CP violation measurements at Belle II

Radek Žlebčík

June 10, 2021 Conference on Flavor Physics and CP Violation

CHARLES UNIVERSITY

CP violation for neutral B-mesons

The CP symmetric system in time t₂ is not CP symmetric at time t₁

$$A(\Delta t) = \frac{P_{\bar{B}^{0} \to B_{CP}}(\Delta t) - P_{B^{0} \to B_{CP}}(\Delta t)}{P_{\bar{B}^{0} \to B_{CP}}(\Delta t) + P_{B^{0} \to B_{CP}}(\Delta t)} = A \cos \Delta m \Delta t + S \sin \Delta m \Delta t$$

$$Direct$$

$$Direct$$

$$CPV$$

$$Direct$$

$$CPV$$

$$Direct$$

$$CPV$$

Sin 2β and the Unitarity Triangle

Constructed from CKM matrix

 $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{td}V_{tb}^* = 0$

• Angles and sides are well-defined (physical) quantities

$S \sim \sin(2\beta)$	$) \equiv s$	sir	$n(2\phi_1) \stackrel{\text{HFLAV}}{\stackrel{\text{Moriond 2018}}{\text{PRELIMINARY}}}$
BaBar PRD 79 (2009) 072009	ŀ		0.69 ± 0.03 ± 0.01
BaBar χ _ο K _S PRD 80 (2009) 112001	ı,		$ 0.69 \pm 0.52 \pm 0.04 \pm 0.07$
BaBar J/ψ (hadronic) K _S PRD 69 (2004):052001			H ★ 1.56 ± 0.42 ± 0.21
Belle PRL 108 (2012) 171802	H	1	$0.67 \pm 0.02 \pm 0.01$
ALEPH PLB 492, 259 (2000)	2 2 2	*	0.84 ^{+0.82} ± 0.16
OPAL EPJ C5, 379 (1998)			3.20 ^{+1.80} ± 0.50 ★
CDF PRD 61, 072005 (2000)	- <u>-</u>	*	
LHCb JHEP 11 (2017) 170		м	0.76 ± 0.03
Belle5S PRL 108 (2012) 171801	*		→ 0.57 ± 0.58 ± 0.06
Average HFLAV			0.70 ± 0.02
-2 -1 (D	1	2 3

Hints for BSM physics

- Do the angles sum to 180°?
- Are sides consistent with angles?
- Do all processes indicate a consistent picture?

FPCP 2021 | 10 June 2021 | Radek Žlebčík

The Δt Measurement

- At Belle II there is smaller boost, but better vertex resolution than at Belle
- We continuously measure the probability density for:
 - \rightarrow Υ (4S) velocity (boost vector)
 - \rightarrow Υ (4S) energy (CM energy)
 - \rightarrow Υ (4S) vertex position (beam spot)

Tracker Alignment

- Alignment is a data driven method to determine positions of sensors/wires of the Tracker
 - \rightarrow Crucial for precise TD-CPV measurements
- Recently all the 14336 wires has been included into the alignment
 - → 60,000 parameters

(for Pixel Detector, Strip Detector & Central Drift Chamber)

page 6

Beam spot constraint

- At Belle II the much higher peak luminosity is achieved by so-called nano-beam scheme
- The small beam size can be used to better constraint the kinematics of the event (e.g. improving B_{tag} vertex precision and consequently Δt resolution)

$$\sigma_{Y'} = 0.2 \mu m, \sigma_{X'} = 10 \mu m, \sigma_{Z'} = 240 \mu m$$

Belle

Beam spot calibration

- Based on µµ events with high-stat
- Calibrated every ~30min
- All parameters of the 3D Gaussian PDF measured (3 sizes + 3 angles)

Flavor tagging

- Determination of the B_{tag} flavor using all the particles not belonging to signal B
- The |qr| is split into 7 bins to test the performance in hadronic B decays data
- The efficiency evaluated from BB/BB asymmetries in all |qr| bins

It is B

250

200

150

per 0.04

arXiv: 2008.02707

Data

-MC

It is B

We don't

know

Belle II 2019 (preliminary)

 $L dt = 8.7 \text{ fb}^{-1}$

Mixing measurement: $B^0 \rightarrow D^- \pi^+$

PDG value: 0.507 ± 0.002 ps⁻¹

- Measurement dominated by sys. unc. at Belle already with 140 fb⁻¹
 - \rightarrow Mixing measurement in hadronic B decays probes the TD analysis framework
- Both B mesons in the flavor eigenstate, one fully reconstructed

Results consistent with PDG, soon competitive with Belle/BaBar

CPV measurement: $B^0 \rightarrow J/\psi K_{c}$

- Performed on 35 fb⁻¹ of data
- Both $J/\psi \rightarrow \mu \mu$ and $J/\psi \rightarrow ee$ analyzed

PDG value: $0.670 \pm 0.029 (stat.) \pm 0.013 (sys.)$

First CPV measurement consistent with PDG, more data needed

Penguin-dominated processes

Tree channels & loop processes should give consistent β

→ New particle in loop can shift the SM phase

Time-integrated $B^0 \rightarrow \eta' K_s$ and $B^0 \rightarrow \varphi K_s$

Belle II performed the time-integrated analyses of the b→s penguin decay channels
 → work on the time-dependent CPV analyses

Observed branching fractions compatible with the world average

Conclusions

- The analysis of 35 fb⁻¹ of Belle II data shows better vertex resolution & comparable flavor tagging performance to Belle
 → First CPV analysis in the B⁰ decays
- First time-integrated analysis of the rare penguin $B^0 \rightarrow (\eta', \phi) K_s$ performed
 - $\rightarrow\,$ first step towards CPV measurement in the b $\rightarrow\,$ s decays
- With increasing data statistics the systematic unc. more and more matter
 - \rightarrow Detector alignment
 - → Beam Spot
 - \rightarrow Flavor tagging

https://confluence.desy.de/display/BI/Belle+II+Luminosity

Belle2 & SuperKEKB

 The target luminosity 6*10³⁵ cm⁻² s⁻¹ (50 ab⁻¹ in total) (continuous injection allows long runs)

