit are the number of $\Upsilon \to \mu^+ \mu^-$ events $(N_{\mu\mu})$, and the ratio $\tilde{R}_{\tau\mu} = N_{\tau\tau}/N_{\mu\mu}$

 $\tilde{R}_{\tau\mu} = 0.10778 \pm 0.00091, N_{\mu\mu} = (2.02 \pm 0.015) \times 10^6$