CP violation measurements at Belle II

```
Radek Žlebčík
June 10, 2021
Conference on
Flavor Physics and CP Violation
```

CHARLES
UNIVERSITY

FPCP 2021 | 10 June 2021 | Radek Žlebčík

CP violation for neutral B-mesons

The CP symmetric system in time t_{2} is not CP symmetric at time t_{1}

Sin 2β and the Unitarity Triangle

- Constructed from CKM matrix

$$
V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0
$$

- Angles and sides are well-defined (physical) quantities

Hints for BSM physics

- Do the angles sum to 180° ?
- Are sides consistent with angles?
- Do all processes indicate a consistent picture?

FPCP 2021 | 10 June 2021 | Radek Žlebčík

Trick of asymmetric beams

- $\Upsilon(4 S)$ is a first $b \bar{b}$ resonance above $m_{B}+m_{\bar{B}}$
\rightarrow Bs nearly in rest in $\Upsilon(4 \mathrm{~S})$ frame

Time-measurement
 ```distance-measurement```

Entangled system

 like in EPR exp.$$
\Upsilon(4 S)=\frac{1}{\sqrt{2}}\left(B^{0} \bar{B}^{0}-\bar{B}^{0} B^{0}\right)
$$

Belle II : $\Delta z \approx 130 \mu \mathrm{~m}$
Belle : $\Delta z \approx 200 \mu \mathrm{~m}$

	e^{-} energy $[\mathrm{GeV}]$	e^{+} energy $[\mathrm{GeV}]$	Lumi
BaBar	9.0	3.1	$477 \mathrm{fb}^{-1}$
Belle	8.0	3.5	$866 \mathrm{fb}^{-1}$
Belle II	7.0	4.0	$50,000 \mathrm{fb}^{-1}$ $\left(50 \mathrm{ab}^{-1}\right)$

The Δt Measurement

- At Belle II there is smaller boost, but better

Pixel

 Vertex Detector (PXD) vertex resolution than at Belle

- We continuously measure the probability density for:
$\rightarrow \Upsilon(4 \mathrm{~S})$ velocity (boost vector)
$\rightarrow \Upsilon(4 \mathrm{~S})$ energy (CM energy)
$\rightarrow \Upsilon(4 \mathrm{~S})$ vertex position (beam spot)

Difference of vertex positions

Boost vector direction

$$
\beta \gamma=0.43 \rightarrow \beta \gamma=0.29
$$

$$
\Delta t=\frac{\left(\vec{v}_{\mathrm{CP}}-\vec{v}_{\mathrm{tag}}\right) \cdot \vec{n}_{\mathrm{boost}}}{\gamma^{*} \gamma \beta c}
$$

Tracker Alignment

- Alignment is a data driven method to determine positions of sensors/wires of the Tracker
\rightarrow Crucial for precise TD-CPV measurements
- Recently all the 14336 wires has been included into the alignment \rightarrow 60,000 parameters (for Pixel Detector, Strip Detector \& Central Drift Chamber)

Monte Carlo

Beam spot constraint

Belle

- At Belle II the much higher peak luminosity is achieved by so-called nano-beam scheme
- The small beam size can be used to better constraint the kinematics of the event (e.g. improving $B_{\text {tag }}$ vertex precision and consequently $\Delta \mathrm{t}$ resolution)

$$
\sigma_{Y^{\prime}}=0.2 \mu \mathrm{~m}, \sigma_{X^{\prime}}=10 \mu \mathrm{~m}, \sigma_{Z^{\prime}}=240 \mu \mathrm{~m}
$$

Beam spot calibration

- Based on $\mu \mu$ events with high-stat
- Calibrated every ~30min
- All parameters of the 3D Gaussian PDF measured (3 sizes + 3 angles)

Flavor tagging

- Determination of the $\mathrm{B}_{\text {tag }}$ flavor using all the particles not belonging to signal B
- The |qr| is split into 7 bins to test the performance in hadronic B decays data
- The efficiency evaluated from $B B / B \bar{B}$ asymmetries in all |qr| bins

$$
\begin{aligned}
\varepsilon_{\mathrm{eff}} & =\sum_{i \in|q r| \text { bins }} \epsilon_{i}\left(1-2 w_{i}\right)^{2} \\
\varepsilon_{\mathrm{eff}}^{\text {Belle }} & =(30.1 \pm 0.4) \% \\
\varepsilon_{\mathrm{eff}}^{\text {Belle II }} & =(33.8 \pm 3.9) \%
\end{aligned}
$$

Dilution factor: $r_{\text {FBDT }} \approx 1-2 w$ Flavor tag: $\quad q= \pm 1$

Mixing measurement: $\mathrm{B}^{0} \rightarrow \mathrm{D}^{-} \pi^{+}$

- Measurement dominated by sys. unc. at Belle already with $140 \mathrm{fb}^{-1}$
\rightarrow Mixing measurement in hadronic B decays probes the TD analysis framework
- Both B mesons in the flavor eigenstate, one fully reconstructed

$$
\Delta m_{d}=(0.531 \pm 0.046(\text { stat. }) \pm 0.013(\text { syst. })) \mathrm{ps}^{-1}
$$

Results consistent with PDG, soon competitive with Belle/BaBar

CPV measurement: $\mathrm{B}^{0} \rightarrow \mathrm{~J} / \Psi \mathrm{K}_{\mathrm{s}}$

- Performed on $35 \mathrm{fb}^{-1}$ of data
- Both $\mathrm{J} / \Psi \rightarrow \mu \mu$ and $\mathrm{J} / \Psi \rightarrow$ ee analyzed
$S_{f}=\sin 2 \beta=0.55 \pm 0.21$ (stat.) ± 0.04 (sys.)
BELLE2-NOTE-PL-2020-11

PDG value:

$$
0.670 \pm 0.029 \text { (stat.) } \pm 0.013 \text { (sys.) }
$$

First CPV measurement consistent with PDG, more data needed

Penguin-dominated processes

$B^{0} \rightarrow J / \psi K_{\mathrm{S}}$

$$
B^{0} \rightarrow\left(\phi, \eta^{\prime}\right) K_{\mathrm{S}}
$$

$(\sin 2 \beta)_{\mathrm{PDG}}=0.70 \pm 0.02$

Tree channels \& loop processes should give consistent β
\rightarrow New particle in loop can shift the SM phase

FPCP 2021 | 10 June 2021 | Radek Žlebčík

Time-integrated $\mathrm{B}^{0} \rightarrow \boldsymbol{\eta}^{\prime} \mathrm{K}_{\mathrm{s}}$ and $\mathrm{B}^{0} \rightarrow \boldsymbol{\phi} \mathrm{~K}_{\mathrm{s}}$

- Belle II performed the time-integrated analyses of the $b \rightarrow s$ penguin decay channels \rightarrow work on the time-dependent CPV analyses

arXiv: 2104.06224

BR

$$
\begin{array}{ll}
B^{0} \rightarrow\left(\eta^{\prime} \rightarrow \eta \pi^{+} \pi^{-}\right) K_{s}^{0} & (65 \pm 8 \pm 7) 10^{-6} \\
B^{0} \rightarrow\left(\eta^{\prime} \rightarrow \rho \gamma\right) K_{s}^{0} & (67 \pm 9 \pm 8) 10^{-6}
\end{array}
$$

PDG value: $(66 \pm 4) 10^{-6}$

$$
\mathrm{BR}\left(B^{0} \rightarrow \phi K_{s}^{0}\right)=(5.9 \pm 1.8 \pm 0.7) 10^{-6}
$$

PDG value: $(7.3 \pm 0.7) 10^{-6}$

$$
\begin{gathered}
\mathrm{B}^{0} \rightarrow \phi \mathrm{~K}_{\mathrm{S}}^{0} \\
\int \mathrm{Ldt}=34.6 \mathrm{fb}^{-1}
\end{gathered}
$$

- data
— total pdf
- - . signal pdf
........ continuum pdf
arXiv: 2008.03873

Observed branching fractions compatible with the world average

Conclusions

- The analysis of $35 \mathrm{fb}^{-1}$ of Belle II data shows better vertex resolution \& comparable flavor tagging performance to Belle
\rightarrow First CPV analysis in the B^{0} decays
- First time-integrated analysis of the rare penguin $\mathrm{B}^{0} \rightarrow\left(\eta^{\prime}, \phi\right) \mathrm{K}_{\mathrm{s}}$ performed
\rightarrow first step towards CPV measurement in the $b \rightarrow s$ decays
- With increasing data statistics the systematic unc. more and more matter
\rightarrow Detector alignment

[^0]\rightarrow Flavor tagging

Belle2 \& SuperKEKB

- The target luminosity $6 * 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ (50 ab^{-1} in total) (continuous injection allows long runs)

Crucial for Δt measurement

[^0]: https://confluence.desy.de/display/BI/Belle+II+Luminosity

