

CKM Phase Measurements in B decays (Belle II and LHCb)

On behalf of the Belle II and LHCb collaborations

Wenbin Qian

University of Chinese Academy of Sciences

2021/06/10

Conference on Flavor Physics and CP Violation (FPCP2021)

Fudan University, Shanghai, China

Outline

• Introduction

• Recent highlights on CKM angle γ measurements

• Status of β and α measurements

• New physics hunting with ϕ_s

• Conclusion

Fundamental questions on CP violation

- CP violation in SM is described by CKM mechanism
- Can explain all experimental results
- However, matter-antimatter asymmetry offered by CKM mechanism orders of magnitude smaller than observed in Universe (Why human beings exist?)
- New CP violation mechanism needed: what are they?
- Precision test of CKM mechanism

CKM Physics

$$V_{\text{CKM}} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- A single complex phase in CKM matrix generate CP violation
- With unitary condition, four parameters can describe the matrix

$$A \sim 0.8$$
, $\lambda \sim 0.2$, $\rho \sim 0.15$, $\eta \sim 0.35$

- Triangles from unitary condition
- All well crossed a single point, though still space for New Physics;
- New particles/forces can modify the picture
- Precision needed to see them

2021/06/10

4

Precision test at flavor sector

• Sensitive to New Physics scale much higher than direct search: 1-10⁴ TeV

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \sum \frac{c_i^{(d)}}{\Lambda^{(d-4)}} O_i^{(d)} (\text{SM fields}).$$

• Statistics or precision is key for flavor program: New Physics scale, i.e. Dim = 6, proportional to $\sqrt[4]{statistics}$ or $1/\sqrt{Uncertainty}$,

Unitary constrain with and without angles

• Most famous triangle: (*db*) quarks

$$\begin{split} \beta &= \phi_1 = \arg \bigg(- \frac{V_{cd} V_{cb}^*}{V_{td} V_{tb}^*} \bigg), \\ \alpha &= \phi_2 = \arg \bigg(- \frac{V_{td} V_{tb}^*}{V_{ud} V_{ub}^*} \bigg), \\ \gamma &= \phi_3 = \arg \bigg(- \frac{V_{ud} V_{ub}^*}{V_{cd} V_{cb}^*} \bigg). \end{split}$$

- Comparable sensitivities
- Offer constrains to unitary in different ways (tree, loops etc.)

Angle **y**

$$V_{CKM} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix}$$

- Angle γ is the phase which enters in $b \rightarrow uW^-$
- Indirect measurements give: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$ [CKMfitter19]
- Directly measured through $b \to u$ and $b \to c$ interference with $B \to D^{(*)} K^{(*)}$ etc., theoretically clean [JHEP 1401 (2014) 051]

Probe γ in different methods

Two-body D decays

• GLW/ADS measurements now performed with LHCb full Run1+Run2 data, for

 $B \rightarrow DK$, $D\pi$ and partially reconstructed $B \rightarrow D^*K$, $D^*\pi$

Three-body D decays

BPGGSZ (GLW/ADS over Dalitz plot) measurements now performed with LHCb

full Run1+Run2 data, for $B \rightarrow DK$, $D \rightarrow Ks\pi\pi$, KsKK

JHEP 02 (2021) 169

Combination between the two

- Good agreement between the two modes (expected)
- Much better sensitivity when combined \rightarrow key feature for γ measurements
- Important to add more channels and compare between them

New story from B_s decays

JHEP 03 (2021) 137

- $b \rightarrow u$ and $b \rightarrow c$ interference can also came with B_s mixing
- Measured using LHCb full Run1+Run2 data

$$r = 0.56 \pm 0.05 \pm 0.04 \pm 0.07$$

$$\kappa = 0.72 \pm 0.04 \pm 0.06 \pm 0.04$$

$$\delta \begin{bmatrix} \circ \end{bmatrix} = -14 \pm 10 \pm 4 \pm 5$$

$$\gamma - 2\beta_{s} = 42 \pm 10 \pm 4 \pm 5$$

$$A_{mix}^{f}(t) = \frac{N_{f}(t) - \bar{N}_{f}(t)}{N_{f}(t) + \bar{N}_{f}(t)} = \frac{\bar{N}_{f}(t) - N_{f}(t)}{\bar{N}_{f}(t) + N_{f}(t)}$$

Mixing parameter

Together with $B_s^0 \rightarrow D_s^- \pi^+$, yields the most precise determination of oscillation frequency!!! Better precision from lattice needed

See Michele Veronesi's talk for details

• Mass eigenstates different from flavor eigenstates: Δm_s

- Now precision mainly from B⁺ decays, large potential from other b hadrons
- New average on γ from LHCb: $\gamma = (67 \pm 4)^\circ$, compared to 14° in B-factories
- Also now much closer to indirect determination: $\gamma = (65.7^{+1.0}_{-2.5})^{\circ}$

Belle II starts to see signals

- Signal enhanced with $M_{bc} = \sqrt{E_{beam}^2 (P_B c)^2} > 5.27 \text{ GeV/c}^2$
- PID enhanced and clear BPGGSZ channel seen

S. Sandilya@ Moriond QCD 21

~63 fb⁻¹

- Sensitivities on $\sin 2\beta$ driven by $B \rightarrow \operatorname{charmonium} + K_{s,L}^0$: 0.699 \pm 0.017 (HFLAV)
- $b \rightarrow c \bar{u} d$ penguin free
- Two fold ambiguity solved using $B^0 \to Dh^0$, $D \to K_S^0 h^+ h^-$ decays

Belle II warms up on β measurements

- $B^0 \rightarrow J/\psi K_L^0$ provides additional information on β
- K_L^0 reconstructed using K_L^0 and μ detector
- Very good purity

S. Sandilya@ Moriond QCD 21

Angle α and related

HFLAV

- Obtained using Isospin analyses of $B \rightarrow \pi\pi, \rho\pi, \rho\rho$ systems
- Current precision: $(85.2^{+4.8}_{-4.3})^{\circ}$

CP violation measurements in $B_{(s)} \rightarrow h^+ h^-_{\text{JHEP 03(2021) 075}}$

- $B^0 \rightarrow \pi^+\pi^-$: inputs for α measurements
- $B_s^0 \to K^+K^-$: U spin analysis with $B^0 \to \pi^+\pi^-$ offering $-2\beta_s$ and γ
- $B^0 \to K^+\pi^-$: inputs to understand $B \to K\pi$ puzzle, see William Parker's talk for details
- Now performed with 1.9 fb⁻¹ of LHCb Run2 data

Combining with LHCb Run1 results:

$C_{\pi\pi}$	=	-0.320	\pm 0.038,
$S_{\pi\pi}$	=	-0.672	\pm 0.034,
$A^{B^0}_{C\!P}$	=	-0.0831	\pm 0.0034,
$A_{C\!P}^{B_s^0}$	=	0.225	\pm 0.012,
C_{KK}	=	0.172	\pm 0.031,
S_{KK}	=	0.139	\pm 0.032,
${\cal A}_{KK}^{\Delta\Gamma}$	=	-0.897	± 0.087

First observation of time-dependent CP violation in B_s^0 decays!

Belle II warms up: α measurement

- $B^0 \to \pi^0 \pi^0$ driven α sensitivity with $B \to \pi \pi$ system
- $\mathcal{B}(B^0 \to \pi^0 \pi^0) \times 10^6 = (1.83 \pm 0.21 \pm 0.13) \text{ (BaBar)}, (1.31 \pm 0.19 \pm 0.18) \text{ (Belle)}$
- Some predictions

 $Br(B^{0} \to \pi^{0}\pi^{0}) = [0.23^{+0.08}_{-0.05}(\omega_{b})^{+0.05}_{-0.04}(f_{B})^{+0.04}_{-0.03}(a_{2}^{\pi})] \times 10^{-6}, \quad \text{PRD 90 (2014) 014029}$ $\mathcal{B}(B_{d} \to \pi^{0}\pi^{0})|_{\text{PMC}} = \left(0.98^{+0.44}_{-0.31}\right) \times 10^{-6}, \quad \text{PLB 749 (2015) 422}$ $Br(\bar{B}^{0}(B^{0}) \to \pi^{0}\pi^{0}) = (1.17^{+0.11}_{-0.12}) \times 10^{-6}. \quad \text{PRD 95 (2017) 034023}$

• Tensions seen and Belle II is approaching to solve that

Candidates per 0.002 GeV/c² **70**⊢ Data Belle II (preliminary) Data Candidates per 0.035 GeV Belle II (preliminary) 50 — Total fit — Total fit L dt = 62.8 fb⁻¹ L dt = 62.8 fb⁻¹ **60** $\cdot B^0 \rightarrow \pi^0 \pi^0$ $\cdots B^0 \rightarrow \pi^0 \pi^0$ Continuum ---- Continuum 40 **50**È BB BB 40 30 30 20 20 10 10 _0⊑___ 5.26 -0.2-0.10.1 0.2 5.27 5.275 5.28 5.265 5.285 5.29 $\Delta E (GeV)$ M_{hc} (GeV/c²) S. Sandilya@ Moriond QCD 21

2021/06/10

 $\sim 63 \text{ fb}^{-1}$

Belle II warms up: α measurement

- Rediscovery of $B^0 \rightarrow \rho^+ \rho^0$ •
- $\mathcal{B}(B^0 \to \rho^+ \rho^0) = (20.6 \pm 3.2 \pm 4.0) \times 10^{-6}$, $f_L = 0.936^{+0.049}_{-0.041} \pm 0.021$ can already be achieved!

Generic B Longitudinal Transverse Continuum

21

New physics hunting in ϕ_s

- Analogous triangle from unitary conditions, but with (*sb*) quarks instead of (*db*) quarks
- Triangle squeezed, thus β_s very small
- Sensitive to new physics in loop

•
$$\phi_s^{\text{meas.}} = -2\beta_s + \Delta\phi_s^{\text{peng}} + \delta^{\text{NP}}$$

SM prediction for $-2\beta_s$: -0.03696 ± 0.0004 [CKMfitter] Well under control with $B_s^0 \to J/\psi \overline{K}^{*0}$ and $B^0 \to J\psi \rho^0$

Status of $\phi_s^{c\overline{c}s}$

- Tensions seen between measurements for Γ_s and $\Delta\Gamma_s$, scale factors on errors applied: 2.5 and 1.77, respectively
- $B_s^0 \rightarrow J/\psi \phi$: CDF, D0, ATLAS, CMS, LHCb
- LHCb: $B_S^0 \to J/\psi K^+ K^-$, $m(K^+ K^-) > 1.5 \text{ GeV}$, $B_S^0 \to J/\psi \pi^+ \pi^-$, $B_S^0 \to \psi(2S)\phi$, $D_S^+ D_S^-$ [JHEP 08 (2017) 037, Phys. Lett. B797 (2019) 134789, Phys. Lett. B762 (2016) 253, Phys. Rev. Lett. 113 (2014) 211801]
- Average: $\phi_s^{c\bar{c}s} = -0.050 \pm 0.019$, SM prediction for $-2\beta_s$: -0.03696 ± 0.0004

2021/06/10

HFLAV

New stories of $\phi_s^{c\overline{c}s}$ measurements

- Reconstructed using $B_s^0 \to J/\psi(e^+e^-)\phi$ using LHCb Run1 data (3 fb⁻¹)
- Zero (a), one (b) or both electrons (c) with bremsstrahlung correction

New stories of $\phi_s^{c\overline{c}s}$ measurements

LHCb-PAPER-2020-042

- Full time-dependent angular analysis performed to disentangle CP states
- ϕ_s measured to be 0.00 \pm 0.28 \pm 0.05 rad, consistent with other results

Future data taking plans

See LHCb upgrade talk from Sheldon Stone, Belle II status from Minakshi Nayak

CKM angle potential in near future

Observable	LHCb 2025	Belle II (2025)	> 2030
γ/φ ₃	1.5°	1.5°	<0.35°
Sin2 β /sin2 ϕ_1	0.011	0.005	<0.003
α/ϕ_2	-	1.5°	-
ϕ_s , with $B_s^0 \to J/\psi \phi$	14 mrad	-	4 mrad
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	35 mrad	-	9 mrad
$\phi_s^{sar{s}s}$, with $B_s^0 o\phi\phi$	39 mrad	-	11 mrad

Belle II Physics Book LHCb upgrade II physics case

CKM triangles in two decades

- With assumptions on improvements on lattice
- Central values at current fit values

See V_{cb} , V_{ub} talk from Michel De Cian

Conclusion

2021/06/10

29