

Results and prospects of charmed baryon physics at BESIII

Pei-Rong Li(李培荣) Lanzhou University

On behalf of the BESIII Collaboration

Outline

Physics related to the charmed baryon

Recent results on Λ_c^+ decays at BESIII

Future prospects

The charmed baryon family

- Singly charmed baryons • Established ground states: $\Lambda_{c}^{+}, \Sigma_{c}, \Xi_{c}, \Omega_{c}$ • Excited states are being explored **Doubly charmed baryons**(Ξ_{cc}^{++}) observed by LHCb experiment. No observations of triply charmed baryons. Λ_{c}^{+} decays only weakly, much recent experimental progress since 2014. $\Sigma_c: B(\Sigma_c \to \Lambda_c^+ \pi) \sim 100\%, B(\Sigma_c \to \Lambda_c^+ \gamma)?$ Ξ_{c} : decays only weakly; no absolute BF measured, most relative to $\Xi^{-}\pi^{+}(\pi^{+})$.
- Ω_c: decays only weakly; no absolute BF measured.

Λ_c^+ : The lightest charmed baryon spectroscopy

- Most of the charmed baryons will eventually decay to Λ_c^+ .
- The Λ_c^+ is one of important tagging hadrons in c-quark counting in the productions at high energy experiment.
- Naïve quark model picture: a heavy quark (c) with an unexcited spin-zero diquark (*u-d*). Diquark correlation is enhanced by weak Color Magnetic Interaction with a heavy quark(HQET).
- Λ⁺_c may reveal more information of strong- and weak-interactions in charm region, complementary to D/Ds

Production near threshold and tag technique

- E_{cms} -2M_{Ac}=26MeV only!
- $\Lambda_c^+ \Lambda_c^-$ produced in pairs with no additional accompany hadrons.
 - $e^+e^- \rightarrow \gamma^* \rightarrow \Lambda^+_c \Lambda^-_c$
- Clean backgrounds and well constrained kinematics.
- Typically, two ways to study Λ_c^+ decays:
 - Single Tag(ST): detect only one of the Λ⁺_cΛ⁻_c.
 =>Relative higher backgrounds
 =>Higher efficiencies
 =>Full reconstruction only
 - Double Tag(DT): detect both of $\Lambda_c^+ \Lambda_c^-$
 - =>Lower backgrounds.
 - =>Technique for missing particle.
 - =>Lower efficiencies.
- =>Systematic in tag side are mostly cancelled. 2021/6/10

Studies on the Λ_c^+ measurments at BESIII

2014: 0.567 fb⁻¹ at 4.6 GeV

- Λ_c^+ hadronic decay
 - $\square BF(\Lambda_c^+ \to \Lambda \eta \pi^+) \qquad : PRD99, 032010 (2019)$
 - $\square BF(\Lambda_{c}^{+} \rightarrow \Sigma^{+} \eta, \Sigma^{+} \eta') \qquad : CPC43, 083002 (2019)$
 - $\square BF(\Lambda_{c}^{+} \to pK_{s}\eta) : PLB 817, 136327 (2021)$
 - $\square BF(\Lambda_c^+ \rightarrow K_s^0 X) \qquad : EPJC \ 80, \ 935 \ (2020)$
 - $\Box \Lambda_c^+ \rightarrow BP$ decay asymmetries : PRD100, 072004 (2019)
 - $\square \Lambda_c^+$ spin determination : PRD 103, L091101 (2021)

$\Lambda_c^+ o \Lambda \eta \pi^+$

- Current world result has large uncertainty
- potential to study intermediate states, such as $a_0(980)$ and $\Lambda(1670)$

Decay	CLEO in 1995	CLEO in 2003	PDG average
$B(\Lambda_c^+ \to \Lambda \eta \pi^+)/B(\Lambda_c^+ \to \mathrm{pK}^- \pi^+)$	$0.35 \pm 0.05 \pm 0.06$	$0.41 \pm 0.17 \pm 0.10$	0.36 ± 0.07
$B(\Lambda_c^+ \to \Lambda \eta \pi^+)$			$(2.3 \pm 0.5)\%$

PRD 99, 032010, (2019)

• branching fraction $B(\Lambda_c^+ \rightarrow \Lambda \eta \pi^+)$ measured to be $(1.84 \pm 0.21 \pm 0.15)\%$

more precise than previous results

• $B(\Lambda_c^+ \rightarrow \Sigma^{*+}\eta)$ measured as $(0.91 \pm 0.08 \pm 0.09)\%$ more precise than the previous result $(1.24 \pm 0.37)\%$

€SII

2021/6/10

$\Lambda_c^+ o \Sigma^+ \eta$, $\Sigma^+ \eta'$

- Decay through internal W-emission and W-exchange.
- Both are non-factorable in theoretical calculation.

- $\Lambda_c^+ \to \Sigma^+ \eta$ is smaller than CLEO but still compatible within uncertainty.
- $\Lambda_c^+ \to \Sigma^+ \eta'$ is measured for first time.
- Our measurement contradict with most theoretical calculations.

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \pi^0)} = 0.35 \pm 0.16 \pm 0.03$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \omega)} = 0.86 \pm 0.34 \pm 0.07$$

$$\frac{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta')}{\mathcal{B}(\Lambda_c^+ \to \Sigma^+ \eta)} = 3.5 \pm 2.1 \pm 0.4$$

Decay mode	Körner [5]	Sharma 3	Zenczykowski [4]	Ivanov [6]	CLEO [12]	This work
$\Lambda_c^+\!\rightarrow\!\Sigma^+\eta$	0.16	0.57	0.94	0.11	$0.70{\pm}0.23$	$0.41{\pm}0.20~({<}0.68)$
$\Lambda_c^+\!\to\!\Sigma^+\eta'$	1.28	0.10	0.12	0.12	-	$1.34{\pm}0.57~({<}1.9)$

 $\Lambda_c^+ \to p K_s \eta$

- Previous CLEO result of $B(\Lambda_c^+ \to pK_s^0\eta) = (0.8 \pm 0.2)\%$, while theoretical calculations based on SU(3) symmetry give (0.35~0.45)%
- A potential channel to study a puzzling N(1535) which has nontrivial decay rate of ηN and $K\Lambda$
- 2D fit to $M_{\rm BC}$ and ΔE distributions is implemented

significance 5.3σ : first observation

2021/6/10

Inclusive decay $\Lambda_c^+ \to K_s^0 X$

- Sum BF for exclusive channels with K^0 or \overline{K}^0 is evaluated to be $(22.4 \pm 0.9)\%$ with inclusion of guessed modes
- Its difference from the inclusive rate $B(\Lambda_c^+ \to K^0/\overline{K}^0 X)$ will help in identifying unknown modes Value (%) Mode

 $M(\pi^+\pi^-)(GeV/c^2)$

Eleven hadronic tag modes are used

M_{BC}(GeV/c²

MeV/c²

 $M(\pi^+\pi^-)(GeV/c^2)$

Signal yields: 478 ± 27

Observed BF		Extrapolated BF	
$p \bar{K}^0$	$3.18{\pm}0.16$	$nar{K}^0\pi^+\pi^0$	$3.07{\pm}0.16$
$par{K}^0\pi^0$	$3.94{\pm}0.26$	$par{K}^0\pi^0\pi^0$	$1.36 {\pm} 0.07$
$par{K}^0\pi^+\pi^-$	$3.20{\pm}0.24$	$nar{K}^0\pi^+\pi^+\pi^-$	$0.14{\pm}0.09$
$n \bar{K}^0 \pi^+$	$3.64{\pm}0.50$	$par{K}^0\pi^+\pi^-\pi^0$	$0.22{\pm}0.14$
$par{K}^0\eta$	$1.60 {\pm} 0.40$	$nar{K}^0\pi^+\pi^0\pi^0$	$0.10{\pm}0.06$
$\Lambda K^+ \bar{K}^0$	0.57±0.11	$par{K}^0\pi^0\pi^0\pi^0$	$0.03{\pm}0.02$
n statistica	al isospin model	$(\Sigma K)^+ \bar{K}^0$	$0.68 {\pm} 0.34$
PRD97, I	16015 (2018)	$\Xi^0 K^0 \pi^+$	$0.62{\pm}0.06$
Total	16.1 ± 0.8	Total	6.3 ± 0.4
Total		22.4 ± 0.9	

Mode

 $B(\Lambda_c^+ \to K_s^0 X) = (9.9 \pm 0.6 \pm 0.4)\%$ $B(\Lambda_c^+ \to K^0/\overline{K}^0 X) = (19.8 \pm 1.2 \pm 0.8 \pm 1.0)\%$

- ^{2.27} ^{2.28} M_{BC} (GeV/c²) third error due to isospin breaking for Λ_c^+ decaying to Ks or K_L in final states
 - compatible with the estimated exclusive rate

a

(C)

M_{BC}(GeV/c²)

Events/(0.58 MeV/c²)

EPJC 80, 935 (2020)

Value (%)

Λ_{c}^{+} decay asymmetries

- Best precisions on the hadronic weak decay asymmetries
- No theoretical models fully describe the new BESIII results
- The transverse polarization is firstly studied and found to be non-zero with 2.1σ

Λ_c^+ spin determination

PRD103, L091101(2021)

- No spin-determination of the Λ_c since first discovery more than 30 years ago
- Currently, the spin half of the Λ_c is inferred to be from the naive quark model
- It would be crucial to test this spin assignment in experiment, to test the quark model hadron classification
- Multi-dimensional angular analysis on the ST samples of $\Lambda_c \rightarrow pK_s$, $\Lambda \pi^+$, $\Sigma^+ \pi^0$ and $\Sigma^0 \pi^+$ are carried out to test both hypotheses of J=1/2 and 3/2

J=1/2 is preferred over J=3/2with a significance of 6σ

- consistent with the expectation of the naive quark model.
- a cornerstone in the extraction of the properties of heavier charmed and beauty baryons

Heavier charmed baryons

4.95 GeV

5.4 GeV

 $\begin{array}{ccc}
\checkmark & \Xi_c & \overline{\Xi}_c \\
\checkmark & \Omega_c^0 \overline{\Omega}_c^0
\end{array}$

	Structure	J^P	Mass, MeV	Width,MeV	Decay
Λ_c^+	udc	$(1/2)^+$	2286.46 ± 0.14	(200 ± 6) fs	weak
Ξ_c^+	usc	$(1/2)^+$	$2467.8^{+0.4}_{-0.6}$	$(442\pm26)~{\rm fs}$	weak
Ξ_c^0	dsc	$(1/2)^+$	$2470.88\substack{+0.34\\-0.8}$	112^{+13}_{-10} fs	weak
Σ_c^{++}	uuc	$(1/2)^+$	2454.02 ± 0.18	2.23 ± 0.30	$\Lambda_c^+\pi^+$
Σ_c^+	udc	$(1/2)^+$	2452.9 ± 0.4	< 4.6	$\Lambda_c^+\pi^0$
Σ_c^0	ddc	$(1/2)^+$	2453.76 ± 0.18	2.2 ± 0.4	$\Lambda_c^+\pi^-$
$\Xi_c^{\prime+}$	usc	$(1/2)^+$	2575.6 ± 3.1	_	$\Xi_c^+ \gamma$
$\Xi_c^{\prime 0}$	dsc	$(1/2)^+$	2577.9 ± 2.9	_	$\Xi_c^0 \gamma$
Ω_c^0	SSC	$(1/2)^+$	2695.2 ± 1.7	(69 ± 12) fs	weak
Σ_c^{*++}	uuc	$(3/2)^+$	2518.4 ± 0.6	14.9 ± 1.9	$\Lambda_c^+\pi^+$
Σ_c^{*+}	udc	$(3/2)^+$	2517.5 ± 2.3	< 17	$\Lambda_c^+\pi^0$
Σ_c^{*0}	ddc	$(3/2)^+$	2518.0 ± 0.5	16.1 ± 2.1	$\Lambda_c^+\pi^-$
Ξ_c^{*+}	usc	$(3/2)^+$	$2645.9^{+0.5}_{-0.6}$	< 3.1	$\Xi_c \pi$
Ξ_{c}^{*0}	dsc	$(3/2)^+$	2645.9 ± 0.5	< 5.5	$\Xi_c \pi$
Ω_c^{*0}	SSC	$(3/2)^+$	2765.9 ± 2.0	_	$\Omega_c^0\gamma$

KSI New data samples in 2020 and 2021

Two major changes in BEPCII machine:

- max beam energy: 2.30→2.35(2018)→ 2.48 GeV(2020)
- **top-up injection:** data taking efficiency increased by 20~30%

Available data for charmed baryons

- ✓ 0.567 fb⁻¹ at 4.6 GeV (35 days in 2014)
- ✓ 3.8 fb⁻¹ scan at 4.61, 4.63, 4.64, 4.66, 4.68, 4.7 GeV (186 days in 2020)
- ✓ 2 fb⁻¹ scan at 4.74, 4.78, 4.84, 4.91, 4.95 GeV (99 days in 2021)
- $10 \times \Lambda_c$ data that those at 4.6GeV.
- accessible to Σ_c/Ξ_c prod. & decays

2021/6/10

Proposal of the BEPCII upgrade

optimized energy at 2.35 GeV with luminosity 3 times higher than the current **BEPCII.**

ESI Ξ_c (*usc/dsc*): decay information is limited

- No absolute BFs have been measured/calculated until 2019
- Belle measured abs. BFs in 2019, but uncertainties are large: $\delta B \sim 30\%$

	Mode	Fraction (Γ_i / Γ)
lo absol o $\Xi^- \pi^-$	lute branching fractions have been r ⁺ .Cabibbo-favored ($S = -2$) decays	measured.The following are branching π^+ relative to $\varXi^ \pi^+$
Γ_1	$p \ge K_S^0$	0.087 ± 0.021
Γ2	$\Lambda \overline{K}^0 \pi^+$	
Γ3	$\Sigma(1385)^+\overline{K}^0$	1.0 ± 0.5
Γ4	$\Lambda K^{-}2\pi^{+}$	0.323 ± 0.033
Γ5	$\Lambda \overline{K}^*(892)^0 \pi^+$	< 0.16
Г ₆	$\Sigma(1385)^+K^-\pi^+$	< 0.23
Γ ₇	$\Sigma^+ K^- \pi^+$	0.94 ± 0.10
Γ_8	$\Sigma^+\overline{K}^*(892)^0$	0.81 ± 0.15
Г9	$\Sigma^0 K^-$ 2 π^+	0.27 ± 0.12
Γ_{10}	$\Xi^0\pi^+$	0.55 ± 0.16
Γ_{11}	$\Xi^- 2 \pi^+$	DEFINEDAS1
Γ_{12}	$\Xi(1530)^{0}\pi^{+}$	< 0.10
Γ ₁₃	$\Xi^0 \pi^+ \pi^0$	2.3 ± 0.7
Γ_{14}	$\Xi^0\pi^-2\pi^+$	1.7 ± 0.5
Γ_{15}	$\Xi^0 e^+ u_e$	$2.3^{+0.7}_{-0.8}$
Γ_{16}	$\Omega^- K^+ \pi^+$	0.07 ± 0.04

Decay I	Modes Ξ_c^0	
Mode		Fraction (Γ_i / Γ)
Cabibbo	o-favored (S = -2) decays	
Γ_1	$pK^-K^-\pi^+$	$(4.8 \pm 1.2) \times 10^{-3}$
Γ_2	$pK^-\overline{K}^*(892)^0$, $\overline{K}^{*0} \to K^-\pi^+$	$(2.0 \pm 0.6) \times 10^{-3}$
Γ ₃	$pK^-K^-\pi^+$ (no \overline{K}^{*0})	$(3.0 \pm 0.9) \times 10^{-3}$
Γ_4	ΛK_S^0	$(3.0 \pm 0.8) \times 10^{-3}$
Γ_5	$\Lambda K^{-}\pi^{+}$	$(1.45 \pm 0.33)\%$
Γ_6	$\Lambda \overline{K}^0 \pi^+ \pi^-$	seen
Γ_7	$\Lambda K^- \pi^+ \pi^+ \pi^-$	seen
Γ_8	$\Xi^{-}\pi^{+}$	$(1.43 \pm 0.32)\%$
Г9	$\Xi^-\pi^+\pi^+\pi^-$	$(4.8 \pm 2.3)\%$
Γ_{10}	$\Omega^{-}K^{+}$	$(4.2 \pm 1.0) \times 10^{-3}$
Γ_{11}	$\Xi^- e^+ u_e$	$(1.8 \pm 1.2)\%$
Cabibbo	o-suppressed decays	
Γ_{12}	Ξ^-K^+	$(3.9 \pm 1.2) \times 10^{-4}$
Γ ₁₃	$\Lambda K^+ K^-$ (no ϕ)	$(4.1 \pm 1.4) \times 10^{-4}$
Γ_{14}	$\Lambda \phi$	$(4.9 \pm 1.5) \times 10^{-4}$

- Very limited knowledge on their decays
- ^{T18} We have opportunity to systematically study more decays

 Γ_{21}

 $\Sigma^+ K^+ K^-$

Studies on the Ω_c^0

Mode

D

Fraction (Γ_i / Γ)

• No absolute branching fractions have been measured. The following are branching *ratios* relative to $\Omega^-\pi^+$. Cabibbo-favored (S = -3) decays – relative to $\Omega^-\pi^+$

Γ_1	$arOmega^-\pi^+$	DEFINED AS 1
Γ_2	$\Omega^{-}\pi^{+}\pi^{0}$	1.80 ± 0.33
Γ_3	$\Omega^- ho^+$	> 1.3
Γ_4	$\Omega^{-}\pi^{-}2\pi^{+}$	0.31 ± 0.05
Γ_5	$\Omega^- e^+ u_e$	2.4 ± 1.2
Γ_6	$\Xi^0 \overline{K}^0$	1.64 ± 0.29
Γ_7	$\Xi^0 K^- \pi^+$	1.20 ± 0.18
Γ_8	$arepsilon^0 \overline{K}^{*0}$, $\overline{K}^{*0} o K^- \pi^+$	0.68 ± 0.16
Γ9	$\Xi^-\overline{K}^0\pi^+$	2.12 ± 0.28
Γ_{10}	$\Xi^{-}K^{-}2\pi^{+}$	0.63 ± 0.09
Γ_{11}	$\varXi(1530)^0 K^- \pi^+$, $\varXi^{*0} \to \varXi^- \pi^+$	0.21 ± 0.06
Γ_{12}	$\varXi^-\overline{K}^{*0}\pi^+$	0.34 ± 0.11
Γ_{13}	$\Sigma^+ K^- K^- \pi^+$	< 0.32
Γ_{14}	$\Lambda \overline{K}^0 \overline{K}^0$	1.72 ± 0.35

Studies on most of the Ξ_c / Ω_c weak decays are missing in experiment (I)

BFs of CF decays

	RQM	Pole	Pole	RQM	Pole	Pole (in	units of %)
Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	6.45	0.44	0.84	3.08	1.56	0.04	
$\Xi_c^+ \to \Xi^0 \pi^+$	3.54	3.36	3.93	4.40	1.59	0.53	0.55 ± 0.16^{a}
$\Xi_c^0 o \Lambda \bar{K}^0$	0.12	0.37	0.27	0.42	0.35	0.54	seen
$\Xi^0_c o \Sigma^0 \bar{K}^0$	1.18	0.11	0.13	0.20	0.11	0.07	
$\Xi_c^0 \to \Sigma^+ K^-$	0.12	0.12		0.27	0.36	0.12	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.03	0.56	0.28	0.04	0.69	0.87	
$\Xi_c^0 \to \Xi^0 \eta$	0.24			0.28	0.01	0.22	
$\Xi^0_c ightarrow \Xi^0 \eta'$	0.85			0.31	0.09	0.06	
$\Xi_c^0\to \Xi^-\pi^+$	1.04	1.74	1.25	1.22	0.61	2.46	seen
$\Omega_c^0 o \Xi^0 \bar{K}^0$	1.21		0.09	0.02			

Studies on most of the Ξ_c / Ω_c^0 weak decays are missing in experiment (II)

Decay asymmetry α for CF decays

Longitudinal pol. of daughter baryon from unpol. parent baryon

 \Rightarrow information on the relative sign between s- and p-waves

Decay	Körner,	Xu,	Cheng,	Ivanov	Żenczykowski	Sharma,	Expt.
	Krämer ('92)	Kamal ('92)	Tseng ('93)	et al. ('98)	('94)	Verma ('99)	
$\Xi_c^+\to \Sigma^+ \bar{K}^0$	-1.0	0.24	-0.09	-0.99	1.00	0.54	
$\Xi_c^+ \to \Xi^0 \pi^+$	-0.78	-0.81	-0.77	-1.0	1.00	-0.27	
$\Xi_c^0 o \Lambda \bar{K}^0$	-0.76	1.0	-0.73	-0.75	-0.29	-0.79	
$\Xi^0_c o \Sigma^0 \bar{K}^0$	-0.96	-0.99	-0.59	-0.55	-0.50	0.48	
$\Xi_c^0\to \Sigma^+ K^-$	0	0		0	0	0	
$\Xi_c^0 \to \Xi^0 \pi^0$	0.92	0.92	-0.54	0.94	0.21	-0.80	
$\Xi_c^0 o \Xi^0 \eta$	-0.92			-1.0	-0.04	0.21	
$\Xi_c^0 o \Xi^0 \eta'$	-0.38			-0.32	-1.00	0.80	
$\Xi_c^0 \to \Xi^- \pi^+$	-0.38	-0.38	-0.99	-0.84	-0.79	-0.97	-0.6 ± 0.4
$\Omega_c^0 o \Xi^0 \bar{K}^0$	0.51		-0.93	-0.81			

Studies on most of the Ξ_c / Ω_c^0 weak decays are missing in experiment (III)

Charm-flavor-conserving weak decays

→ Light quarks undergo weak transitions, while c quark behaves as a "spectator" e.g. $\Xi_c \rightarrow \Lambda_c \pi$ (s $\rightarrow W^- u$). Can be studied using HHChPT.

 $Br(\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-)=2.9 \times 10^{-4}$

 $Br(\Xi_c^+ \rightarrow \Lambda_c^+ \pi^0)=6.7 \times 10^{-4}$

Cheng, Cheung, Lin, Lin, Yan, Yu ('92)

 $Br(\Xi_c^0 \to \Lambda_c^+ \pi^-) = (0.55 \pm 0.02 \pm 0.18)\%$

[LHCb, PRD 102, 071101 (2020)]

Larger than theoretical predictions

These can be further tested at BESIII

Semileptonic decays

	\rightarrow	NRQM	←	RQM	LFQN	I QSR	QSR	
Process	Pérez-Marcial	Singleton	Cheng,	Ivanov	Luo	Marques de Carvalho	Huang,	Expt.
	et al. [85]	[86]	Tseng [81]	et al. [87]	[88]	et al. [89]	Wang [90]	[3]
$\Xi_c^0 \rightarrow \Xi^- e^+ \nu_e$	18.1 (12.5)	8.5	7.4	8.16	9.7			seen
$\Xi_c^+ \to \Xi^0 e^+ \nu_e$	18.4 (12.7)	8.5	7.4	8.16	9.7			seen

in units of 10¹⁰ s⁻¹

 $\begin{array}{l} \mathcal{B}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = (1.72 \pm 0.10 \pm 0.12 \pm 0.50)\% \\ \mathcal{B}(\Xi_c^0 \to \Xi^- \mu^+ \nu_\mu) = (1.71 \pm 0.17 \pm 0.13 \pm 0.50)\% \\ \mathcal{B}_{exp}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 2.43(0.25)(0.35)(0.72)\% \\ \end{array}$ [Belle, arXiv:2103.06496] $\begin{array}{l} \mathcal{B}_{exp}(\Xi_c^0 \to \Xi^- e^+ \nu_e) = 2.43(0.25)(0.35)(0.72)\% \\ \end{array}$ [ALICE, PoS ICHEP 2020, 524(2021)]

Summary

- BESIII has been playing significant role in studying Λ_c decays
- Many new results of Λ_c decays have been published
- BEPCII energy upgrade during 2020-2021 has improved the BESIII capability in Λ_c physics by accumulating more statistics at different energy points and pose opportunity to study Σ_c/Ξ_c physics
- Proposal of BEPCII upgrade (3x luminosity and energy up to 5.6 GeV) will greatly extend the physics opportunities in c-baryon sector

Thanks

Studies on the Λ_{c}^{+} **decays at BESIII**

• Λ_c^+ hadronic decay

2014: 0.567 fb⁻¹ at 4.6 GeV

- $\square BF(\Lambda_c^+ \rightarrow pK^-\pi^+) + 11 hadronic modes : PRL 116, 052001 (2016)$
- $\square BF(\Lambda_{c}^{+} \rightarrow pK^{+}K^{-}, p\pi^{+}\pi^{-}) : PRL 117, 232002 (2016)$
- □ BF(Λ⁺_c→nK_sπ⁺) : PRL 118, 12001 (2017) □ BF(Λ⁺_c→pη, pπ⁰) : PRD 95, 111102(R) (2017) □ BF(Λ⁺_c→Σ⁻π⁺π⁺π⁰) : PLB 772, 388 (2017) □ BF(Λ⁺_c→Ξ^{(*)0}K⁺) : PLB 783,200 (2018) □ BF(Λ⁺_c→Ληπ⁺) : PRD99, 032010 (2019)
- $\square BF(\Lambda_c^+ \rightarrow \Sigma^+ \eta, \Sigma^+ \eta') = : CPC43, 083002 (2019)$
- \square $\Lambda_c^+ \rightarrow$ BP decay asymmetries : PRD100, 072004 (2019)
- □ BF($\Lambda_{c}^{+} \rightarrow pK_{s}\eta$) : PLB 817, 136327 (2021)
- \square Λ_c^+ spin determination : PRD 103, L091101 (2021)

• Λ_{c}^{+} semi-leptonic decay □ BF($\Lambda_c^+ \to \Lambda e^+ \nu_e$) : PRL 115, 221805 (2015) $\square BF(\Lambda_c^+ \rightarrow \Lambda \mu^+ \nu_\mu) : PLB 767, 42 (2017)$

• Λ_c^+ inclusive decay $\Lambda_c^+ \rightarrow \Lambda + X$

- $\square BF(\Lambda_{c}^{+} \rightarrow \Lambda X) : PRL 121, 062003 (2018)$ □ BF($\Lambda_{c}^{+} \rightarrow eX$) : PRL 121 251801 (2018) □ BF($\Lambda_{c}^{+} \rightarrow K_{s}^{0}X$) : EPJC 80, 935 (2020)
- $\Lambda_{c}^{+}\Lambda_{c}^{-}$ pair cross section : PRL 120,132001(2018).

Prospect Charm Baryons data sample at BESIII

Energy	physics highlight	Current data	Expected final data
		# of events	# of events
		or integrated luminosity	or integrated luminosity
1.8 - 2.0 GeV	R values	N/A	Scan: 3 energy points
	cross-sections		
2.0 - 3.1 GeV	R values	Scan: 20 energy points	No requirement
	cross-sections		
J/ψ peak	Light Hadron & Glueball	5.0 billion	10.0 billion
	Charmonium decay		
$\psi(3686)$ peak	Light hadron& Glueball	0.5 billion	3.0 billion
	Charmonium decay		
$\psi(3770)$ peak	D^0/D^{\pm} decays	$2.9 { m ~fb^{-1}}$	20.0 fb^{-1}
	Form-factor/CKM		
	decay constant		
3.8 - 4.6 GeV	R value	Scan: 105 energy points	No requirement
	XYZ/Open charm		
4.180 GeV	D_s decay	3.1 fb^{-1}	$6.0 { m ~fb^{-1}}$
	XYZ/Open charm		
	XYZ/Open charm		Scan: 30.0 fb^{-1}
4.0 - 4.6 GeV	Higher charmonia	Scan: 12.0 fb^{-1}	$10 \text{ MeV step}/0.5 \text{ fb}^{-1}/\text{point}$
	cross-sections		30 energy points
4.60 GeV	$\Lambda_c/{ m XYZ}$	0.56 fb^{-1}	$1.0 {\rm ~fb^{-1}}$
$4.64 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$5.0 { m fb^{-1}}$
$4.65 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.2~{ m fb}^{-1}$
$4.70 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$0.65 { m ~fb^{-1}}$
$4.80 {\rm GeV}$	$\Lambda_c/{ m XYZ}$	N/A	$1.0 {\rm ~fb^{-1}}$
4.90 GeV	$\Lambda_c/{ m XYZ}$	N/A	$1.3 { m fb^{-1}}$
$\Sigma_c^+ \bar{\Lambda}_c^-$ 4.74 GeV	Charm Baryons	N/A	$1.0 {\rm ~fb^{-1}}$
$\Sigma_c \bar{\Sigma}_c$ 4.91 GeV	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$
$\Xi_c \bar{\Xi}_c \ 4.95 \ { m GeV}$	Charm Baryons	N/A	$1.0 { m ~fb^{-1}}$

First Measurements of absolute BFs for \Xi_c at Belle

Belle, Phys.Rev.Lett. 122, 082001 (2019) Belle, Phys. Rev. D 100, 031101 (2019)

$$\begin{aligned} \mathcal{B}(\Xi_c^0 \to \Xi^- \pi^+) &= (1.80 \pm 0.50 \pm 0.14)\%, \\ \mathcal{B}(\Xi_c^0 \to \Lambda K^- \pi^+) &= (1.17 \pm 0.37 \pm 0.09)\%, \\ \mathcal{B}(\Xi_c^0 \to p K^- K^- \pi^+) &= (0.58 \pm 0.23 \pm 0.05)\%, \\ \mathcal{B}(\Xi_c^+ \to \Xi^- \pi^+ \pi^+) &= (2.86 \pm 1.21 \pm 0.38)\%, \\ \mathcal{B}(\Xi_c^+ \to p K^- \pi^+) &= (0.45 \pm 0.21 \pm 0.07)\%. \end{aligned}$$

- Large errors
- Belle II will improve these to $\sim 10\%$
- BESIII has potential to improve them

