Tow-body hadronic B decays at

NNLO in QCDF

Xin-Qiang Li

Central China Normal University

In collaboration with G. Bell, M. Beneke, T. Huber, and S. Krankl

Based on JHEP 04 (2020), JHEP 09 (2016) 112, PLB 750 (2015) 348, NPB 832 (2010) 109
FPCP 2021, Shanghai, 2021/06/08

Outline

\square Introduction to QCDF approach
\square Status of NNLO calculations within QCDF:
$>$ Tree-dominated decay modes
$>$ Penguin-dominated decay modes:
$>$ Class-I $\overline{\boldsymbol{B}}_{q}^{\mathbf{0}} \rightarrow D_{q}^{(*)+} \boldsymbol{L}^{-}$decays
\square Summary

Why hadronic B decays

\square direct access to the CKM parameters, especially to the three angles of UT.

\square Thanks to exp. progress, precision era ahead!
\square further insight into strong-interaction effects involved in these hadronic decays.

Effective Hamiltonian for hadronic B decays

\square For hadronic decays: simplicity of weak interactions overshadowed by complex QCD effects!

multi-scale problem with highly hierarchical scales!

EW interaction scale \gg ext. mom'a in B rest frame \gg QCD-bound state effects

m_{W}	$\sim 80 \mathrm{GeV}$
m_{Z}	$\sim 91 \mathrm{GeV}$

\square Starting point $\mathcal{H}_{\text {eff }}=-\mathcal{L}_{\text {eff }}$: obtained after

$$
\mathcal{L}_{\text {eff }}=-\frac{G_{F}}{\sqrt{2}} \sum_{p=u, c} V_{p b} V_{p D}^{*}\left(C_{1} \mathcal{O}_{1}+C_{2} \mathcal{O}_{2}+\sum_{i=\text { pen }} C_{i} \mathcal{O}_{i, \text { pen }}\right)
$$ integrating out the heavy d.o.f. $\left(m_{W, Z, t} \gg m_{b}\right)$; [Buras, Buchalla, Lautenbacher '96; Chetyrkin, Misiak, Munz '98]

\square Wilson coefficients $\boldsymbol{C}_{\boldsymbol{i}}$: all physics above m_{b}; perturbatively
 calculable, and NNLL program now complete; [Gorbahn, Haisch '04]

Hadronic matrix elements

\square Decay amplitude for a given decay mode:

$$
\mathcal{A}(\bar{B} \rightarrow f)=\sum_{i}\left[\lambda_{\mathrm{CKM}} \times C \times(f|\mathcal{O}| \bar{B}\rangle_{\mathrm{QCD}+\mathrm{QED}}\right]_{i}
$$

- $\left\langle\boldsymbol{M}_{\mathbf{1}} \boldsymbol{M}_{\mathbf{2}}\right| \boldsymbol{O}_{\boldsymbol{i}}|\overline{\boldsymbol{B}}\rangle$: depend on the spin and parity of $M_{1,2}$; also involve complicated QCD effects.
\longrightarrow A quite difficult, multi-scale, strong-interaction problem!
\square Different methods for $\left\langle M_{1} M_{2}\right| \mathcal{O}_{i}|\bar{B}\rangle$:

Dynamical approaches based on factorization theorems: PQCD, QCDF, SCET,
[Keum, Li, Sanda, Lui, Yang '00
Beneke, Buchalla, Neubert, Sachrajda, '00
Bauer, Flemming, Pirjol, Stewart, '01; Beneke, Chapovsky, Diehl, Feldmann, '02]

Symmetries of QCD: Isospin, U-Spin, V-Spin, and flavour SU(3) symmetries,
[Zeppenfeld, '81
London, Gronau, Rosner, He, Chiang, Cheng et al.]

- QCDF: systematic framework to all orders in α_{s}, but limited by $1 / m_{b}$ corrections. [BBNs '99-'03]

Soft-collinear factorization from SCET

\square SCET diagrams reproduce precisely QCD diagrams in collinear \& soft momentum regions

\square For hard kernel $\boldsymbol{T}^{\boldsymbol{I}}$: one-step matching, $\mathrm{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s})$!

\square For hard kernel $\boldsymbol{T}^{I I}$: two-step matching, $\mathrm{QCD} \rightarrow \operatorname{SCET}_{\mathrm{I}}(\mathrm{hc}, \mathrm{c}, \mathrm{s}) \rightarrow \operatorname{SCET}_{\mathrm{II}}(\mathrm{c}, \mathrm{s})$!

- SCET result exactly the same as QCDF, but more apparent \& efficient; [Beneke, 1501.07374]

Status of NNLO calculations of $T^{I} \& T^{I I}$

\square For each Q_{i} insertion, both tree $\&$ penguin topologies, and contribute to both $T^{I} \& T^{I I}$.

$$
\left\langle M_{1} M_{2}\right| Q_{i}|B\rangle \simeq F^{B M_{1}} T_{i}^{\prime} \otimes \phi_{M_{2}}+T_{i}^{\prime \prime} \otimes \phi_{B} \otimes \phi_{M_{1}} \otimes \phi_{M_{2}}
$$

Tree-dominated B decays

$\square B \rightarrow \pi \pi$ decays: mediated by $\boldsymbol{b} \rightarrow \boldsymbol{u} \bar{u} \boldsymbol{d}$ transitions;

$$
\begin{aligned}
\sqrt{2}\left\langle\pi^{-} \pi^{0}\right| \mathcal{H}_{e f f}\left|B^{-}\right\rangle & =\lambda_{u}\left[\alpha_{1}(\pi \pi)+\alpha_{2}(\pi \pi)\right] A_{\pi \pi} \\
\left\langle\pi^{+} \pi^{-}\right| \mathcal{H}_{e f f}\left|\bar{B}^{0}\right\rangle & =\left\{\lambda_{u}\left[\alpha_{1}(\pi \pi)+\alpha_{4}^{u}(\pi \pi)\right]+\lambda_{c} \alpha_{4}^{c}(\pi \pi)\right\} A_{\pi \pi} \\
-\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|\bar{B}^{0}\right\rangle & =\left\{\lambda_{u}\left[\alpha_{2}(\pi \pi)-\alpha_{4}^{u}(\pi \pi)\right]-\lambda_{c} \alpha_{4}^{c}(\pi \pi)\right\} A_{\pi \pi}
\end{aligned}
$$

b \qquad $-u$

colour-allowed tree α_{1}
Tree-dominated!
colour-suppressed tree α_{2}

$$
\lambda_{u}=V_{u b} V_{u d}^{*} \sim \mathcal{O}\left(\lambda^{3}\right), \quad \lambda_{c}=V_{c b} V_{c d}^{*} \sim \mathcal{O}\left(\lambda^{3}\right) \quad \Longrightarrow \alpha_{4} \text { loop-suppressed vs } \alpha_{1,2}
$$

$\square \alpha_{2}$ at NLO: large cancellation between one-loop vertex correction and LO term;

$$
\begin{array}{rlr}
a_{2}(\pi \pi)= & 0.220-[0.179+0.077 i]_{\mathrm{NLO}} & r_{\mathrm{sp}}=\frac{9 f_{M_{1}} \hat{f}_{B}}{m_{b} f_{+}^{B \pi}(0) \lambda_{B}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.485}\right]\left\{[0.123]_{\mathrm{LOsp}}+[0.072]_{\mathrm{tw} 3}\right\} &
\end{array}
$$

Hard-kernel T^{I} at NNLO

\square QCD \rightarrow SCETI matching calculation:

■ For "right insertion":

$$
\left\langle Q_{i}\right\rangle=T_{i}\left\langle O_{\mathrm{QCD}}\right\rangle+\sum_{a>1} H_{i a}\left\langle O_{a}\right\rangle
$$

right insertion

■ For "wrong insertion":
$\left\langle Q_{i}\right\rangle=\widetilde{T}_{i}\left\langle O_{\mathrm{QCD}}\right\rangle+\tilde{H}_{i 1}\left\langle\tilde{O}_{1}-O_{1}\right\rangle+\sum_{a>1} \tilde{H}_{i a}\left\langle\tilde{O}_{a}\right\rangle$
\square Master formula for T^{I} : right insertion

$$
\begin{aligned}
T_{i}^{(0)}= & A_{i 1}^{(0)}, \\
T_{i}^{(1)}= & A_{i 1}^{(1) \mathrm{lnf}}+Z_{i j}^{(1)} A_{j 1}^{(0)}, \\
T_{i}^{(2)}= & A_{i 1}^{(2) \mathrm{lnf}}+Z_{i j}^{(1)} A_{j 1}^{(1)}+Z_{i j}^{(2)} A_{j 1}^{(0)}+Z_{\alpha}^{(1)} A_{i 1}^{(1) \mathrm{nf}}+(-i) \delta m^{(1)} A_{i 1}^{(1) \mathrm{lnf}} \\
& -T_{i}^{(1)}\left[C_{F F}^{(1)}+Y_{11}^{(1)}-Z_{e x t}^{(1)}\right]-\sum_{b>1} H_{i b}^{(1)} Y_{b 1}^{(1)} .
\end{aligned}
$$

$$
\begin{aligned}
\left\langle Q_{i}\right\rangle= & \left\{A_{i a}^{(0)}+\frac{\alpha_{s}}{4 \pi}\left[A_{i a}^{(1)}+Z_{e x t}^{(1)} A_{i a}^{(0)}+Z_{i j}^{(1)} A_{j a}^{(0)}\right]\right. \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[A_{i a}^{(2)}+Z_{i j}^{(1)} A_{j a}^{(1)}+Z_{i j}^{(2)} A_{j a}^{(0)}+Z_{e x t}^{(1)} A_{i a}^{(1)}+Z_{e x t}^{(2)} A_{i a}^{(0)}\right. \\
& \left.\left.+Z_{e x t}^{(1)} Z_{i j}^{(1)} A_{j a}^{(0)}+Z_{\alpha}^{(1)} A_{i a}^{(1)}+(-i) \delta m^{(1)} A_{i a}^{\prime(1)}\right]+\mathcal{O}\left(\alpha_{s}^{3}\right)\right\}\left\langle O_{a}\right\rangle^{(0)}
\end{aligned}
$$

\square Master formula for T^{I} : wrong insertion

$$
\begin{aligned}
& \widetilde{T}_{i}^{(0)}=\widetilde{A}_{i 1}^{(0)} \\
& \widetilde{T}_{i}^{(1)}=\widetilde{A}_{i 1}^{(1) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(0)}+\underbrace{\widetilde{A}_{11}^{(1) \mathrm{f}}-A_{21}^{(1) \mathrm{f}} \widetilde{A}_{i 1}^{(0)}}_{\mathcal{O}(\epsilon)}-\underbrace{\left[\widetilde{Y}_{11}^{(1)}-Y_{11}^{(1)}\right] \widetilde{A}_{i 1}^{(0)}}_{\mathcal{O}(\epsilon)} \\
& \widetilde{T}_{i}^{(2)}=\widetilde{A}_{i 1}^{(2) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(1)}+Z_{i j}^{(2)} \widetilde{A}_{j 1}^{(0)}+Z_{\alpha}^{(1)} \widetilde{A}_{i 1}^{(1) \mathrm{nf}}
\end{aligned}
$$

$$
+(-i) \delta m^{(1)} \widetilde{A}_{i 1}^{\prime(1) \mathrm{nf}}+Z_{e x t}^{(1)}\left[\widetilde{A}_{i 1}^{(1) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(0)}\right]
$$

$$
-\widetilde{T}_{i}^{(1)}\left[C_{F F}^{(1)}+\widetilde{Y}_{11}^{(1)}\right]-\sum_{b>1} \widetilde{H}_{i b}^{(1)} \widetilde{Y}_{b 1}^{(1)}
$$

$$
+\left[\widetilde{A}_{i 1}^{(2) \mathrm{f}}-A_{21}^{(2) \mathrm{f}} \tilde{A}_{i 1}^{(0)}\right]+(-i) \delta m^{(1)}\left[\widetilde{A}_{i 1}^{\prime(1) \mathrm{f}}-A_{21}^{\prime(1) \mathrm{f}} \widetilde{A}_{i 1}^{(0)}\right]
$$

$$
+\left(Z_{\alpha}^{(1)}+Z_{e x t}^{(1)}\right)\left[\widetilde{A}_{i 1}^{(1) \mathrm{f}}-A_{21}^{(1) \mathrm{f}} \widetilde{A}_{i 1}^{(0)}\right]
$$

$$
-\left[\widetilde{M}_{11}^{(2)}-M_{11}^{(2)}\right] \widetilde{A}_{i 1}^{(0)}
$$

$$
-\left(C_{F F}^{(1)}-\xi_{45}^{(1)}\right)\left[\tilde{Y}_{11}^{(1)}-Y_{11}^{(1)}\right] \tilde{A}_{i 1}^{(0)}-\left[\tilde{Y}_{11}^{(2)}-Y_{11}^{(2)}\right] \tilde{A}_{i 1}^{(0)}
$$

Final results for $\alpha_{1,2}$

$$
\phi_{M}(u)=6 u(1-u)\left[1+\sum_{n=1}^{\infty} a_{n}^{M} C_{n}^{(3 / 2)}(2 u-1)\right],
$$

\square Tree amplitudes $\alpha_{1,2}$ up to NNLO:

$$
V_{1 j}^{(0)}=\int_{0}^{1} d u T_{j}^{(0)} \phi_{M}(u), \quad \frac{C_{F}}{2 N_{c}} V_{1 j}^{(l)}=\int_{0}^{1} d u T_{j}^{(l)}(u) \phi_{M}(u),
$$

$$
\alpha_{i}\left(M_{1} M_{2}\right)=\sum_{j} C_{j} V_{i j}^{(0)}+\sum_{l \geqslant 1}\left(\frac{\alpha_{s}}{4 \pi}\right)^{l}\left[\frac{C_{F}}{2 N_{c}} \sum_{j} C_{j} V_{i j}^{(l)}+P_{i}^{(l)}\right]+\cdots
$$

$$
V_{2 j}^{(0)}=\int_{0}^{1} d u \widetilde{T}_{j}^{(0)} \phi_{M}(u), \quad \frac{C_{F}}{2 N_{c}} V_{2 j}^{(l)}=\int_{0}^{1} d u \widetilde{T}_{j}^{(l)}(u) \phi_{M}(u) .
$$

\square Numerical results including the NNLO corrections:

$$
\begin{aligned}
\alpha_{1}(\pi \pi)= & 1.009+[0.023+0.010 i]_{\mathrm{NLO}}+[0.026+0.028 i]_{\mathrm{NNLO}} \\
& -\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.014]_{\mathrm{LOsp}}+[0.034+0.027 i]_{\mathrm{NLOsp}}+[0.008]_{\mathrm{tw} 3}\right\} \\
= & 1.000_{-0.069}^{+0.029}+\left(0.011_{-0.050}^{+0.023}\right) i \\
\alpha_{2}(\pi \pi)= & 0.220-[0.179+0.077 i]_{\mathrm{NLO}}-[0.031+0.050 i]_{\mathrm{NNLO}} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.114]_{\mathrm{LOsp}}+[0.049+0.051 i]_{\mathrm{NLOsp}}+[0.067]_{\mathrm{tw} 3}\right\} \\
= & 0.240_{-0.125}^{+0.217}+\left(-0.077_{-0.078}^{+0.115}\right) i
\end{aligned}
$$

individual NNLO corrections both significant, but cancelled between the vertex and the spectator term!

Branching ratios

$$
-\left\langle\pi^{0} \pi^{0}\right| \mathcal{H}_{e f f}\left|\bar{B}^{0}\right\rangle=\left\{\lambda_{u}\left[\alpha_{2}(\pi \pi)-\alpha_{4}^{u}(\pi \pi)\right]-\lambda_{c} \alpha_{4}^{c}(\pi \pi)\right\} A_{\pi \pi}
$$

	Theory I		Theory II		Experiment
$B^{-} \rightarrow \pi^{-} \pi^{0}$	$5.43 \begin{aligned} & +0.06+1.45 \\ & -0.06-0.84\end{aligned}$	(\star)	$5.82+0.07+1.42$ $-0.06-1.35$	(*)	$5.59{ }_{-0.40}^{+0.41}$
$\bar{B}_{d}^{0} \rightarrow \pi^{+} \pi^{-}$	$7.37{ }^{+0.86+1.22}$	(\star)	$5.70{ }_{-0.70+1.16}^{+0.95}$		5.16 ± 0.22
$\bar{B}_{d}^{0} \rightarrow \pi^{0} \pi^{0}$	$0.33+0.11+0.42$		$0.63{ }_{-0.12+0.64}^{+0.42}$		1.55 ± 0.19
$B^{-} \rightarrow \pi^{-} \rho^{0}$	$8.68{ }^{+0.42+2.71}$	$(\star \star)$	$9.84{ }_{-0.41+2.54}^{+2.52}$	$(\star \star)$	$8.3+1.2$
$B^{-} \rightarrow \pi^{0} \rho^{-}$	$12.38{ }_{-0.77-1.41}^{+0.90+2.18}$	(\star)	$12.13{ }_{-0.73-2.17}^{+0.85}$	(\star)	$10.9{ }_{-1.5}^{+1.4}$
$\bar{B}^{0} \rightarrow \pi^{+} \rho^{-}$	$17.80{ }_{-0.56-2.10}^{+0.62+1.76}$	(\star)	$13.76{ }_{-0.44-2.18}^{+0.49}$	(\star)	15.7 ± 1.8
$\bar{B}^{0} \rightarrow \pi^{-} \rho^{+}$	10.28 ${ }_{-0.39+1.37}^{+0.39}$	$(\star \star)$	$8.14{ }_{-0.34-1.35}^{+0.34}$	($\star \star$)	7.3 ± 1.2
$\bar{B}^{0} \rightarrow \pi^{ \pm} \rho^{\mp}$	28.08 ${ }^{+0.27}+3.82$	(\dagger)	$21.90 \begin{aligned} & +0.20+3.06 \\ & -0.12-3.55\end{aligned}$	(\dagger)	23.0 ± 2.3
$\bar{B}^{0} \rightarrow \pi^{0} \rho^{0}$	$0.52-0.04+1.11$		$1.49{ }_{-0.07}^{+0.07-1.77}{ }_{-}^{+0.29}$		2.0 ± 0.5
$B^{-} \rightarrow \rho_{L}^{-} \rho_{L}^{0}$	$18.42_{-0.21-2.23}^{+0.95}$	$(\star \star)$	$19.06_{-0.22+4.22}^{+0.24}$	$(\star \star)$	$22.8{ }_{-1.9}^{+1.8}$
$\bar{B}_{d}^{0} \rightarrow \rho_{L}^{+} \rho_{L}^{-}$	$25.98{ }_{-0.77}^{+0.85}+3.93$	$(\star \star)$	$20.66_{-0.68-3.75}^{+0.69}$	$(\star \star)$	$23.7{ }_{-3.1}^{+3.1}$
$\bar{B}_{d}^{0} \rightarrow \rho_{L}^{0} \rho_{L}^{0}$	$0.39{ }_{-0.03-0.36}^{+0.03+0.36}$		$1.05{ }_{-0.04-1.04}^{+0.05+1.62}$		$0.55_{-0.24}^{+0.22}$

- 1st error: from CKM but without Vub;
- 2nd error: all other hadronic parameters;
- Brackets: form factor error not included;

Theory I: $f_{+}^{B \pi}(0)=0.25 \pm 0.05, A_{0}^{B \rho}(0)=0.30 \pm 0.05, \lambda_{B}(1 \mathrm{GeV})=0.35 \pm 0.15 \mathrm{GeV}$
Theory II: $f_{+}^{B \pi}(0)=0.23 \pm 0.03, A_{0}^{B \rho}(0)=0.28 \pm 0.03, \lambda_{B}(1 \mathrm{GeV})=0.20_{-0.00}^{+0.05} \mathrm{GeV}$

Penguin-dominated B decays

$\square \boldsymbol{B} \rightarrow \boldsymbol{\pi} \boldsymbol{K}$ decays: mediated by $b \rightarrow s q \bar{q}$ transitions;

$$
\begin{aligned}
& \sqrt{2} \mathcal{A}_{B^{-} \rightarrow \pi^{0} K^{-}}=A_{\pi \bar{K}}\left[\delta_{p u} \alpha_{1}+\hat{\alpha}_{4}^{p}\right]+A_{\bar{K} \pi}\left[\delta_{p u} \alpha_{2}+\delta_{p c} \frac{3}{2} \alpha_{3, \mathrm{EW}}^{c}\right], \\
& \mathcal{A}_{\bar{B}^{0} \rightarrow \pi^{+} K^{-}}=A_{\pi \bar{K}}\left[\delta_{p u} \alpha_{1}+\hat{\alpha}_{4}^{p}\right], \\
& \lambda_{u}=V_{u b} V_{u s}^{*} \sim \mathcal{O}\left(\lambda^{4}\right) \\
& \lambda_{c}=V_{c b} V_{c s}^{*} \sim \mathcal{O}\left(\lambda^{2}\right)
\end{aligned}
$$

\square To predict accurately the direct CPV, we need calculate both tree \& penguin to NNLO;
\square Driven by the exp. data; $\Delta A_{C P}(\pi K)$ puzzle

$$
\begin{aligned}
\Delta A_{C P} & =A_{C P}\left(\pi^{0} K^{-}\right)-A_{C P}\left(\pi^{+} K^{-}\right) \\
& =(11.5 \pm 1.4) \% \text { differs from } 0 \text { by } \sim 8 \sigma
\end{aligned}
$$

How about the situation @ NNLO?

Decay	$\mathrm{BR}\left(\times 10^{-6}\right)$	$A_{C P}$	$S_{C P}$
$B^{+} \rightarrow \pi^{+} K^{0}$	23.79 ± 0.75	-0.017 ± 0.016	
$B^{+} \rightarrow \pi^{0} K^{+}$	12.94 ± 0.52	0.025 ± 0.016	
$B_{d}^{0} \rightarrow \pi^{-} K^{+}$	19.57 ± 0.53	-0.084 ± 0.004	
$B_{d}^{0} \rightarrow \pi^{0} K^{0}$	9.93 ± 0.49	-0.01 ± 0.10	0.57 ± 0.17

Penguin topologies with various insertions

ㅁ Effective Hamiltonian including penguin operators: [BBL '96; CMM '98]

\[

\]

\square Various types of operator insertions:

(i) Dirac structure of Q_{i}, (ii) color structure of Q_{i}, (iii) types of contraction, and (iv) quark mass in the fermion loop;

\square Master formulae for $\boldsymbol{T}^{\boldsymbol{I}}$: $\quad \frac{1}{2} \widetilde{T}_{i}^{(1)}=\widetilde{A}_{i 1}^{(1) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(0)}+\underbrace{\widetilde{A}_{i 1}^{(1) \mathrm{f}}-A_{31}^{(1) \mathrm{f}} \widetilde{A}_{i 1}^{(0)}}_{\mathcal{O}(\epsilon)}-\underbrace{\left[\widetilde{Y}_{11}^{(1)}-Y_{11}^{(1)}\right] \widetilde{A}_{i 1}^{(0)}}_{\mathcal{O}(\epsilon)}-\underbrace{}_{\underbrace{\sum_{b>1} \widetilde{A}_{i b}^{(0)}} \widetilde{Y}_{b 1}^{(1)}}$

\square

$\frac{1}{2} \widetilde{T}_{i}^{(2)}=\widetilde{A}_{i 1}^{(2) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(1)}+Z_{i j}^{(2)} \widetilde{A}_{j 1}^{(0)}+Z_{\alpha}^{(1)} \widetilde{A}_{i 1}^{(1) \mathrm{nf}}$

$$
+(-i) \delta m^{(1)} \widetilde{A}_{\imath 1}^{\prime(1) \mathrm{nf}}+Z_{\mathrm{ext}}^{(1)}\left[\widetilde{A}_{i 1}^{(1) \mathrm{nf}}+Z_{i j}^{(1)} \widetilde{A}_{j 1}^{(0)}\right]
$$

$\mathcal{O}(\epsilon)$

$$
-\frac{1}{2} \widetilde{T}_{i}^{(1)}\left[C_{F F}^{(1)}+\widetilde{Y}_{11}^{(1)}\right]-\sum_{b>1} \widetilde{H}_{i b}^{(1)} \widetilde{Y}_{b 1}^{(1)}
$$

about 100 Feynman diagrams

$$
+\left(Z_{\alpha}^{(1)}+Z_{\mathrm{ext}}^{(1)}\right)\left[\widetilde{A}_{i 1}^{(1) \mathrm{f}}-A_{31}^{(1) \mathrm{f}} \widetilde{A}_{i 1}^{(0)}\right]
$$

$$
-\left[\widetilde{M}_{11}^{(2)}-M_{11}^{(2)}\right] \widetilde{A}_{i 1}^{(0)}
$$

$$
-\left(C_{F F}^{(1)}-\xi_{45}^{(1)}\right)\left[\tilde{Y}_{11}^{(1)}-Y_{11}^{(1)}\right] \widetilde{A}_{i 1}^{(0)}-\left[\tilde{Y}_{11}^{(2)}-Y_{11}^{(2)}\right] \widetilde{A}_{i 1}^{(0)}
$$

$$
-\sum_{b>1} \widetilde{A}_{i b}^{(0)} \widetilde{M}_{b 1}^{(2)}-\sum_{b>1} \widetilde{A}_{i b}^{(0)} \widetilde{Y}_{b 1}^{(2)}
$$

Final results for a_{4}^{p}

\square Final numerical results:

$$
\begin{aligned}
& a_{4}^{u}(\pi \bar{K}) / 10^{-2}=-2.87-[0.09+0.09 i]_{\mathrm{v}_{1}}+[0.49-1.32 i]_{\mathrm{P}_{1}}-[0.32+0.71 i]_{\mathrm{P}_{2}, \mathrm{Q}_{1,2}}+[0.33+0.38 i]_{\mathrm{P}_{2}, \mathrm{Q}_{3-6,8}} \\
& +\left[\frac{r_{\text {sp }}}{0.434}\right]\left\{[0.13]_{\mathrm{LO}}+[0.14+0.12 i]_{\mathrm{HV}}-[0.01-0.05 i]_{\mathrm{HP}}+[0.07]_{\mathrm{tw} 3}\right\} \\
& =\left(2.1^{+0.48}\right)^{-} \text {spectator-scattering has only a small effect. } \\
& =\left(-2.12_{-0.29}^{+0.48}\right)+\left(-1.56_{-0.15}^{+0.29}\right) i \text {, } \\
& \boldsymbol{T}^{I I}=\left(\boldsymbol{H}_{V}^{I I}+\boldsymbol{H}_{P}^{I I}\right) * \boldsymbol{J} \\
& a_{4}^{c}(\pi \bar{K}) / 10^{-2}=-2.87-[0.09+0.09 i]_{\mathrm{V}_{1}}+[0.05-0.62 i]_{\mathrm{P}_{1}}-[0.77+0.50 i]_{\mathrm{P}_{2}, \mathrm{Q}_{1,2}}+[0.33+0.38 i]_{\mathrm{P}_{2}, \mathrm{Q}_{3}-6,8} \\
& +\left[\frac{r_{\mathrm{sp}}}{0.434}\right]\left\{[0.13]_{\mathrm{LO}}+[0.14+0.12 i]_{\mathrm{HV}}+[0.01+0.03 i]_{\mathrm{HP}}+[0.07]_{\mathrm{tw} 3}\right\} \\
& =\left(-3.00_{-0.32}^{+0.45}\right)+\left(-0.67_{-0.39}^{+0.50}\right) i \text {. }
\end{aligned}
$$

- NNLO real part constitutes a (10-15)\% correction relative to LO.
- NNLO imaginary part represents a -27\% correction for a_{4}^{u} and reaches -54\% for a_{4}^{c}.
- strong cancellation between NNLO correction from $Q_{1,2}^{p}$ and from $Q_{3-6,8 g}$ observed!
$B_{q}^{0} \rightarrow D_{q}^{(*)-} L^{+}$decays
- At quark-level: mediated by $b \rightarrow c \bar{u} d(s)$ transitions;
all four flavors different from each other, no penguin operators \& no penguin topologies!

ㅁ For class-I decays: QCDF formula much simpler;
[Beneke, Buchalla, Neubert, Sachrajda '99-'03; Bauer, Pirjol, Stewart '01]

$$
\begin{aligned}
& \mathcal{Q}_{2}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) b \\
& \mathcal{Q}_{1}=\bar{d} \gamma_{\mu}\left(1-\gamma_{5}\right) T^{A} u \bar{c} \gamma^{\mu}\left(1-\gamma_{5}\right) T^{A} b
\end{aligned}
$$

$$
\begin{aligned}
\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle & =\sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right)
\end{aligned}
$$

i) only color-allowed tree topology a_{1};
ii) spectator \& annihilation power-suppressed;
iii) annihilation absent in $B_{d(s)}^{0} \rightarrow D_{d(s)}^{-} K(\pi)^{+}$etal;
iv) they are theoretically simpler and cleaner!

ㅁ Hard kernel T: both NLO and NNLO results known;
[Beneke, Buchalla, Neubert, Sachrajda '01; Huber, Kränkl, Li '16]

$$
T=T^{(0)}+\alpha_{s} T^{(1)}+\alpha_{s}^{2} T^{(2)}+O\left(\alpha_{s}^{3}\right)
$$

Calculation of T

- Matching QCD onto $\mathbf{S C E T}_{\mathbf{I}}$: [Huber, Kränkl, Li '16]
m_{c} is also heavy, keep m_{c} / m_{b} fixed as $m_{b} \rightarrow \infty$, thus needing two sets of SCET operator basis.
physical operators and factorizes into FF*LCDA.

$$
\mathcal{O}_{1}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \chi \bar{h}_{v^{\prime}} h_{+}\left(1-\gamma_{5}\right) h_{v}
$$

$$
\mathcal{O}_{2}=\bar{\chi} \frac{h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \bar{h}_{v^{\prime}}{\not h_{+}}_{+}\left(1-\gamma_{5}\right) \gamma_{\perp, \beta} \gamma_{\perp, \alpha} h_{v},
$$

$$
\mathcal{O}_{3}=\bar{\chi} \frac{h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \bar{h}_{v^{\prime}} h_{+}\left(1-\gamma_{5}\right) \gamma_{\perp, \delta} \gamma_{\perp, \gamma} \gamma_{\perp, \beta} \gamma_{\perp, \alpha} h_{v}
$$

$\left\langle\mathcal{Q}_{i}\right\rangle=\hat{T}_{i}\left\langle\mathcal{Q}^{\mathrm{QCD}}\right\rangle+\hat{T}_{i}^{\prime}\left\langle\mathcal{Q}^{\prime \mathrm{QCD}}\right\rangle+\sum_{a>1}\left[H_{i a}\left\langle\mathcal{O}_{a}\right\rangle+H_{i a}^{\prime}\left\langle\mathcal{O}_{a}^{\prime}\right\rangle\right]$

$$
\mathcal{O}_{1}^{\prime}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \chi \bar{h}_{v^{\prime}} h_{+}\left(1+\gamma_{5}\right) h_{v}
$$

$$
-\mathcal{O}_{2}^{\prime}=\bar{\chi} \frac{\not h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \chi \bar{h}_{v^{\prime}} h_{+}\left(1+\gamma_{5}\right) \gamma_{\perp, \alpha} \gamma_{\perp, \beta} h_{v},
$$

\square Renormalized on-shell QCD amplitudes:

$$
\mathcal{O}_{3}^{\prime}=\bar{\chi} \frac{h_{-}}{2}\left(1-\gamma_{5}\right) \gamma_{\perp}^{\alpha} \gamma_{\perp}^{\beta} \gamma_{\perp}^{\gamma} \gamma_{\perp}^{\delta} \chi \bar{h}_{v^{\prime}} h_{+}\left(1+\gamma_{5}\right) \gamma_{\perp, \alpha} \gamma_{\perp, \beta} \gamma_{\perp, \gamma} \gamma_{\perp, \delta} h_{v}
$$

evanescent operators and must be renormalized to zero.
\square Master formulas for hard kernels:

$$
T=T^{(0)}+\alpha_{s} T^{(1)}+\alpha_{s}^{2} T^{(2)}+O\left(\alpha_{s}^{3}\right)
$$

$$
\begin{aligned}
& \left\langle\mathcal{Q}_{i}\right\rangle=\left\{A_{i a}^{(0)}+\frac{\alpha_{s}}{4 \pi}\left[A_{i a}^{(1)}+Z_{\text {ext }}^{(1)} A_{i a}^{(0)}+Z_{i j}^{(1)} A_{j a}^{(0)}\right] \quad\right. \text { on QCD side } \\
& +\left(\frac{\alpha_{s}}{4 \pi}\right)^{2}\left[A_{i a}^{(2)}+Z_{i j}^{(1)} A_{j a}^{(1)}+Z_{i j}^{(2)} A_{j a}^{(0)}+Z_{e x t}^{(1)} A_{i a}^{(1)}+Z_{e x t}^{(2)} A_{i a}^{(0)}+Z_{e x t}^{(1)} Z_{i j}^{(1)} A_{j a}^{(0)}\right. \\
& \left.\left.+(-i) \delta m_{b}^{(1)} A_{i a}^{*(1)}+(-i) \delta m_{c}^{(1)} A_{i a}^{*(1)} Z_{\alpha}^{(1)} A_{i a}^{(1)}\right]+\mathcal{O}\left(\alpha_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{a}\right\rangle^{(0)} \\
& +\left(A \leftrightarrow A^{\prime}\right)\left\langle\mathcal{O}_{a}^{\prime}\right\rangle^{(0)} .
\end{aligned}
$$

Renormalized on-shell SCET amplitudes:
$\left\langle\mathcal{O}_{a}\right\rangle=\left\{\delta_{a b}+\frac{\hat{\alpha}_{s}}{4 \pi}\left[M_{a b}^{(1)}+Y_{e x t}^{(1)} \delta_{a b}+Y_{a b}^{(1)}\right] \quad\right.$ on SCET side

$$
+\left(\frac{\hat{\alpha}_{s}}{4 \pi}\right)^{2}\left[M_{a b}^{(2)}+Y_{e x t}^{(1)} M_{a b}^{(1)}+Y_{a c}^{(1)} M_{c b}^{(1)}+\hat{Z}_{\alpha}^{(1)} M_{a b}^{(1)}+Y_{e x t}^{(2)} \delta_{a b}\right.
$$

$$
\left.\left.+Y_{e x t}^{(1)} Y_{a b}^{(1)}+Y_{a b}^{(2)}\right]+\mathcal{O}\left(\hat{\alpha}_{s}^{3}\right)\right\}\left\langle\mathcal{O}_{b}\right\rangle^{(0)}
$$

$$
\begin{aligned}
\hat{T}_{i}^{(0)}= & A_{i 1}^{(0)} \\
\hat{T}_{i}^{(1)}= & A_{i 1}^{(1) n f}+Z_{i j}^{(1)} A_{j 1}^{(0)} \\
\hat{T}_{i}^{(2)}= & A_{i 1}^{(2) n f}+Z_{i j}^{(1)} A_{j 1}^{(1)}+Z_{i j}^{(2)} A_{j 1}^{(0)}+Z_{\alpha}^{(1)} A_{i 1}^{(1) n f}-\hat{T}_{i}^{(1)}\left[C_{F F}^{\mathrm{D}(1)}+Y_{11}^{(1)}-Z_{e x t}^{(1)}\right] \\
& -C_{F F}^{\mathrm{ND}(1)} \hat{T}_{i}^{(1)}+(-i) \delta m_{b}^{(1)} A_{i 1}^{*(1) n f}+(-i) \delta m_{c}^{(1)} A_{i 1}^{* *(1) n f}-\sum_{b \neq 1} H_{i b}^{(1)} Y_{b 1}^{(1)} .
\end{aligned}
$$

Decay amplitudes for $B_{q}^{0} \rightarrow D_{q}^{-} L^{+}$

- Color-allowed tree amplitude:
$a_{1}\left(D^{+} L^{-}\right)=\sum_{i=1}^{2} C_{i}(\mu) \int_{0}^{1} d u\left[\hat{T}_{i}(u, \mu)+\hat{T}_{i}^{\prime}(u, \mu)\right] \Phi_{L}(u, \mu)$,
$a_{1}\left(D^{*+} L^{-}\right)=\sum_{i=1}^{2} C_{i}(\mu) \int_{0}^{1} d u\left[\hat{T}_{i}(u, \mu)-\hat{T}_{i}^{\prime}(u, \mu)\right] \Phi_{L}(u, \mu)$,

ㅁ Numerical result:

$$
\begin{aligned}
a_{1}\left(D^{+} K^{-}\right) & =1.025+[0.029+0.018 i]_{\mathrm{NLO}}+[0.016+0.028 i]_{\mathrm{NNLO}} \\
& =\left(1.069_{-0.012}^{+0.009}\right)+\left(0.046_{-0.015}^{+0.023}\right) i,
\end{aligned}
$$

- both NLO and NNLO add always constructively to LO result!
- NNLO corrections quite small in real (2\%),
but rather large in imaginary part (60\%).
. For different decay modes: quasi-universal, with a small process dependence from non-fact. correction.

$$
\begin{array}{|l|}
\hline a_{1}\left(D^{+} K^{-}\right)=\left(1.069_{-0.012}^{+0.009}\right)+\left(0.046_{-0.015}^{+0.023}\right) i \\
a_{1}\left(D^{+} \pi^{-}\right)=\left(1.072_{-0.013}^{+0.011}\right)+\left(0.043_{-0.014}^{+0.022}\right) i, \\
a_{1}\left(D^{*+} K^{-}\right)=\left(1.068_{-0.012}^{+0.010}\right)+\left(0.034_{-0.011}^{+0.017}\right) i \\
a_{1}\left(D^{*+} \pi^{-}\right)=\left(1.071_{-0.013}^{+0.012}\right)+\left(0.032_{-0.010}^{+0.016}\right) i
\end{array}
$$

Absolute branching ratios for $B_{q}^{0} \rightarrow D_{q}^{-} L^{+}$

$\square \boldsymbol{B} \rightarrow \boldsymbol{D}^{(*)}$ transition form factors:

Precision results available based on LQCD \& LCSR
calculations, together with data on $B_{q}^{0} \rightarrow D_{q}^{-} l^{+} v$;
[Bernlochner, Ligeti, Papucci, Robinson '17; Bordone, Gubernari, Jung, van Dyk '19

$\stackrel{\text { O }}{ } 35-B \rightarrow D / \bar{v}_{1}$	Decay mode	LO	NLO	NNLO	Ref. [36]	Exp. [7, 8]
$\bar{T}^{1}{ }^{30} \quad B \rightarrow D \tau \bar{\nu}_{\tau}$	$\bar{B}^{0} \rightarrow D^{+} \pi^{-}$	4.07	$4.32_{-0.42}^{+0.23}$	$4.43_{-0.41}^{+0.20}$	$3.93_{-0.42}^{+0.43}$	2.65 ± 0.15
3 	$\bar{B}^{0} \rightarrow D^{*+} \pi^{-}$	3.65	$3.88{ }_{-0.41}^{+0.27}$	$4.00_{-0.41}^{+0.25}$	$3.45{ }_{-0.50}^{+0.53}$	2.58 ± 0.13
E15	$\bar{B}^{0} \rightarrow D^{+} \rho^{-}$	10.63	$11.28_{-1.23}^{+0.84}$	$11.59_{-1.21}^{+0.79}$	$10.42_{-1.20}^{+1.24}$	7.6 ± 1.2
${ }_{\sim} 10$	$\bar{B}^{0} \rightarrow D^{*+} \rho^{-}$	9.99	$10.611_{-1.56}^{+1.35}$	$10.93_{-1.57}^{+1.35}$	$9.24_{-0.71}^{+0.72}$	6.0 ± 0.8
	$B^{0} \rightarrow D^{+} K^{-}$	3.09	$3.28{ }_{-0.31}^{+0.16}$	$3.38_{-0.30}^{+0.13}$	3.01-0.31	2.19 ± 0.13
$\begin{array}{lllllll} \hline & 1.0 & 1.1 & 1.2 & 1.3 & 1.4 & 1.5 \\ & & & w & & \end{array}$	$\bar{B}^{0} \rightarrow D^{*+} K^{-}$	2.75	$2.922_{-0.30}^{+0.19}$	$3.02_{-0.30}^{+0.18}$	$2.59_{-0.37}^{+0.39}$	2.04 ± 0.47
ㅁ Updated predictions vs data:	$\bar{B}^{0} \rightarrow D^{+} K^{*-}$	5.33	$5.655_{-0.64}^{+0.47}$	$5.788_{-0.63}^{+0.44}$	$5.25_{-0.63}^{+0.65}$	4.6 ± 0.8
[Huber, Kränkl, Li '16; Cai, Deng, Li, Yang '21]	$\bar{B}_{s}^{0} \rightarrow D_{s}^{+} \pi^{-}$	4.10	- $4.355_{-0.43}^{+0.24}$	4.7.77-0.21	$\begin{array}{r} 1.39_{-1.19}^{+1.36} \end{array}$	$3.03 \pm 0.25 \text { : }$
$\left\|V_{c b}\right\|$ and $B_{d, s} \rightarrow D_{d, s}^{(*)}$ form factors	$\bar{B}_{s}^{0} \rightarrow D_{s}^{+} K^{-}$	3.12	$3.32_{-0.32}^{+0.17}$	$3.42_{-0.31}^{+0.14}$	$3.344_{-0.90}^{+1.04}$	1.92 ± 0.22

Power corrections

\square Sources of sub-leading power corrections: [Beneke,
Buchalla, Neubert, Sachrajda '01; Bordone, Gubernari, Huber, Jung, van Dyk '20]

$$
\begin{aligned}
&\left\langle D_{q}^{(*)+} L^{-}\right| \mathcal{Q}_{i}\left|\bar{B}_{q}^{0}\right\rangle=\sum_{j} F_{j}^{\bar{B}_{q} \rightarrow D_{q}^{(*)}}\left(M_{L}^{2}\right) \\
& \times \int_{0}^{1} d u T_{i j}(u) \phi_{L}(u): \mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}\right) \\
&
\end{aligned}
$$

> Non-factorizable spectator interactions;
Scaling of the leading-power contribution: [BBNS '01]

> Annihilation topologies;

$$
\frac{\Lambda_{\mathrm{QCD}}}{m_{b}}
$$

$$
\mathcal{A}\left(\bar{B}_{d} \rightarrow D^{+} \pi^{-}\right) \sim G_{F} m_{b}^{2} F^{B \rightarrow D}(0) f_{\pi} \sim G_{F} m_{b}^{2} \Lambda_{\mathrm{QCD}}
$$

$>\propto \frac{c_{1}}{a_{1}} \simeq-\frac{1}{3}$, all are ESTIMATED to be power-suppressed; not chiralityenhanced due to (V-A)(V-A) structure
> Current exp. data could not be easily explained within the SM, at least within
> Non-leading Fock-state contributions;
 included into FFs.

Summary

\square NNLO calculation at LP in QCDF complete; soft-collinear factorization established!

colour-allowed tree α_{1}

colour-suppressed tree α_{2}

QCD penguins α_{4}
\square Individual contributions sizeable, but cancel with each other;NNLO shift small!

$$
\begin{aligned}
& \alpha_{1}(\pi \pi)= 1.009+[0.023+0.010 i]_{\mathrm{NLO}}+[0.026+0.028 i]_{\mathrm{NNLO}} \\
&-\left[\frac{r_{\mathrm{sp}}}{0.445}\right]\left\{[0.014]_{\mathrm{LOsp}}+[0.034+0.027 i]_{\mathrm{NLOsp}}+[0.008]_{\mathrm{tw} 3}\right\} \\
& a_{4}^{u}(\pi \bar{K}) / 10^{-2}=-2.87-[0.09+0.09 i]_{\mathrm{v}_{1}}+[0.49-1.32 i]_{\mathrm{P}_{1}}-[0.32+0.71 i]_{\mathrm{P}_{2}, \mathrm{Q}_{1,2}}+[0.33+0.38 i]_{\mathrm{P}_{2}, \mathrm{Q}_{3-6,8}}
\end{aligned}
$$

\square Confronted with the current data, some puzzles remain; how about the NLP corrections?

Thank You for your attention!

Back-up

Phenomenological analyses based on NLO

\square Hard kernels at NLO.
Naïve fact.
vertex correction
(a)

spectator-scattering correction

(c)

penguin correction
annihilation correction

- $B \rightarrow P P, P V: \quad[B e n e k e$, Neubert, hep-ph/0308039; Cheng, Chua, 0909.5229, 0910.5237;]
- $B \rightarrow V V: \quad$ [Beneke, Rohrer, Yang, hep-ph/0612290; Cheng, Yang, 0805.0329; Cheng, Chua, 0909.5229, 0910.5237;]
- $B \rightarrow A P, A V, A A: \quad$ [Cheng, Yang, 0709.0137, 0805.0329;]
- $B \rightarrow S P, S V: \quad$ [Cheng, Chua, Yang, hep-ph/0508104, 0705.3079; Cheng, Chua, Yang, Zhang, 1303.4403;]
- $B \rightarrow T P, T V$: [Cheng, Yang, 1010.3309;]

QCDF: very successful but also with some issues!

Why higher orders in pert. \& power corr.s?

- QCDF formulae:

$$
\left\langle M_{1} M_{2}\right| Q|\bar{B}\rangle=T^{\mathrm{I}}\left(\mu_{\mathrm{h}}\right) * \phi_{\pi}\left(\mu_{\mathrm{h}}\right) f_{+}^{B \pi}(0)+\overbrace{H^{\mathrm{II}}\left(\mu_{\mathrm{h}}\right) * U_{\|}\left(\mu_{\mathrm{h}}, \mu_{\mathrm{hc}}\right) * J\left(\mu_{\mathrm{hc}}\right)}^{T^{\mathrm{II}}} * \phi_{\pi}\left(\mu_{\mathrm{h}}\right) * \phi_{\pi}\left(\mu_{\mathrm{hc}}\right) * \phi_{B+}\left(\mu_{\mathrm{hc}}\right)
$$

\square Factorization of power correction generally broken, due to endpoint divergence; how to?
\square How important the higher-order pert. corr.? Fact. theorem is still established for them?
\square As strong phase starts at $\mathcal{O}\left(\alpha_{s}\right)$, NNLO is only NLO to them; quite relevant for $A_{C P}$?
\square Data driven: could not account for some data, such as large $\operatorname{Br}\left(B^{0} \rightarrow \pi^{0} \pi^{0}\right)$ and $\Delta A_{C P}(\pi K) ;$

We need go beyond the LO in pert. and power corrections!

Scale dependence of a_{4}^{p}

\square strong cancellation between $Q_{1,2}^{p}$ and; $Q_{3-6,8 g}$;
\square Scale dependence of a_{4}^{p} : only form-factor term;

- Theoretical uncertainty is larger at NNLO than at NLO.
- Scale dependence negligible, especially for $\mu>4 \mathbf{G e V}$.

