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to judge B anomalies! 



B decays are important!

New Physics

Standard Model

QCD
nonperturbation

Quantum gravity Hierarchies

Darks



Categories of B decays 
leptonic, radiative or hadronic; tree or penguin; …  

Inclusive Exclusive

Cleaner theory  ✓

Easier experiments  ✓

More channels          ✓

Inclusive and exclusive B decays 

๏ Play an important role by themselves 

๏ Complementary to each other 



Inclusive vs Exclusive

[HFLAV,1909.12524]

—— an example: inclusively and exclusively extracted Vub & Vcb

see also talk by De Cian et al



Inclusive vs Exclusive
——  anomaliesb → sℓℓ

๏ : an angular-distribution observable


๏

P′ 5

RK* ≡
B(B̄ → K*μμ)
B(B̄ → K*ee)

[LHCb, 1705.05802][LHCb, 2003.04831] [Belle, 1612.05014]
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Inclusive vs Exclusive
——  anomaliesb → sℓℓ

Question: why don’t we study the correponding inclusive 
channel as a cross check?B̄ → Xsℓ+ℓ−

Answer: lack of data for a precision study.

Good news ——Belle II



Inclusive vs Exclusive
——  anomaliesb → sℓℓ

Belle II precision for  (expectation):B̄ → Xsℓℓ

[“The Belle II Physics Book”, by Huber, Ishikawa and Virto]

Better by one order!



Inclusive vs Exclusive ——  anomaliesb → sℓℓ

B factories (red, green) 

              Belle II (yellow)

[Huber,Hurth,Lunghi,’15]

To exclusive anomalies, the inclusive channel serves as 

๏  a strong cross check (different theoretical framework) 

๏  a solid cross check (systematic OPE)

๏  a practical cross check (Belle II)



Theoretical calculation

{
Within OPE  

Beyond OPE

Radiative corrections 

Power corrections

Factorizable  

Non-factorizable

{
{

(Long-distance)



Theoretical calculation —— within OPE
 


   Operator product expansion:

 power corrections: 
 coefficients Ci obtained by matching
 matrix elements extracted from data

1/mb

[Falk,Luke,Savage,’93]

leading power: 
= quark-level process
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Theoretical calculation —— within OPE

      Perturbative        corrections include

๏ NNLO QCD corrections 

๏ log-enhanced NLO QED corrections


๏ multi-particle contributions as  b → sℓ+ℓ−q̄q
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1,2 = (d̄�µPLu)(ū�µPLb) P9 = (d̄�µPLb)(¯̀�µ`) (9)

|V ⇤
udVub|

2↵2
s

2C2
1,2 |V ⇤

tdVtb|
2C2

9  ⌘
↵e

↵s
(10)

�4↵2
s

2 vs �42 (C9 ⇠ ) �4↵2
s

2 vs �4↵22 (C9 ⇠ ↵s) (11)

� =
1

2mb

Z
|A|

2 dPS (12)

b u

d d

u

d

W+

B0

⇡+

⇡�

A. Calculation

4⇥ 6 4⇥ 2 + 2⇥ 2 4⇥ 2 + 4 + 4 (13)

2
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Theoretical calculation —— within OPE

      Power corrections include

 𝒪(1/m2
b)  𝒪(1/m3

b)
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Theoretical calculation —— beyond OPE
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The tail effects are still considerable!
Cut off the resonance region?

Long-distance contributions induced by charmonium resonances and others 



Theoretical calculation —— beyond OPE

Two kinds of long-distance contributions:
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๏  The current-current-operator matrix element is in general written as


๏  Extract it from data —— the R-ratio & Tau decays.

[Kruger,Sehgal,96’]the Kruger-Sehgal function

Long-distance effects (factorizable)

[see Keshavarzi,Nomura,Teubner,’18]

[T. Huber, T. Hurth, J. Jenkins, E. Lunghi, QQ, K. Vos,’19,’20] 



   The R-ratio give the imaginary part


The real part is obtained by dispersion relation

B̄

`�

`+

...

J/ 

Xd,s

b s(d)

`� `+

� =
1X

m,n=0

↵m
(s)

✓
⇤QCD

mb

◆n

�(m,n) (1)

�(B̄ ! Xs`
+`�) =

X

Xs

Z
d�s

��hXs`
+`�|He↵|B̄i

��2 (2)

=
X

Xs

Z
d�s

��h`+`�|J`|0ihXs|Jq|B̄i
��2 (3)

X

Xs

hB̄|J †
q |XsihXs|Jq|B̄i (4)

X

Xs

hB̄|J †
q |XsihXs|Jq|B̄i (5)

/ Im

Z
d4e�iq·xhB̄|T{J †

q (x)Jq(0)}|B̄i (6)

= Im hB̄|C0O0 +
C1

mb
O1 +

C2

m2
b

O2 + · · · |B̄i (7)

(8)

(q = pB � pX = p``)

Rhad(s) =
3s

4⇡↵2
�had(s) = 12⇡Im[⇧�(s)] ⇡

�(e+e� ! hadrons)

�(e=e� ! µ+µ�)
(9)

2

perturbative input,  
two-loop match 

s0 = − (5 GeV)2

Long-distance effects (factorizable)
[T. Huber, T. Hurth, J. Jenkins, E. Lunghi, QQ, K. Vos,’19,’20] 

 Phenomenologically, the decay rates are modified by 

๏  ~ 5% in the low-  region

๏  ~ 15% in the high-  region

q2

q2

Πγ(q2) ∝ hKS
q (q2)

[de Boer,’17]



     So-called resolved-photon contributions, operator matching


     Calculation of nonlocal operator matrix elements

๏ seriously dependent on modeled shape functions of B meson

๏ phenomenologically, ~5% uncertainty is assumed

[See Voloshin,’96;Buchalla,Isidori,Rey,’97;Benzke,Hurth,Turczyk,’17]
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Long-distance effects (non-factorizable)



    We consider the observables in two kinetic regions  and

    , to reduce the resonance effects, including


๏  The branching ratios in the low- and high-  regions 


๏  The angular-distribution observables in the low-  region


๏  The ratio between  and  the high-  region to reduce 
power-correction uncertainties 

q2 ∈ [1,6] GeV2

q2 > 14.4 GeV2

q2

q2

B̄ → Xsℓ+ℓ− B0 → Xuℓν q2

In this work, we basically consider the CP-averaged branching ratios, forward-backward asym-

metries and the CP asymmetries of the inclusive B̄ ! Xd`
+
`
� decays. We leave the other angular-

distribution observables to future study, because even the statistics of the full the Belle II dataset

is not enough to perform a complete angular analysis for the B̄ ! Xd`
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In the absence of QED corrections the double-di↵erential decay width d
2�/dq2/dz

is a second order polynomial in z, giving rise to three independent angular-distribution

observables H
``

I (q2), I = T,A, L [56]. As pointed out in [40], QED corrections lead to a

distortion of the simple polynomial z dependence and result in a complicated function of

z. It is therefore instructive to use projections with weight functions WI(z) to define the

H
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I (q2). In the absence of QED corrections the original definitions from [56] are restored,

but the use of the weight functions better captures the e↵ects of QED radiation in the

angular observables. In addition, the weight functions will give us the flexibility to define

further observables, as we will demonstrate below. We therefore define

H
``

I (q2) =

Z +1

�1
dz

d
2�(B̄ ! Xs``)

dq
2
dz

WI(z) ,

HI [q
2
m, q

2
M ]`` =

Z
q
2
M

q
2
m

dq
2
H

``

I (q2) . (2.4)

Almost all weight functionsWI(z) are constructed from Legendre polynomials Pn(z), which

are orthogonal on z 2 [�1, 1]. Moreover, we can use Legendre polynomials with n > 2 to
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The di↵erential rate and unnormalized forward-backward asymmetry are related to the

angular-distribution observables via
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The observables HI di↵er from the HI merely by a normalization which can be deduced

from eqs. (4.4) and (4.6) of [40]. To the latter paper we also refer for master formulas of

all observables. Our operator basis is the same as in [38]. Finally, the branching ratio is

calculated via
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b,pole. The ratio R(14.4)`` significantly reduces the uncertainties intro-

duced by hadronic power corrections, which dominate the uncertainties of the high-q2

B̄ ! Xs`
+
`
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– 4 –



exp:

SM predictions

106 ⋅ B[1,6]ee = 1.78 ± 0.13 = 1.78 ± 0.08scale ± 0.09resolved ± . . .

106 ⋅ B[1,6]μμ = 1.73 ± 0.13 = 1.78 ± 0.08scale ± 0.09resolved ± . . .

107 ⋅ B[ > 14.4]μμ = 2.38 ± 0.87 = 2.38 ± 0.27scale ± 0.79power ± . . .



I. INTRODUCTION

RXs ⌘
B(B̄ ! Xsµ+µ�)

B(B̄ ! Xse+e�)
= 0.971± 0.003, (q2 2 [1, 6]GeV2) (1)

A. Branching ratio, low-q2 region

This is for b ! s

B[1, 6]ee = (1.78± 0.08scale ± 0.02mt ± 0.04C,mc ± 0.02mb ± 0.01↵s ± 0.002CKM

± 0.03BRsl ± 0.01�2 ± 0.09resolved) · 10�6 = (1.78± 0.13) · 10�6 . (2)

B[1, 6]µµ = (1.73± 0.08scale ± 0.02mt ± 0.04C,mc ± 0.02mb ± 0.01↵s ± 0.002CKM

± 0.03BRsl ± 0.01�2 ± 0.09resolved) · 10�6 = (1.73± 0.13) · 10�6 . (3)

B[1, 3.5]ee = (9.82± 0.34scale ± 0.10mt ± 0.21C,mc ± 0.11mb ± 0.04↵s ± 0.009CKM

± 0.15BRsl ± 0.06�2 ± 0.49resolved) · 10�7 = (9.82± 0.67) · 10�7 . (4)

B[1, 3.5]µµ = (9.44± 0.30scale ± 0.10mt ± 0.20C,mc ± 0.11mb ± 0.04↵s ± 0.009CKM

± 0.14BRsl ± 0.06�2 ± 0.47resolved) · 10�7 = (9.44± 0.63) · 10�7 . (5)

B[3.5, 6]ee = (7.98± 0.47scale ± 0.09mt ± 0.19C,mc ± 0.09mb ± 0.06↵s ± 0.01CKM

± 0.12BRsl ± 0.06�2 ± 0.40resolved) · 10�7 = (7.98± 0.67) · 10�7 . (6)

B[3.5, 6]µµ = (7.85± 0.45scale ± 0.09mt ± 0.19C,mc ± 0.10mb ± 0.06↵s ± 0.01CKM

± 0.12BRsl ± 0.06�2 ± 0.39resolved) · 10�7 = (7.85± 0.66) · 10�7 . (7)

comment on the size of the omega EM

KKVcomment 2019: Compared to the 2015 paper, the di↵erence comes from changes in the

CKM factors, BRcenu (1%). Previously, R(s) was 1.56 which goes to our current 1.59 due to these

e↵ects. In addition, here we leave out the 1/m2
c corrections which subtract �0.1, which now we

leave out. Then the rest of the di↵erence comes from the KS (previously 1.59 now 1.68). The

larger uncertainty comes from the treatment of the resolved contributions. So we understand the

di↵erence.

1

to be tested at Belle II!

(q = pB � pX = p``)

Rhad(s) =
3s

4⇡↵2
�had(s) = 12⇡Im[⇧�(s)] ⇡

�(e+e� ! hadrons)

�(e=e� ! µ+µ�)
(9)

q2 ⌘ M2
`` 2 [1, 6] GeV2 q2 > 14.4 GeV2

RK⇤ ⌘ B(B ! K⇤µµ)

B(B ! K⇤ee)
(10)

(l + q)↵
l · q

h
Fµ↵G̃µ� +Gµ↵F̃µ�

i
s̄�1�

��5�2b (11)

P 0
5

B̄ ! Xs,d`+`�

B[> 14.4]ee = (2.04± 0.28scale ± 0.02mt ± 0.03C,mc ± 0.19mb ± 0.002CKM ± 0.03BRsl

± 0.006↵s ± 0.13�2 ± 0.57⇢1 ± 0.54fu,s) · 10�7 = (2.04± 0.87) · 10�7 ,

B[> 14.4]µµ = (2.38± 0.27scale ± 0.03mt ± 0.04C,mc ± 0.21mb ± 0.002CKM ± 0.04BRsl

± 0.006↵s ± 0.12�2 ± 0.57⇢1 ± 0.54fu,s) · 10�7 = (2.38± 0.87) · 10�7 .

L = 0.1 ab�1

RXs [1, 3.5] = 0.961± 0.004 , (12)

RXs [3.5, 6] = 0.984± 0.002 , (13)

RXs [1, 6] = 0.971± 0.003 , (14)

RXs [> 14.4] = 1.17± 0.08 . (15)

3

Lepton-universality observables
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B[1, 3.5]µµ =
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R8R
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� 0.0573964R
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R9R
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+ 0.018682I (R7)

� 0.00307673I (R8) + 0.0461066I (R9)� 0.0020085I (R10)

+ 0.170386R (R7) + 0.0103486R (R8) + 1.56162R (R9)

� 0.296469R (R10) + 1.67348
i
⇥ 10�7

, (B.5)

B[3.5, 6]µµ =
h
0.0745453 |R7|

2 + 0.000916702 |R8|
2 + 0.724126 |R9|

2
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H3[1, 6]µµ = (3.80± 0.48scale ± 0.04mt
± 0.08C,mc

± 0.06mb
± 0.04↵s

± 0.003CKM

± 0.06BRsl
± 0.01�1

± 0.02�2
± 0.19resolved) · 10

�9 = (3.80± 0.53) · 10�9
.

(A.8)

H4[1, 3.5]ee = (6.37± 0.56scale ± 0.07mt
± 0.13C,mc

± 0.01mb
± 0.03↵s

± 0.006CKM

± 0.10BRsl
± 0.01�1

± 0.03�2
± 0.32resolved) · 10

�9 = (6.37± 0.67) · 10�9
,

H4[3.5, 6]ee = (2.24± 0.16scale ± 0.03mt
± 0.05C,mc

± 0.02mb
± 0.01↵s

± 0.002CKM

± 0.03BRsl
± 0.005�1

± 0.01�2
± 0.11resolved) · 10

�9 = (2.24± 0.21) · 10�9
,

H4[1, 6]ee = (8.60± 0.73scale ± 0.09mt
± 0.18C,mc

± 0.02mb
± 0.04↵s

± 0.008CKM

± 0.13BRsl
± 0.02�1

± 0.04�2
± 0.43resolved) · 10

�9 = (8.60± 0.88) · 10�9
.

(A.9)

H4[1, 3.5]µµ = (2.65± 0.23scale ± 0.03mt
± 0.06C,mc

± 0.01mb
± 0.01↵s

± 0.002CKM

± 0.04BRsl
± 0.01�1

± 0.01�2
± 0.13resolved) · 10

�9 = (2.65± 0.28) · 10�9
,

H4[3.5, 6]µµ = (0.93± 0.07scale ± 0.01mt
± 0.02C,mc

± 0.01mb
± 0.004↵s

± 0.001CKM

± 0.01BRsl
± 0.002�1

± 0.005�2
± 0.05resolved) · 10

�9 = (0.93± 0.09) · 10�9
,

H4[1, 6]µµ = (3.58± 0.30scale ± 0.04mt
± 0.08C,mc

± 0.02mb
± 0.02↵s

± 0.003CKM

± 0.05BRsl
± 0.01�1

± 0.02�2
± 0.18resolved) · 10

�9 = (3.58± 0.36) · 10�9
.

(A.10)

B New Physics formulas

In this appendix we give the new-physics formulas of all observables in terms of the following

ratios

R7,8 =
C

(00)e↵
7,8 (µ0)

C
(00)e↵,SM
7,8 (µ0)

and R9,10 =
C

(11)
9,10 (µ0)

C
(11)SM
9,10 (µ0)

. (B.1)

The superscripts on the Wilson coe�cients denote the order in the expansion in ↵s and

 = ↵e/↵s, see [38, 40] for details. The connection to the new-physics part of the Wilson co-

e�cients in eq. (5.1) is straightforward. On the right-hand sides of all the equations below,

R and I denote the real and imaginary part of the expression in parenthesis, respectively.

The label ’no em’ refers to leaving out log-enhanced QED corrections as described in the

caption of table 5. The new-physics formulas are provided electronically as ancillary files

attached to the arXiv submission of the present paper.

B.1 Branching ratio, low-q2 region

B[1, 3.5]ee =
h
0.216997 |R7|

2 + 0.00294962 |R8|
2 + 0.833492 |R9|

2

– 24 –
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New-physics analysis

Judgement on B anomalies at 5  levelσ



๏ We have systematically studied the inclusive  
decay, to the state of the art 


๏ We make predictions for its br’s, angular observables and 
observables to test lepton flavor universality


๏ Our results, together with the Belle II data, will be able to 
judge the anomalies from exclusive  decays 

B̄ → Xsℓℓ

b → sℓℓ

Summary

Thank you!



Backup



★ New physics analysis for 

Phenomenology

b d

`
�

`
+

+↵s,e corrections

1/m
2
b 1/m

3
b

II. INTRODUCTION

B̄ ! Xs`
+
`
�

B̄ ! Xd`
+
`
�

����
VusV

⇤
ub

VcsV
⇤
cb

����

����
VtsV

⇤
tb

VcsV
⇤
cb

���� (8)

B̄ ! Xs`
+
`
�

B̄ ! Xd`
+
`
�

(9)

III. RESONANCE EFFECTS

B̄ ! Xs ! Xs`
+
`
�
q
2

s0 = �(5GeV)
2

IV. INPUTS

�i, ⇢i f
±,0
q

B ! Xc`⌫

V. PHENOMENOLOGY

q
2 2 [1, 6]GeV

2
q
2
> 14.4GeV

2
(10)

q
2 ⌘ (p`+ + p`�)

2
(11)

2

[1, 3.5] [3.5, 6] [1, 6] > 14.4

B 3.1 % 2.6 % 2.0 % 2.6%

HT 24 % 15 % 13 % -

HL 5.5 % 5.0 % 3.7 % -

HA 40 % 33 % - % -

H3 240 % 140 % 120 % -

H4 140 % 270 % 120 % -

Table 4: Projected statistical uncertainties that we expect at Belle II with 50 ab�1 of

integrated luminosity. The first row gives the considered q
2 bin in GeV2. The total

projected error is obtained by adding a 5.8(3.9)% systematic uncertainty to all low-q2

(high-q2) observables.

adopted in ref. [40] for HT and HL. In table 4 we present the projected statistical uncer-

tainties we use. The total uncertainties are obtained by adding a 5.8% (3.9%) systematic

error to all low-q2 (high-q2) observables.

The projected uncertainty on the ratio R(14.4) requires an estimate of the expected

experimental error on the semileptonic B̄ ! Xu`⌫ branching ratio measured with q
2
`⌫ >

14.4 GeV2. We assess the latter by rescaling the expected experimental error on the

extraction of V incl
ub (see table 59 of ref. [21]) by an estimate of the fraction of the semileptonic

spectrum for q
2
`⌫ > 14.4 GeV2 which we obtained by a sample spectrum presented in

ref. [79]. As a rough estimate of this projected uncertainty we find [�R(14.4)]exp
50 ab

�1 = 7.3%.

The expected constraints obtained by considering separate measurements of HT,L,A in

the two low-q2 bins, the high-q2 branching ratio and the ratio R(14.4), are presented in

the right panel of figure 2. In figure 3 we show the breakdown of the low-q2 constraints.

In particular, we see that considering the two low-q2 bins separately is mostly relevant for

HT and especially for HA. In the two panels of figure 4 we show the relative contribution

of low- and high-q2 observables to the bounds expected. At high-q2 it is imperative to

consider the ratio R(14.4) in order to reduce exposure to large power corrections which

stem from the breakdown of the OPE at the end-point of the spectrum. From the SM

results in eqs. (3.16), (3.17) we see that a large fraction of the uncertainty on R(14.4) is

due to the direct determination of |Vub|. In figure 5 we show the constraints from the QED

observables H3,4.

5.1 Interplay between inclusive and exclusive decays

In this subsection we discuss the interplay between the experimental projections we dis-

cussed above and the existing anomalies in exclusive modes. Since some of the latter (such

as P 0
5) are specific to the di-muon final state, and since modifying only the muonic Wilson

coe�cients can already accommodate the data, we present bounds in the [CµNP
9 , C

µNP
10 ]

plane, assuming there are no new physics contributions to the coe�cients Ce

9,10.

We begin by recalculating the expected constraints for the B̄ ! Xsµ
+
µ
� channel

only (i.e. the projected statistical experimental uncertainties increase by
p
2 because we

– 14 –
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๏ Use latest data from BESIII, BaBar and ALEPH


๏  The matching point is calculated at the two-loop level.


    Phenomenologically, the decay rates are modified by 

๏  ~ 5% in the low-  region

๏  ~ 15% in the high-  region

q2

q2

[see Keshavarzi,Nomura,Teubner,’18]

[de Boer,’17]

Asymptotic behaviours of perturbative and Kruger-Sehgal functions

Long-distance effects (factorizable)



    for branching ratios (high- )q2

q2 ⌘ M2
`` 2 [1, 6] GeV2 q2 > 14.4 GeV2

RK⇤ ⌘ B(B ! K⇤µµ)

B(B ! K⇤ee)
(10)

(l + q)↵
l · q

h
Fµ↵G̃µ� +Gµ↵F̃µ�

i
s̄�1�

��5�2b (11)

P 0
5

B̄ ! Xs,d`+`�

B[> 14.4]ee = (2.04± 0.28scale ± 0.02mt ± 0.03C,mc ± 0.19mb ± 0.002CKM ± 0.03BRsl

± 0.006↵s ± 0.13�2 ± 0.57⇢1 ± 0.54fu,s) · 10�7 = (2.04± 0.87) · 10�7 ,

B[> 14.4]µµ = (2.38± 0.27scale ± 0.03mt ± 0.04C,mc ± 0.21mb ± 0.002CKM ± 0.04BRsl

± 0.006↵s ± 0.12�2 ± 0.57⇢1 ± 0.54fu,s) · 10�7 = (2.38± 0.87) · 10�7 .

L = 0.1 ab�1

3

RXs
[> 14.4] = 1.17± 0.03scale ± 0.0003mt

± 0.002C,mc
± 0.006mb

± 0.0009↵s
± 0.01�2

± 0.04⇢1 ± 0.06fu,s = 1.17± 0.08 . (3.15)

3.4 The ratio R(s0)

In order to reduce the large uncertainties from power corrections in the high-q2 region, we

compute the ratio R(s0)`` from eq. (2.8). We find

R(14.4)ee = (21.53± 0.54scale ± 0.25mt
± 0.15C,mc

± 0.09mb
± 0.06↵s

± 0.92CKM

± 0.11�2
± 1.38⇢1 ± 1.54fu,s)⇥ 10�4 = (21.53± 2.35)⇥ 10�4

, (3.16)

R(14.4)µµ = (25.33± 0.27scale ± 0.29mt
± 0.14C,mc

± 0.03mb
± 0.07↵s

± 1.09CKM

± 0.04�2
± 0.83⇢1 ± 1.29fu,s)⇥ 10�4 = (25.33± 1.93)⇥ 10�4

. (3.17)

Even though this ratio is much less sensitive to power corrections, the latter contributes

significantly to the uncertainty. However, note that the uncertainty has been reduced

to about 10%, which is smaller than in previous analysis although we include 30% SU(3)

breaking e↵ects in the weak annihilation parameters. This reveals once more the robustness

of this ratio.

3.5 Forward-backward asymmetry, low-q2 region

The forward-backward asymmetry AFB and the related angular observable HA defined in

eqs. (2.2) and (2.4) are computed for the low-q2 region. These observables have a zero-

crossing at a position q
2
0 (in units of GeV2) which we find to be

(q20)ee = 3.28± 0.11scale ± 0.001mt
± 0.02C,mc

± 0.05mb

± 0.03↵s
± 0.002�1

± 0.001�2
± 0.06resolved = 3.28± 0.14 , (3.18)

(q20)µµ = 3.40± 0.12scale ± 0.001mt
± 0.02C,mc

± 0.05mb

± 0.03↵s
± 0.002�1

± 0.002�2
± 0.06resolved = 3.40± 0.15 . (3.19)

For the normalized forward-backward asymmetry it is natural to subdivide the low-q2

region into two bins due to the zero-crossing,

AFB[1, 3.5]ee = (�7.28± 0.67scale ± 0.01mt
± 0.11C,mc

± 0.23mb

± 0.19↵s
± 0.04�2

± 0.51resolved)% = (�7.28± 0.90)% , (3.20)

AFB[3.5, 6]ee = (8.57± 0.74scale ± 0.01mt
± 0.13C,mc

± 0.37mb

± 0.18↵s
± 0.11�2

± 0.60resolved)% = (8.57± 1.05)% , (3.21)

AFB[1, 6]ee = (�0.18± 0.79scale ± 0.004mt
± 0.13C,mc

± 0.30mb

± 0.20↵s
± 0.02�2

± 0.01resolved)% = (�0.18± 0.88)% , (3.22)

AFB[1, 3.5]µµ = (�8.16± 0.68scale ± 0.01mt
± 0.11C,mc

± 0.23mb

– 9 –

SM predictions



q
2 range [GeV2] [1, 6] [1, 3.5] [3.5, 6]

B 16.98⇥ 10�7 9.23⇥ 10�7 7.75⇥ 10�7

HT 3.13⇥ 10�7 1.48⇥ 10�7 1.64⇥ 10�7

HL 13.77⇥ 10�7 7.69⇥ 10�7 6.08⇥ 10�7

HA �0.27⇥ 10�7 �1.08⇥ 10�7 0.81⇥ 10�7

q
2 range [GeV2] > 14.4

B 2.59 ⇥10�7

R(s0) 27.71 ⇥10�4

Table 5: Phenomenological results without electromagnetic e↵ects, i.e. log-enhanced QED

corrections to the matrix elements at the scale µb are not included. The smaller e↵ect of

QED corrections in the matching and running is, however, taken into accout.

HA[1, 3.5]µµ = (�1.03± 0.05scale ± 0.009mt
± 0.007C,mc

± 0.02mb
± 0.02↵s

± 0.0009CKM

± 0.02BRsl
± 0.0006�2

± 0.05resolved) · 10
�7 = (�1.03± 0.08) · 10�7

,

HA[3.5, 6]µµ = (0.85± 0.13scale ± 0.008mt
± 0.03C,mc

± 0.05mb
± 0.03↵s

± 0.0008CKM

± 0.01BRsl
± 0.005�2

± 0.04resolved) · 10
�7 = (0.85± 0.16) · 10�7

,

HA[1, 6]µµ = (�0.18± 0.19scale ± 0.0009mt
± 0.03C,mc

± 0.07mb
± 0.05↵s

± 0.0002CKM

± 0.003BRsl
± 0.006�2

± 0.009resolved) · 10
�7 = (�0.18± 0.21) · 10�7

.

(A.2)

A.2 HT and HL

HT [1, 3.5]ee = (2.91± 0.15scale ± 0.03mt
± 0.05C,mc

± 0.02mb
± 0.005↵s

± 0.003CKM

± 0.04BRsl
± 0.01�1

± 0.004�2
± 0.15resolved) · 10

�7 = (2.91± 0.22) · 10�7
,

HT [3.5, 6]ee = (2.51± 0.18scale± 0.03mt
± 0.06C,mc

± 0.05mb
± 0.02↵s

± 0.002CKM

± 0.04BRsl
± 0.02�1

± 0.003�2
± 0.13resolved) · 10

�7 = (2.51± 0.24) · 10�7
,

HT [1, 6]ee = (5.42± 0.33scale ± 0.07mt
± 0.11C,mc

± 0.07mb
± 0.01↵s

± 0.005CKM

± 0.08BRsl
± 0.04�1

± 0.007�2
± 0.27resolved) · 10

�7 = (5.42± 0.46) · 10�7
.

(A.3)

HT [1, 3.5]µµ = (2.08± 0.08scale ± 0.02mt
± 0.03C,mc

± 0.01mb
± 0.009↵s

± 0.002CKM

± 0.03BRsl
± 0.01�1

± 0.0005�2
± 0.10resolved) · 10

�7 = (2.08± 0.14) · 10�7
,

HT [3.5, 6]µµ = (2.00± 0.15scale ± 0.03mt
± 0.05C,mc

± 0.05mb
± 0.01↵s

± 0.002CKM

± 0.03BRsl
± 0.02�1

± 0.0007�2
± 0.10resolved) · 10

�7 = (2.00± 0.20) · 10�7
,
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HT [1, 6]µµ = (4.08± 0.23scale ± 0.05mt
± 0.08C,mc

± 0.06mb
± 0.005↵s

± 0.004CKM

± 0.06BRsl
± 0.03�1

± 0.001�2
± 0.20resolved) · 10

�7 = (4.08± 0.34) · 10�7
.

(A.4)

HL[1, 3.5]ee = (6.92± 0.28scale ± 0.07mt
± 0.16C,mc

± 0.09mb
± 0.05↵s

± 0.006CKM

± 0.10BRsl
± 0.01�1

± 0.06�2
± 0.35resolved) · 10

�7 = (6.92± 0.50) · 10�7
,

HL[3.5, 6]ee = (5.43± 0.29scale ± 0.06mt
± 0.13C,mc

± 0.04mb
± 0.04↵s

± 0.005CKM

± 0.08BRsl
± 0.02�1

± 0.05�2
± 0.27resolved) · 10

�7 = (5.43± 0.44) · 10�7
,

HL[1, 6]ee = (12.35± 0.53scale ± 0.13mt
± 0.29C,mc

± 0.14mb
± 0.09↵s

± 0.01CKM

± 0.19BRsl
± 0.03�1

± 0.11�2
± 0.62resolved) · 10

�7 = (12.35± 0.92) · 10�7
.

(A.5)

HL[1, 3.5]µµ = (7.37± 0.28scale ± 0.08mt
± 0.17C,mc

± 0.10mb
± 0.05↵s

± 0.007CKM

± 0.11BRsl
± 0.01�1

± 0.06�2
± 0.37resolved) · 10

�7 = (7.37± 0.52) · 10�7
,

HL[3.5, 6]µµ = (5.81± 0.31scale ± 0.06mt
± 0.14C,mc

± 0.05mb
± 0.04↵s

± 0.005CKM

± 0.09BRsl
± 0.02�1

± 0.06�2
± 0.29resolved) · 10

�7 = (5.81± 0.47) · 10�7
,

HL[1, 6]µµ = (13.18± 0.53scale ± 0.14mt
± 0.31C,mc

± 0.15mb
± 0.09↵s

± 0.01CKM

± 0.20BRsl
± 0.03�1

± 0.12�2
± 0.66resolved) · 10

�7 = (13.18± 0.96) · 10�7
.

(A.6)

A.3 H3 and H4

H3[1, 3.5]ee = (4.14± 0.65scale ± 0.04mt
± 0.09C,mc

± 0.10mb
± 0.05↵s

± 0.004CKM

± 0.06BRsl
± 0.01�1

± 0.02�2
± 0.21resolved) · 10

�9 = (4.14± 0.70) · 10�9
,

H3[3.5, 6]ee = (5.00± 0.51scale ± 0.05mt
± 0.11C,mc

± 0.07mb
± 0.04↵s

± 0.005CKM

± 0.08BRsl
± 0.01�1

± 0.02�2
± 0.25resolved) · 10

�9 = (5.00± 0.59) · 10�9
,

H3[1, 6]ee = (9.14± 1.16scale ± 0.09mt
± 0.19C,mc

± 0.17mb
± 0.09↵s

± 0.008CKM

± 0.14BRsl
± 0.02�1

± 0.04�2
± 0.46resolved) · 10

�9 = (9.14± 1.29) · 10�9
.

(A.7)

H3[1, 3.5]µµ = (1.72± 0.27scale ± 0.02mt
± 0.04C,mc

± 0.04mb
± 0.02↵s

± 0.002CKM

± 0.03BRsl
± 0.004�1

± 0.01�2
± 0.09resolved) · 10

�9 = (1.72± 0.29) · 10�9
,

H3[3.5, 6]µµ = (2.08± 0.21scale ± 0.02mt
± 0.04C,mc

± 0.03mb
± 0.02↵s

± 0.002CKM

± 0.03BRsl
± 0.005�1

± 0.01�2
± 0.10resolved) · 10

�9 = (2.08± 0.25) · 10�9
,
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SM predictions

    for angular observables

RXs
[> 14.4] = 1.17± 0.03scale ± 0.0003mt

± 0.002C,mc
± 0.006mb

± 0.0009↵s
± 0.01�2

± 0.04⇢1 ± 0.06fu,s = 1.17± 0.08 . (3.15)

3.4 The ratio R(s0)

In order to reduce the large uncertainties from power corrections in the high-q2 region, we

compute the ratio R(s0)`` from eq. (2.8). We find

R(14.4)ee = (21.53± 0.54scale ± 0.25mt
± 0.15C,mc

± 0.09mb
± 0.06↵s

± 0.92CKM

± 0.11�2
± 1.38⇢1 ± 1.54fu,s)⇥ 10�4 = (21.53± 2.35)⇥ 10�4

, (3.16)

R(14.4)µµ = (25.33± 0.27scale ± 0.29mt
± 0.14C,mc

± 0.03mb
± 0.07↵s

± 1.09CKM

± 0.04�2
± 0.83⇢1 ± 1.29fu,s)⇥ 10�4 = (25.33± 1.93)⇥ 10�4

. (3.17)

Even though this ratio is much less sensitive to power corrections, the latter contributes

significantly to the uncertainty. However, note that the uncertainty has been reduced

to about 10%, which is smaller than in previous analysis although we include 30% SU(3)

breaking e↵ects in the weak annihilation parameters. This reveals once more the robustness

of this ratio.

3.5 Forward-backward asymmetry, low-q2 region

The forward-backward asymmetry AFB and the related angular observable HA defined in

eqs. (2.2) and (2.4) are computed for the low-q2 region. These observables have a zero-

crossing at a position q
2
0 (in units of GeV2) which we find to be

(q20)ee = 3.28± 0.11scale ± 0.001mt
± 0.02C,mc

± 0.05mb

± 0.03↵s
± 0.002�1

± 0.001�2
± 0.06resolved = 3.28± 0.14 , (3.18)

(q20)µµ = 3.40± 0.12scale ± 0.001mt
± 0.02C,mc

± 0.05mb

± 0.03↵s
± 0.002�1

± 0.002�2
± 0.06resolved = 3.40± 0.15 . (3.19)

For the normalized forward-backward asymmetry it is natural to subdivide the low-q2

region into two bins due to the zero-crossing,

AFB[1, 3.5]ee = (�7.28± 0.67scale ± 0.01mt
± 0.11C,mc

± 0.23mb

± 0.19↵s
± 0.04�2

± 0.51resolved)% = (�7.28± 0.90)% , (3.20)

AFB[3.5, 6]ee = (8.57± 0.74scale ± 0.01mt
± 0.13C,mc

± 0.37mb

± 0.18↵s
± 0.11�2

± 0.60resolved)% = (8.57± 1.05)% , (3.21)

AFB[1, 6]ee = (�0.18± 0.79scale ± 0.004mt
± 0.13C,mc

± 0.30mb

± 0.20↵s
± 0.02�2

± 0.01resolved)% = (�0.18± 0.88)% , (3.22)

AFB[1, 3.5]µµ = (�8.16± 0.68scale ± 0.01mt
± 0.11C,mc

± 0.23mb
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