Phenomenology of top-flavoured dark matter

Monika Blanke

FPCP 2021 June 7, 2021 – Shanghai/Zoom

Why flavoured dark matter?

Unknown DM properties

- coupling to SM particles?
- single particle or entire sector?
- analogy to ordinary SM matter

flavoured?

Assumption:

dark matter carries flavour and comes in multiple copies➤ enough to save the WIMP?

➤ New coupling to quarks:

- q_i SM quarks
- χ_j DM fermion, flavoured
- ϕ coloured scalar mediator
- λ coupling matrix

The idea is not new...

Early studies of flavoured DM

- Flavoured Dark Matter in Direct Detection Experiments and at LHC J. KILE, A. SONI (APRIL 2011)
- Dark Matter from Minimal Flavor Violation B. BATELL, J. PRADLER, M. SPANNOWSKY (MAY 2011)
- Discovering Dark Matter Through Flavor Violation at the LHC J. F. KAMENIK, J. ZUPAN (JULY 2011)
- Flavored Dark Matter, and Its Implications for Direct Detection and Colliders P. Agrawal, S. Blanchet, Z. Chacko, C. Killic (Sep. 2011)
- \bullet Top-flavored dark matter and the forward-backward asymmetry A. KUMAR, S. TULIN (MAR. 2013)
- Flavored Dark Matter and R-Parity Violation B. BATELL, T. LIN, L.-T. WANG (SEP. 2013)

• . . .

common to most studies: Minimal Flavour Violation

Going beyond MFV

MFV

≻ HARMLESS

But not very exciting.

Going beyond MFV

MFV

≻ HARMLESS

But not very exciting.

non-MFV

> DANGEROUS

But interesting if you know how to handle it!

Model building 101

- DM introduced as Dirac fermion χ that carries no gauge quantum numbers, but transforms as $U(3)_{\chi}$ flavour triplet
- coupling to SM quarks via scalar mediator ϕ , carrying the gauge quantum numbers of the respective quark
- phenomenologically: lightest χ flavour (stable, DM) couples dominantly to third generation

b-flavoured: $\lambda_{ij} \phi \bar{d}_R^i \chi^j$ Agrawal, MB, Gemmler (2014) t-flavoured: $\lambda_{ij} \phi \bar{u}_R^i \chi^j$ MB, Kast (2017) bt-flavoured: $\lambda_{ij} \phi \bar{q}_L^i \chi^j$ MB, Das, Kast (2017)

> each (simplified) model has distinct phenomenology

A simplified model of top-flavoured dark matter

Flavoured Dirac-fermionic DM χ_i and couples to right-handed up-type quarks via a coloured scalar mediator MB, KAST (2017)

$$\mathcal{L}_{\rm NP} = i\bar{\chi}\partial\!\!\!/ \chi - m_{\chi}\bar{\chi}\chi + (D_{\mu}\phi)^{\dagger}(D^{\mu}\phi) - m_{\phi}^{2}\phi^{\dagger}\phi - \lambda^{ij}\bar{u}_{Ri}\chi_{j}\phi + \lambda_{H\phi}\phi^{\dagger}\phi H^{\dagger}H + \lambda_{\phi\phi}\phi^{\dagger}\phi\phi^{\dagger}\phi$$

Assumptions:

- Dark Minimal Flavour Violation (DMFV): λ constitutes *the only* new source of flavour violation
- DM is top-flavoured:¹ $m_{\chi_t} < m_{\chi_u}, m_{\chi_c}$

¹see JUBB, KIRK, LENZ (2017) for charm-flavoured dark matter

Consequences of DMFV

Dark matter mass

AGRAWAL, MB, GEMMLER (2014)

- $U(3)_{\gamma}$ symmetry ensures equal mass for all flavours to leading order
- special form of mass splitting at higher order (c. f. MFV)

$$m_{\chi_i} = m_{\chi} (\mathbb{1} + \eta \,\lambda^{\dagger} \lambda + \dots)_{ii}$$

Dark matter stability

• DM stability is guaranteed if DMFV is exact (unbroken \mathbb{Z}_3 symmetry)

Parametrisation of DM-guark coupling

• $U(3)_{\nu}$ symmetry helps to remove 9 parameters

$$\lambda = U_{\lambda} D_{\lambda}$$

 U_{λ} unitary matrix, 3 mixing angles θ_{12} , θ_{13} , θ_{23} and 3 phases real diagonal matrix w/ positive entries D_{λ}

SM

SM

SM

SM

Signatures of flavoured dark matter

Flavour constraints

MB, Kast (2017)

- no impact on K and B meson decays
- contribution to $D^0 \bar{D}^0$ mixing

Constraint from observed relic abundance

• assume DM to be relic of thermal freeze-out

MB, Kast (2017)

 $\frac{D_{\lambda,11}}{20}$

- different freeze-out scenarios
 - quasi-degenerate freeze-out (QDF) $\Delta m_\chi \lesssim 1\%$
 - single-flavour freeze out (SFF) $\Delta m_\chi\gtrsim 10\%$
- annihilation cross-section relates mediator mass m_{ϕ} , DM mass m_{χ} , and DM couplings $D_{\lambda,ii}$
- for fixed mediator mass, smaller DM mass implies larger couplings

D1 22

m_m=850 GeV, m_v=100 GeV

m_φ=850 GeV, m_χ=150 GeV m_φ=850 GeV, m_χ=250 GeV

 m_{ϕ} =850 GeV, m_{χ} =350 GeV m_{ϕ} =850 GeV, m_{χ} =450 GeV

QDF scenario

Constraints from direct detection experiments

• for top-flavoured DM, Z-penguin contribution becomes relevant

➤ realisation of xenophobic DM scenario FENG, KUMAR, SANFORD (2013)

- cancellation between tree-level and Z-penguin contribution requires non-zero mixing angle θ_{13}
- for future experiments, cancellation not sufficiently effective for all xenon isotopes
 - ➤ upper bound on coupling

MB, Kast (2017)

Phenomenological sweet-spots

0.8 SFF 0.6 $\Delta_{12} = |D_{\lambda,11} - D_{\lambda,22}|$ $(\frac{i}{\theta})$ uis $\Delta_{13} = |D_{\lambda_{11}} - D_{\lambda_{33}}|$ Δ23=IDA 22-DA 33 0.2 0.0 0.5 10 15 20 Δii

MB, KAST (2017)

identification of phenomenologically viable sweet-spots in parameter space then to be used as benchmark scenarios for an in-depth analysis of LHC signatures

Experimental constraints from

- flavour physics
- DM relic abundance
- DM direct detection
- place stringent limits on the model

Benchmark scenarios for LHC studies

· 0 005
$\sin \theta_{13} = 0.25$
1.0 $\theta_{12} = \theta_{23} = 0$
$\sin \theta_{13} = 0.2$
$0.2 \theta_{12} = \theta_{23} = 0$

- representative benchmarks describing different DM freeze-out scenarios
- two free parameters in each benchmark scenario: mediator mass m_{ϕ} , coupling $D_{\lambda,11}$
- CP phases δ_{ij} irrelevant for our study and hence set to 0

MB, PANI, POLESELLO, ROVEDI (2020)

Top-flavoured dark matter at the LHC

- mediator pairs abundantly produced through QCD interactions and *t*-channel DM exchange
 most stringent constraints
- signatures similar to SUSY squarks

$$t\bar{t} + E_T \qquad jj + E_T$$

- ➤ recast existing LHC searches
- relative rates of different final states depend on DM flavour structure

MB, Kast (2017) MB, Pani, Polesello, Rovedi (2020)

MB, PANI, POLESELLO, ROVEDI (2020)

- sensitivity depends on overall coupling strength
- weaker limits in QDF scenario (approx. equal couplings)
- thermal relic scenario still viable in SFF scenario

Single-top signatures of top-flavoured dark matter

Top-flavoured DM also induces flavour-violating final states:

MB, PANI, POLESELLO, ROVEDI (2020)

(HL-)LHC reach for single-top final states

Dedicated single-top searches

MB, Pani, Polesello, Rovedi (2020)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario

(HL-)LHC reach for single-top final states

Dedicated single-top searches

MB, Pani, Polesello, Rovedi (2020)

- cover additional parameter space
- probe thermal freeze-out in SFF scenario
- have significant discovery reach at the HL-LHC

Top-flavoured dark matter going Majorana

In our simplified model, DM flavour triplet is assumed to be a gauge singlet Dirac or Majorana fermion? (analogy to RH neutrinos)

Switching from Dirac to Majorana DM: "That's one small step for a Lagrangian – one giant leap for phenomenology."

N. Armstrong (1969)

LHC constraints on top-flavoured Majorana DM

Observation

ACAROGLU, MB (IN PREP.)

In contrast to SUSY and Dirac DM, bounds are strongest when $m_{\chi} \neq 0!$

LHC smoking gun: Same-sign di-tops+ $\not\!\!\!E_T$

- Majorana mass term for χ allows for contributions from additional diagrams
- *uu* initial state enhanced by valence quark PDFs
- ➤ final states with same-sign quarks

- top charge-sign can be determined in semi-leptonic top decays
- essentially background-free
- $\mathcal{O}(\mathbf{fb})$ cross-sections predicted for $tt + \not\!\!\!E_T$
- ➤ dedicated search highly motivated

ACAROGLU, MB (IN PREP.)

... and new physics in charm?

Dirac case:

MB, KAST (2017)

experimental constraints on $D^0 - \bar{D}^0$ mixing exclude significant contributions to rare and CP-violating D decays

Majorana case:

Acaroglu, MB (in prep.)

additional "crossed box" contributions lead to partial cancellation of NP contributions to $D^0-\bar{D}^0$ mixing

➤ more space left for significant NP contributions in charm

see Altmannshofer, Primulando, Yu, Yu (2012)

$\Delta A_{\mathsf{CP}} - \mathsf{CP}$ violation in D decays

$$\Delta A_{\mathsf{CP}} = A_{\mathsf{CP}}(D \to K^+ K^-) - A_{\mathsf{CP}}(D \to \pi^+ \pi^-)$$

- measures direct CP violation in D decays
- LHCb 2019: ∆A^{dir,exp}_{CP} = (-15.7 ± 2.9) · 10⁻⁴
 ➤ discovery of CP violation in charm
- SM prediction challenging due to hadronic long-distance effects
 > naive estimate: ΔA^{dir,SM}_{CP} ~ O[(α_s/π)(V_{ub}V^{*}_{cb})/(V_{us}V^{*}_{cs})] ~ 10⁻⁴
 > light-cone sum-rule prediction: ΔA^{dir,LCSR}_{CP} = (2.0 ± 0.3) · 10⁻⁴
 KHODJAMIRIAN, PETROV (2017)
- > New physics in ΔA_{CP}^{dir} ?

Top-flavoured DM in $\Delta A_{\mathsf{CP}}^{\mathsf{dir}}$

top-flavoured DM contributes to $D \to K^+K^-, \pi^+\pi^-$ decays via gluon penguins

phenomenologically viable for top-flavoured DM?

large effects found in a minimal Majorana+scalar model

Altmannshofer et al. (2012)

Top-flavoured DM in $\Delta A_{\mathsf{CP}}^{\mathsf{dir}}$

top-flavoured DM contributes to $D \rightarrow K^+K^-, \pi^+\pi^-$ decays via gluon penguins

large effects found in a minimal Majorana+scalar model

Altmannshofer et al. (2012)

ACAROGLU, MB (IN PREP.)

Take-home messages

Top-flavoured dark matter

- can reconcile WIMP hypothesis thanks to non-trivial flavour structure
- induces LHC single-top signatures as promising future search channels
- Majorana case: predicts smoking gun same-sign di-top+#_T signature & explains measured CP violation in charm

