Measurements of B_s^0 oscillations and TD-CPV at LHCB

- FPCP 2021 Shanghai (Virtual)
 - Michele Veronesi (Nikhef) on behalf of LHCb

- Measurements of $B_{c}^{0} \bar{B}_{c}^{0}$ oscillations with flavour specific decays • $B_s^0 \to D_s^- \pi^+$ [arXiv:2011.12041]

 - $B_s^0 \to D_s^- \pi^+ \pi^+ \pi^-$ [JHEP 03 (2021) 137]
- Measurements of time dependent \mathcal{L} in the $B_s^0 \bar{B}_s^0$ system • $B_s^0 \to K^+ K^-$ [JHEP 03 (2021) 075]
- $B_s^0 \to D_s^- K^+ \pi^+ \pi^-$ [JHEP 03 (2021) 137]

$B_{\rm s}^0 - \bar{B}_{\rm s}^0$ oscillations and TD-CPV

- Frequency proportional to the mass difference between the heavy and the light eigenstates $\sim \Delta m_s c^2/\hbar$
- Provide a second amplitude for the interference of $B_{s}^{0} \rightarrow f$ and $B_s^0 \to \bar{B}_s^0 \to f$ processes

Nik[hef]

Flavour tagging

- Crucial input to measure the identity of the B_s^0 at production Combines informations from tracking and particle identification
- subsystems

[arXiv:2011.12041] [JHEP 03 (2021) 137]

$B_s^0 - \bar{B}_s^0$ oscillations

LHCD

- Choose a flavour specific decay, i.e. $B_s^0 \rightarrow f$ but $B_s^0 \not \rightarrow f$ \rightarrow identity of the B_s^0 at decay from the charges of the decay products
- peaks in the $B_{\rm s}^0$ decay time spectrum

Oscillation frequency inversely proportional to the distance between two

 $B_s^0 \to D_s^- \pi^+$ [arXiv:2011.12041]

Michele Veronesi - FPCP 2021

Signal yields//

$B_{s}^{0} \rightarrow D_{s}^{-} \pi^{+} \pi^{+} \pi^{-}$ [JHEP 03 (2021) 137]

Fit to the oscillations

Nik hef

LHCb combination

Time-Dependent CP violation

[JHEP 03 (2021) 075] [JHEP 03 (2021) 137]

Michele Veronesi - FPCP 2021

LHCD

Probing TD-CPV

 $f = \overline{f}$, e.g. $f = \overline{f} = K^+ K^-$ • $C_f \neq 0$ $\rightarrow \mathcal{CP}$ in the decay* • $A_f^{\Delta\Gamma} \neq 0, S_f \neq 0$ $\rightarrow CP$ in the interference

Nik hef

Michele Veronesi - FPCP 2021

 $\frac{d\Gamma}{dt} \sim e^{-\Gamma_s t} \bigg\{ \cosh \frac{\Delta \Gamma_s t}{2} + C_f \cos \Delta m_s t \bigg\}$ $+A_f^{\Delta\Gamma}\sinh\frac{\Delta\Gamma_s t}{2} + S_f\sin\Delta m_s t \bigg\}$

 $f \neq \bar{f}$, e.g. $f = D_s^- K^+ (\pi^+ \pi^-)$ • $C_f = -C_{\bar{f}}$ \rightarrow no \mathcal{CP} in the decay* • $A_f^{\Delta\Gamma} \neq A_{\bar{f}}^{\Delta\Gamma}$, $S_f \neq -S_{\bar{f}}$ $\rightarrow CP$ in the interference

* no *CP* in mixing is assumed

$B_{\rm s}^0 \to K^+ K^-$ [JHEP 03 (2021) 075]

7500 ± 100 signal $B_s^0 \rightarrow D_s^- K^+ \pi^+ \pi^-$ decays in Run 1 + 2

Signal yields

• Reconstructed 70 310 \pm 320 signal $B_s^0 \rightarrow K^+K^-$ decays in Run 2 and

TD-CP asymmetries

$B_{\rm s}^0 \to K^+ K^-$ [JHEP 03 (2021) 075]

$$\mathcal{A}_{KK}^{\Delta\Gamma} = -0.83 \pm 0.05 \pm 0.09,$$

Run 2

Nik hef

- 0.172 $\pm 0.031,$
- $\mathcal{A}_{KK}^{\Delta\Gamma} = -0.897 \pm 0.087$
- combined with Run 1

4.4σ evidence

 C_{f} $0.631 \pm 0.096 \pm 0.032$ $A_f^{\Delta\Gamma}$ $-0.334 \pm 0.232 \pm 0.097$ $A^{\Delta\Gamma}_{\bar{f}}$ $-0.695 \pm 0.215 \pm 0.081$ S_f $-0.424 \pm 0.135 \pm 0.033$ J $-0.463 \pm 0.134 \pm 0.031$ $S_{\overline{f}}$

TD-CP asymmetries

- analysis (direct extraction of CKM phase γ)

• $B_{c}^{0} \rightarrow K^{+}K^{-}$ results crosschecked with "simultaneous" and "per-event" methods in Run 2 • $B_{c}^{0} \rightarrow D_{c}^{-}K^{+}\pi^{+}\pi^{-}$ measurement also performed through time-dependent amplitude

• More details about interpretation in terms of CKM phases in Wenbin Qian's talk (Thursday)

- $B_{c}^{0} \bar{B}_{c}^{0}$ system is an ideal laboratory to study time dependent \mathcal{L}
 - $B_s^0 \rightarrow K^+K^-$ [JHEP 03 (2021) 075]: first observation of TD- \mathcal{CP} in the B_s^0
 - $B_{c}^{0} \rightarrow D_{c}^{-}K^{+}\pi^{+}\pi^{-}$ [JHEP 03 (2021) 137]: 4.4 σ evidence of TD- \mathcal{CP}
- Enabled by LHCb excellent reconstruction of $B_{c}^{0} \bar{B}_{c}^{0}$ oscillations
 - $B_s^0 \rightarrow D_s^- \pi^+(\pi^+\pi^-)$ [arXiv:2011.12041]: combination of LHCb measurements of the B_{s}^{0} mixing frequency Δm_{s}

- $B_{\rm c}^0 \bar{B}_{\rm c}^0$ system is an ideal laboratory to study time dependent \mathcal{CP}
- - $B_s^0 \rightarrow D_s^- \pi^+(\pi^+\pi^-)$ [arXiv:2011.12041]: combination of LHCb measurements of the B_s^0 mixing frequency Δm_s

Thank you for your attention!

• $B_s^0 \rightarrow K^+K^-$ [JHEP 03 (2021) 075]: first observation of TD- \mathcal{CP} in the B_s^0 • $B_c^0 \to D_c^- K^+ \pi^+ \pi^-$ [JHEP 03 (2021) 137]: 4.4 σ evidence of TD- \mathcal{CP} • Enabled by LHCb excellent reconstruction of $B_{c}^{0} - \bar{B}_{c}^{0}$ oscillations

