Theory of FCNC Semileptonic **B** Decays

Thomas Mannel

Center for Particle Physics Siegen Theoretische Physik I University of Siegen

Particle Physics Phenomenology after the Higgs Discovery

э.

Flavor Physics and CP Violation FPCP 2021, Shanghai June 7th, 2020

Introduction

A few words on the motivation:

- Historically: FCNC processes played an important role in the construction of the Standard Model (SM)
- Currently: FCNC Processes are throught to provide a good window to beyond SM (BSM) physics
- Semileptonic processes such as b → sℓ⁺ℓ⁻ provide many different observables
- $b \rightarrow s$ transitions have measurable rates in the SM
- ... and are (to some extend) tractable from the theory side
 - Effective Field Theory approach
 - Hadronic matrix elements, local and non-local
 - Effects from BSM physics

Contents

2 Hadronic Inputs

Beyond the Standard Model

We focus on $b \rightarrow s$ transitions

T. Mannel, Siegen University Theory of FCNC Semileptonic *B* Decays

イロト イボト イヨト イヨト

Effective Field Theory: Weak Effective Theory (WET)

Starting point: Effective Hamiltonian

$$O_1 = (\bar{b}_{L,i}\gamma_{\mu}q_{L,i})(\bar{q}_{L,j}\gamma^{\mu}s_{L,j}) \ (q = u, c)$$

$$O_2 = (\bar{b}_{L,i}\gamma_{\mu}q_{L,j})(\bar{q}_{L,j}\gamma^{\mu}s_{L,i}) \ (q = u, c)$$

$$\begin{split} O_3 &= (\bar{b}_{L,i}\gamma_{\mu}s_{L,i})\sum_q (\bar{q}_{L,j}\gamma^{\mu}q_{L,j})\\ O_4 &= (\bar{b}_{L,i}\gamma_{\mu}s_{L,j})\sum_q (\bar{q}_{L,j}\gamma^{\mu}q_{L,i})\\ O_5 &= (\bar{b}_{L,i}\gamma_{\mu}s_{L,i})\sum_q (\bar{q}_{R,j}\gamma^{\mu}q_{R,j})\\ O_6 &= (\bar{b}_{L,i}\gamma_{\mu}s_{L,j})\sum_q (\bar{q}_{R,j}\gamma^{\mu}q_{R,i}) \end{split}$$

$$\mathcal{H}_{ ext{eff}} = rac{\mathcal{G}_{\mathcal{F}}}{\sqrt{2}} \lambda_{ ext{CKM}} \sum_{i} \mathcal{C}_{i} \mathcal{O}_{i}$$

$$O_{7} = \frac{e}{16\pi^{2}} m_{b}(\bar{b}_{R,i}\sigma_{\mu\nu}s_{L,i})F^{\mu\nu}$$

$$O_{8} = \frac{g_{s}}{16\pi^{2}} m_{b}(\bar{b}_{R,i}\sigma^{\mu\nu}T^{a}s_{L,i})G^{a}_{\mu\nu}$$

$$O_{7}' = \frac{e}{16\pi^{2}} m_{s}(\bar{b}_{L,i}\sigma_{\mu\nu}s_{R,i})F^{\mu\nu}$$

$$O_{8}' = \frac{g_{s}}{16\pi^{2}} m_{s}(\bar{b}_{L,i}\sigma^{\mu\nu}T^{a}R_{L,i})G^{a}_{\mu\nu}$$

$$O_9 = (\bar{b}_{L,i}\gamma_{\mu} s_{L,i})(\bar{\ell}\gamma^{\mu}\ell)$$
$$O_{10} = (\bar{b}_{L,i}\gamma_{\mu} s_{L,i})(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$$

The Wilson Coefficients C_i...

- ... are computed by matching the SM to WET
- ... at the scale $\mu = M_W \sim M_Z \sim m_t$
- ... depend thus on m_t^2/M_W^2 (some of them)
- ... are known in the SM at least to NLO, including RG improvement.

The EFFTh approach is flexible, i.e it can incorporate also BSM effects!

Problem: How to compute $\langle B|H_{\rm eff}|K^{(*)}\ell^+\ell^-\rangle$?

イロン 不得 とくき とくきと

- 31

T. Mannel, Siegen University Theory of FCNC Semileptonic *B* Decays

Hadronic matrix elements

Decay Amplitude for $B \to K^{(*)}\ell\ell$ (Schematically):

$$\mathcal{A}(B
ightarrow \mathcal{K}^{(*)}\ell\ell) = \mathcal{N}\left[(C_9 L_V^\mu + C_{10} L_A^\mu) \mathcal{F}_\mu - rac{L_V^\mu}{s} (C_7 \mathcal{F}_{\mathcal{T},\mu} + \mathcal{H}_\mu)
ight]$$

Hadronic matrix elements are the limiting factors for precise predictions!

• Local matrix elements: Form factors ($M = K, K^*$):

$$\mathcal{F}^{B o M}_{\mu}(k,q) \equiv \langle M(k) | \bar{s} \gamma_{\mu} P_L \, b | \bar{B}(q+k)
angle \; ,$$

$$\mathcal{F}^{B o M}_{T,\mu}(k,q) \equiv \langle M(k) | \bar{s} \sigma_{\mu\nu} q^{\nu} P_R \, b | \bar{B}(q+k)
angle \; ,$$

•
$$\mathcal{H}^{B \to M}_{\mu}(k,q) \equiv i \int d^4x \, e^{iq \cdot x} \langle M(k) | T\{j^{\rm em}_{\mu}(x), (C_1\mathcal{O}_1 + C_2\mathcal{O}_2)(0)\} | \bar{B}(q+k) \rangle$$

Form Factors

relatively well under control:

- Lattice simulations at high s (i.e. low hadronic recoil)
- Light-cone Sum-rule estimates at *s* ~ 0
- Inter-/Extrapolation using the z expansion

Uncertainty $\sim 10\%$

Non-Local contributions

Related to charm loops

Options for the charm loop:

- Local Expansion for $s \ll m_c^2$ Expansion parameter s/m_c^2 Valid in the pole region (Buchalla, Isidori, Rey 1997, Voloshin 1996)
- Light-Cone expansion for $4m_c^2 s \ll \Lambda_{\rm QCD}^2$ Expansion parameter $\Lambda_{\rm QCD}/\sqrt{4m_c^2 - s}$ Valid for $0 \le s \le 4m_c^2$
- Narrow Resonances: Approximate by $B \rightarrow (J/\psi, \psi') K^{(*)} \rightarrow \ell^+ \ell^- K^{(*)}$ Valid for $4m_c^2 \le s \le M_{\psi'}^2$
- Above $s \leq M_{\psi'}^2$: difficult! (Grinstein, Pirjol, 2004)

This is still the largest source of uncertainties!

Interesting region for hunting anomalies: $0 \le s \le 4m_c^2$ Decompose the non-local matrix element into helicity components

Light Cone OPE for \mathcal{V}_{λ} :

$$\langle 0 | \bar{d}(\mathbf{x}) G_{\alpha\beta}(uy) h_{\nu}(0) | B(\nu) \rangle$$

$$= \frac{f_B m_B}{4} \operatorname{Tr} \left\{ \gamma_5 P_+ \left[\left(v_{\alpha} \gamma_{\beta} - v_{\beta} \gamma_{\alpha} \right) (\mathbf{\Psi}_{\mathbf{A}} - \mathbf{\Psi}_{\mathbf{V}}) - i \sigma_{\alpha\beta} \mathbf{\Psi}_{\mathbf{V}} - \left(y_{\alpha} v_{\beta} - y_{\beta} v_{\alpha} \right) \frac{\mathbf{X}_{\mathbf{A}}}{\nu \cdot y} + \left(y_{\alpha} \gamma_{\beta} - y_{\beta} \gamma_{\alpha} \right) \frac{\mathbf{Y}_{\mathbf{A}}}{\nu \cdot y} \right] \right\} (\mathbf{x}, \mathbf{u} \mathbf{y})$$

(Khodjamirian, M, Pivovarov, Wang 2010)

$$= \frac{f_B m_B}{4} \operatorname{Tr} \left\{ \gamma_5 P_+ \left[\left(v_\alpha \gamma_\beta - v_\beta \gamma_\alpha \right) (\mathbf{\Psi}_{\mathbf{A}} - \mathbf{\Psi}_{\mathbf{V}}) - i \sigma_{\alpha\beta} \mathbf{\Psi}_{\mathbf{V}} - \left(y_\alpha v_\beta - y_\beta v_\alpha \right) \frac{\mathbf{X}_{\mathbf{A}}}{v \cdot y} + \left(y_\alpha \gamma_\beta - y_\beta \gamma_\alpha \right) \frac{\mathbf{W} + \mathbf{Y}_{\mathbf{A}}}{v \cdot y} \right] - i \epsilon_{\alpha\beta\sigma\rho} y^{\sigma} v^{\rho} \gamma_5 \frac{\mathbf{\tilde{X}}_{\mathbf{A}}}{v \cdot y} + i \epsilon_{\alpha\beta\sigma\rho} y^{\sigma} \gamma^{\rho} \gamma_5 \frac{\mathbf{\tilde{Y}}_{\mathbf{A}}}{v \cdot y} - \left(y_\alpha v_\beta - y_\beta v_\alpha \right) y_\sigma \gamma^{\sigma} \frac{\mathbf{W}}{(v \cdot y)^2} + \left(y_\alpha \gamma_\beta - y_\beta \gamma_\alpha \right) y_\sigma \gamma^{\sigma} \frac{\mathbf{Z}}{(v \cdot y)^2} \right] \right\} (\mathbf{x}, \mathbf{u} \mathbf{y})$$

Gubernari, van Dyk, Virto 2020)

Additional contributions up to twist 4

<ロ> < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

E 900

Transition	$ ilde{\mathcal{V}}(q^2=1{ m GeV}^2)$	This work	Ref. [11]
$B \to K$	$\mathcal{ ilde{A}}$	$(+4.9\pm2.8)\cdot10^{-7}$	$(-1.3^{+1.0}_{-0.7})\cdot 10^{-4}$
	$ ilde{\mathcal{V}}_1$	$(-4.4 \pm 3.6) \cdot 10^{-7} {\rm GeV}$	$(-1.5^{+1.5}_{-2.5})\cdot 10^{-4}{ m GeV}$
$B \to K^*$	$ ilde{\mathcal{V}}_2$	$(+3.3\pm2.0)\cdot10^{-7}{ m GeV}$	$(+7.3^{+14}_{-7.9})\cdot 10^{-5}{ m GeV}$
	$ ilde{\mathcal{V}}_3$	$(+1.1\pm1.0)\cdot10^{-6}{ m GeV}$	$(+2.4^{+5.6}_{-2.7})\cdot 10^{-4}{ m GeV}$

This work = Gubernari, van Dyk, Virto 2020, Model for the functions: Braun, Ji Manashov, 2017 Ref[11] = Khodjamirian, M, Pivovarov, Wang 2010, simple exponential model

Factor more than 100! ... Why?

- Cancellations between the various contributions, which was not present in KMPW2010, may be model dependent?
- More recent calculations of the normalization constants of the $\bar{q}Gh_{\nu}$ LCDA

$$egin{aligned} &\lambda_E^2 &\sim &\langle 0 | g_s ar{q} \gamma_0 (ec{\gamma} \cdot ec{E}) \gamma_5 h_{
u} | B(m{v})
angle \ &\lambda_H^2 &\sim &\langle 0 | g_s ar{q} (ec{\sigma} \cdot ec{B}) \gamma_5 h_{
u} | B(m{v})
angle \end{aligned}$$

	Neubert Grozin 96	Nishikawa/Tanaka 14	Rahimi Wald 20
λ_E^2 (GeV ²)	0.11 ± 0.06	$\textbf{0.03} \pm \textbf{0.02}$	0.01 ± 0.01
$\lambda_H^{\overline{2}}$ (GeV ²)	$\textbf{0.18} \pm \textbf{0.07}$	$\textbf{0.06} \pm \textbf{0.03}$	$\textbf{0.11} \pm \textbf{0.02}$
$\lambda_E^2 = \lambda_E^2 (\mu = 1 0)$	GeV), $\lambda_{H}^{2}=\lambda_{H}^{2}(\mu=1~{ m GeV}))$		

• Estimates are based on different! QCD sum rules

Lepton (Flavour) Universality Violation (LFUV)

In the SM:

- LFUV originates exclusively form the different lepton masses!
- For e and μ the power like corrections are (too) small
- QED Corrections from soft and collienar photons depend on m_ℓ
- These induce contributions of the form

$$\frac{\alpha}{\pi} \ln \left(\frac{\Delta^2}{m_\ell^2} \right)$$

- $\bullet\,$ Their size depends on the experimental cut $\Delta\,$
- Controllable!

(a)

For $B \to K^* \ell \ell$:

T. Mannel, Siegen University Theory of FCNC Semileptonic B Decays

Beyond the Standard Model

Current Highlight: "B-Anomalies"

- Partial rates
- Angular Distributions
- Lepton Universality

The EffTh approach is very versatile:

- Modification of Wilson coefficients relative to the SM values
- Additional Operators nor present in the SM
 e.g. Operators with right-handed currents, usually marked with a prime
- ... but it cannot tell you much about the details of BSM physics

э.

T. Mannel, Siegen University Theory of FCNC Semileptonic *B* Decays

Observations from the fit of the Wilson coefficients: (Alguero et al., 2104.08921)

- Viable possibility: Right handed contributions O'_{9} and O'_{10} for muons
- LFU violation with $C_{9,\mu} = -C_{10,\mu}$ requires also LF-universal NP contributions
- Move on to simplified models:

• ... and eventually also to a UV complete theory

→ < ∃ →</p>

Summary: The Landscape of Anomalies

"New" Anomalies:

- Branching ratios of $b
 ightarrow s \, \mu \mu$ processes
- Angular distributions in $b
 ightarrow s \, \mu \mu$ processes
- Ratios of $b \rightarrow s \, ee$ versus $b \rightarrow s \, \mu \mu$
- Ratios of exclusive $b
 ightarrow c au ar{
 u}$ versus $b
 ightarrow c \ell ar{
 u}$

"Old" Anomalies:

- CP Violation: $\Delta a_{\rm CP}$ in Charm and Kaon ϵ'/ϵ
- Exclusive versus inclusive V_{xb}
- Anomalous magnetic moment of the muon

"Brandnew" Anomaly

• Branching ratios of $B_{(s)} o D_{(s)} \{\pi, K\}$ (Huber et al., 2007.10338)

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

Charged Current Semileptonics I: V_{xb}

Charged Current Semileptonics II: $B \rightarrow D^{(*)} \tau \nu$

T. Mannel, Siegen University Theory of FCNC Semileptonic *B* Decays

- Some interesting anomalies are seen in flavour physics
- They seem to be pretty stable, in particular the $b
 ightarrow s\ell\ell$ anomalies
- They seem to hint at NP modifications of some specific Wilson coefficients
- Maybe history repeats and flavour gives us decisive hints on BSM physics
- We need a still better control of hadronic effects!

→