

Inclusive $\bar{B} \to X_s \ell^+ \ell^-$ decay

Qin Qin (秦溱)

HUST (华中科技大学)

T. Huber, **QQ**, K. Vos, 1806.11521 T. Huber, T. Hurth, J. Jenkins, E. Lunghi, **QQ**, K. Vos, 1908.07507 T. Huber, T. Hurth, J. Jenkins, E. Lunghi, **QQ**, K. Vos, 2007.04191

Conference on Flavor Physics and CP Violation (FPCP2021) Shanghai, 7-11 June 2021

Contents

Motivation

Calculation — — within & beyond OPE

Results — — SM predictions & NP effects

to judge B anomalies!

B decays are important!

Categories of B decays

leptonic, radiative or hadronic; tree or penguin; ...

- Play an important role by themselves
- Complementary to each other

—— an example: inclusively and exclusively extracted Vub & Vcb

see also talk by De Cian et al

[HFLAV, 1909.12524]

 $---b \rightarrow s\ell\ell$ anomalies

see also talks by Watanukl, Mannel, Materok et al

 $---b \rightarrow s\ell\ell$ anomalies

Question: why don't we study the correponding inclusive channel $\bar{B} \to X_s \ell^+ \ell^-$ as a cross check?

Answer: lack of data for a precision study.

Good news – – Belle II

 $---b \rightarrow s\ell\ell$ anomalies

Belle II precision for $\overline{B} \to X_s \ell \ell$ (expectation):

	~		
	\bigcap		\frown
Observables	$\mathrm{Belle}(0.71\mathrm{ab}^{-1})$	Belle II $5 \mathrm{ab}^{-1}$	Belle II 50 ab^{-1}
$Br(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] GeV^2)$	29%	13%	6.6%
$Br(B \to X_s \ell^+ \ell^-) \ ([3.5, 6.0] GeV^2)$	24%	11%	6.4%
$\operatorname{Br}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ \mathrm{GeV}^2)$	23%	10%	4.7%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ ([1.0, 3.5] {\rm GeV^2})$	26%	9.7~%	$3.1 \ \%$
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9~%	2.6~%
$A_{\rm CP}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$	21%	8.1~%	2.6~%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([1.0, 3.5] {\rm GeV}^2)$	26%	9.7%	3.1%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \; ([3.5, 6.0] {\rm GeV}^2)$	21%	7.9%	2.6%
$A_{\rm FB}(B \to X_s \ell^+ \ell^-) \ (> 14.4 \ {\rm GeV^2})$	19%	7.3%	2.4%
$\Delta_{ m CP}(A_{ m FB})~([1.0, 3.5]{ m GeV^2})$	52%	19%	6.1%
$\Delta_{ m CP}(A_{ m FB})~([3.5, 6.0]{ m GeV^2})$	42%	16%	5.2%
$\Delta_{\rm CP}(A_{\rm FB})~(>14.4~{ m GeV^2})$	38%	15%	4.8%

Better by one order!

["The Belle II Physics Book", by Huber, Ishikawa and Virto]

To exclusive anomalies, the **inclusive** channel serves as

- a strong cross check (different theoretical framework)
- a solid cross check (systematic OPE)
- a practical cross check (Belle II)

Theoretical calculation

Theoretical calculation —— within OPE

Operator product expansion: [Falk,Luke,Savage,'93]

Theoretical calculation —— within OPE

<u>Perturbative $\alpha_{s,e}$ corrections</u> include

- NNLO QCD corrections [Misiak et al,'92,'99;Greub et al,'01,'02,'03,'04;Seidel,'04]
- log-enhanced NLO QED corrections

• multi-particle contributions as $b \to s \ell^+ \ell^- \bar{q} q$

Theoretical calculation —— within OPE

Theoretical calculation —— beyond OPE

Long-distance contributions induced by charmonium resonances and others

 q^2 [GeV²][Ghinculov,Hurth,Isidori,Yao]

Cut off the resonance region?

The tail effects are still considerable!

Theoretical calculation —— beyond OPE

Two kinds of long-distance contributions:

Long-distance effects (factorizable)

[T. Huber, T. Hurth, J. Jenkins, E. Lunghi, QQ, K. Vos,'19,'20]

The <u>current-current-operator matrix element</u> is in general written as

$$(q^{\mu}q^{\nu} - q^{2}g^{\mu\nu})h_{q}^{\mathrm{KS}}(q^{2}) = \frac{16\pi^{2}}{9Q_{q}} i\int d^{4}x \ e^{iqx} \langle 0|TJ_{q}^{\mu}(0)J_{\mathrm{em}}^{\nu}(x)|0\rangle$$

the Kruger-Sehgal function

[Kruger,Sehgal,96']

• Extract it from data -- the R-ratio & Tau decays.

[see Keshavarzi,Nomura,Teubner,'18]

Long-distance effects (factorizable)

[T. Huber, T. Hurth, J. Jenkins, E. Lunghi, QQ, K. Vos,'19,'20]

The R-ratio give the imaginary part

$$R_{\text{had}}(s) = \frac{3s}{4\pi\alpha^2} \sigma_{\text{had}}(s) = 12\pi \text{Im}[\Pi_{\gamma}(s)] \approx \frac{\sigma(e^+e^- \to \text{hadrons})}{\sigma(e^-e^- \to \mu^+\mu^-)}$$
$$\Pi_{\gamma}(q^2) \propto h_q^{KS}(q^2)$$

The real part is obtained by **dispersion relation**

$$\operatorname{Re}[h_q^{\mathrm{KS}}(s)] = \operatorname{Re}[h_q^{\mathrm{KS}}(s_0)] + \frac{s - s_0}{\pi} \int_0^\infty dt \ \frac{\operatorname{Im}[h_q^{\mathrm{KS}}(t + i\epsilon)]}{(t - s_0)(t - s - i\epsilon)}.$$

$$\operatorname{perturbative input, } s_0 = -(5 \ \mathrm{GeV})^2$$

$$\operatorname{two-loop match} \qquad [de \ \mathrm{Boer}, 17]$$

Phenomenologically, the decay rates are modified by

• ~ 5% in the low-
$$q^2$$
 region

• ~ 15% in the high-
$$q^2$$
 region

Long-distance effects (non-factorizable)

So-called resolved-photon contributions, operator matching

[See Voloshin,'96;Buchalla,Isidori,Rey,'97;Benzke,Hurth,Turczyk,'17]

Calculation of nonlocal operator matrix elements

- seriously dependent on modeled shape functions of B meson
- phenomenologically, <u>~5% uncertainty</u> is assumed

Observables

$$q^2 \equiv (p_{\ell^+} + p_{\ell^-})^2$$

We consider the observables in two kinetic regions $q^2 \in [1,6]$ GeV² and $q^2 > 14.4$ GeV², to reduce the resonance effects, including

- The branching ratios in the low- and high- q^2 regions
- The angular-distribution observables in the low- q^2 region

• The ratio between $\bar{B} \to X_s \ell^+ \ell^-$ and $B^0 \to X_u \ell^- \nu$ the high- q^2 region to reduce power-correction uncertainties [Ligeti, Tackmann, '07]

$$\mathcal{R}(s_0) = \int_{\hat{s}_0}^1 \mathrm{d}\hat{s} \, \frac{\mathrm{d}\Gamma(\bar{B} \to X_d \ell^+ \ell^-)}{\mathrm{d}\hat{s}} \, / \, \int_{\hat{s}_0}^1 \mathrm{d}\hat{s} \, \frac{\mathrm{d}\Gamma(B^0 \to X_u \ell\nu)}{\mathrm{d}\hat{s}}$$

SM predictions

$$10^{6} \cdot B[1,6]_{ee} = 1.78 \pm 0.13 \pm 1.78 \pm 0.08_{\text{scale}} \pm 0.09_{\text{resolved}} \pm \dots$$
$$10^{6} \cdot B[1,6]_{\mu\mu} = 1.73 \pm 0.13 = 1.78 \pm 0.08_{\text{scale}} \pm 0.09_{\text{resolved}} \pm \dots$$
$$\text{exp:} \quad \mathcal{B}(\bar{B} \to X_{s}\ell^{+}\ell^{-})_{\text{low}}^{\text{exp}} = (1.58 \pm 0.37) \times 10^{-6}$$
$$10^{7} \cdot B[> 14.4]_{\mu\mu} = 2.38 \pm 0.87 = 2.38 \pm 0.27_{\text{scale}} \pm 0.79_{\text{power}} \pm \dots$$

٠

Lepton-universality observables

$$R_{X_s} \equiv \frac{\mathcal{B}(\bar{B} \to X_s \mu^+ \mu^-)}{\mathcal{B}(\bar{B} \to X_s e^+ e^-)}$$

$$R_{X_s}[1, 3.5] = 0.961 \pm 0.004$$
,

$$R_{X_s}[3.5, 6] = 0.984 \pm 0.002$$
,

 $R_{X_s}[1,6] = 0.971 \pm 0.003$,

 $R_{X_s}[> 14.4] = 1.17 \pm 0.08$.

to be tested at Belle II!

New-physics analysis

$$\begin{split} \mathcal{B}[1,6]_{ee} = & \left[0.288327 \left| R_7 \right|^2 + 0.00384785 \left| R_8 \right|^2 + 1.56513 \left| R_9 \right|^2 \right. \\ & + 11.3588 \left| R_{10} \right|^2 + 0.0232071 \mathcal{I} \left(R_7 R_8^* \right) + 0.00507683 \mathcal{I} \left(R_7 R_9^* \right) \right. \\ & + 0.0266804 \mathcal{I} \left(R_8 R_9^* \right) - 0.00054448 \mathcal{I} \left(R_8 R_{10}^* \right) + 0.068984 \mathcal{R} \left(R_7 R_8^* \right) \\ & - 0.89029 \mathcal{R} \left(R_7 R_9^* \right) + 0.015688 \mathcal{R} \left(R_7 R_{10}^* \right) - 0.101342 \mathcal{R} \left(R_8 R_9^* \right) \\ & + 0.00188925 \mathcal{R} \left(R_8 R_{10}^* \right) - 0.109829 \mathcal{R} \left(R_9 R_{10}^* \right) + 0.0303878 \mathcal{I} \left(R_7 \right) \\ & + 0.00630353 \mathcal{I} \left(R_8 \right) + 0.047988 \mathcal{I} \left(R_9 \right) - 0.00298649 \mathcal{I} \left(R_{10} \right) \\ & - 0.245038 \mathcal{R} \left(R_7 \right) - 0.0336275 \mathcal{R} \left(R_8 \right) + 3.44232 \mathcal{R} \left(R_9 \right) \\ & - 0.571287 \mathcal{R} \left(R_{10} \right) + 3.00949 \right] \, \times \, 10^{-7} \,, \end{split}$$

$$R_{7,8} = \frac{C_{7,8}^{(00)\text{eff}}(\mu_0)}{C_{7,8}^{(00)\text{eff},\text{SM}}(\mu_0)} \quad \text{and} \quad R_{9,10} = \frac{C_{9,10}^{(11)}(\mu_0)}{C_{9,10}^{(11)\text{SM}}(\mu_0)}$$

New-physics analysis

New-physics analysis

Judgement on B anomalies at 5 σ level

Summary

- $_{\odot}$ We have systematically studied the inclusive $B \to X_{s} \ell \ell$ decay, to the state of the art
- We make predictions for its br's, angular observables and observables to test lepton flavor universality
- ${\, \circ \,}$ Our results, together with the Belle II data, will be able to judge the anomalies from exclusive $b \to s\ell\ell$ decays

Thank you!

Backup

★ New physics analysis for $\bar{B} \to X_s \ell^+ \ell^-$

	[1, 3.5]	[3.5, 6]	[1,6]	> 14.4
${\mathcal B}$	3.1~%	2.6~%	2.0~%	2.6%
\mathcal{H}_T	24~%	15~%	13~%	-
\mathcal{H}_L	5.5~%	5.0~%	3.7~%	-
\mathcal{H}_A	40~%	33~%	- %	_
\mathcal{H}_3	240~%	140~%	120~%	-
\mathcal{H}_4	140~%	270~%	120~%	-

Table 4: Projected statistical uncertainties that we expect at Belle II with 50 ab^{-1} of integrated luminosity. The first row gives the considered q^2 bin in GeV². The total projected error is obtained by adding a 5.8(3.9)% systematic uncertainty to all low- q^2 (high- q^2) observables.

★ New physics analysis for $\bar{B} \to X_s \ell^+ \ell^-$

Long-distance effects (factorizable)

Use latest data from BESIII, BaBar and ALEPH

[see Keshavarzi,Nomura,Teubner,'18]

• The matching point is calculated at the <u>two-loop level</u>. [de Boer,'17]

Asymptotic behaviours of perturbative and Kruger-Sehgal functions

Phenomenologically, the decay rates are modified by

- ~ 5% in the low- q^2 region
- ~ 15% in the high- q^2 region

SM predictions

for branching ratios (high- q^2) $\mathcal{B}[> 14.4]_{ee} = (2.04 \pm 0.28_{\text{scale}} \pm 0.02_{m_t} \pm 0.03_{C,m_c} \pm 0.19_{m_b} \pm 0.002_{\text{CKM}} \pm 0.03_{\text{BR}_{\text{sl}}}$ $\pm 0.006_{\alpha_s} \pm 0.13_{\lambda_2} \pm 0.57_{\rho_1} \pm 0.54_{f_{u,s}}) \cdot 10^{-7} \notin (2.04 \pm 0.87) \cdot 10^{-7}$, $\mathcal{B}[> 14.4]_{\mu\mu} = (2.38 \pm 0.27_{\text{scale}} \pm 0.03_{m_t} \pm 0.04_{C,m_c} \pm 0.21_{m_b} \pm 0.002_{\text{CKM}} \pm 0.04_{\text{BR}_{\text{sl}}}$ $\pm 0.006_{\alpha_s} \pm 0.12_{\lambda_2} \pm 0.57_{\rho_1} \pm 0.54_{f_{u,s}}) \cdot 10^{-7} = (2.38 \pm 0.87) \cdot 10^{-7}$.

$$\begin{aligned} \mathcal{R}(14.4)_{ee} &= (21.53 \pm 0.54_{\text{scale}} \pm 0.25_{m_t} \pm 0.15_{C,m_c} \pm 0.09_{m_b} \pm 0.06_{\alpha_s} \pm 0.92_{\text{CKM}} \\ &\pm 0.11_{\lambda_2} \pm 1.38_{\rho_1} \pm 1.54_{f_{u,s}} \right) \times 10^{-4} = (21.53 \pm 2.35) \times 10^{-4} , \\ \mathcal{R}(14.4)_{\mu\mu} &= (25.33 \pm 0.27_{\text{scale}} \pm 0.29_{m_t} \pm 0.14_{C,m_c} \pm 0.03_{m_b} \pm 0.07_{\alpha_s} \pm 1.09_{\text{CKM}} \\ &\pm 0.04_{\lambda_2} \pm 0.83_{\rho_1} \pm 1.29_{f_{u,s}}) \times 10^{-4} = (25.33 \pm 1.93) \times 10^{-4} . \end{aligned}$$

SM predictions

for angular observables

$$\begin{split} \overline{A}_{\rm FB}[1, 3.5]_{ee} &= (-7.28 \pm 0.67_{\rm scale} \pm 0.01_{m_t} \pm 0.11_{C,m_c} \pm 0.23_{m_b} \\ &\pm 0.19_{\alpha_s} \pm 0.04_{\lambda_2} \pm 0.51_{\rm resolved})\% \neq (-7.28 \pm 0.90)\% \end{split}$$

$$\overline{A}_{\rm FB}[3.5, 6]_{ee} &= (8.57 \pm 0.74_{\rm scale} \pm 0.01_{m_t} \pm 0.13_{C,m_c} \pm 0.37_{m_b} \\ &\pm 0.18_{\alpha_s} \pm 0.11_{\lambda_2} \pm 0.60_{\rm resolved})\% \notin (8.57 \pm 1.05)\%, \end{split}$$

$$\overline{A}_{\rm FB}[1, 6]_{ee} &= (-0.18 \pm 0.79_{\rm scale} \pm 0.004_{m_t} \pm 0.13_{C,m_c} \pm 0.30_{m_b} \\ &\pm 0.20_{\alpha_s} \pm 0.02_{\lambda_2} \pm 0.01_{\rm resolved})\% \notin (-0.18 \pm 0.88)\%, \end{split}$$

$$\mathcal{H}_{T}[1, 3.5]_{ee} = (2.91 \pm 0.15_{\text{scale}} \pm 0.03_{m_{t}} \pm 0.05_{C,m_{c}} \pm 0.02_{m_{b}} \pm 0.005_{\alpha_{s}} \pm 0.003_{\text{CKM}} \\ \pm 0.04_{\text{BR}_{\text{sl}}} \pm 0.01_{\lambda_{1}} \pm 0.004_{\lambda_{2}} \pm 0.15_{\text{resolved}}) \cdot 10^{-7} = (2.91 \pm 0.22) \cdot 10^{-7}$$

$$\mathcal{H}_{L}[1,6]_{ee} = (12.35 \pm 0.53_{\text{scale}} \pm 0.13_{m_{t}} \pm 0.29_{C,m_{c}} \pm 0.14_{m_{b}} \pm 0.09_{\alpha_{s}} \pm 0.01_{\text{CKM}} \\ \pm 0.19_{\text{BR}_{\text{sl}}} \pm 0.03_{\lambda_{1}} \pm 0.11_{\lambda_{2}} \pm 0.62_{\text{resolved}}) \cdot 10^{-7} = (12.35 \pm 0.92) \cdot 10^{-7}$$