

Angular analyses of B meson decays at CMS

Xuelong Qin On behalf of CMS Collaboration

Peking University

FPCP, June 7th-11th , 2021 Shanghai, China

Introduction

- $b \rightarrow sll$ transitions
 - Flavor-changing neutral current decays
 - Forbidden at tree level, but allowed via loop diagrams in SM
 - High sensitivity to NP through BSM particles in the loop
 - Experimentally attractive channels
 - \checkmark Fully charged final states
 - \checkmark Easy to trigger and reconstruct muon pair
- Angular analysis

➢ Measure the rate of the decay as a function of the angles of the final decay products

Access to a large set of observables with reduced theory uncertainties

Sensitive probe to New Physics

Analyses with RUN 1 data

- Described by the three angles $(\theta_l, \theta_k, \phi)$ and the dimuon invariant mass squared q^2
- About 20 fb⁻¹ of CMS data at 8 TeV
- The decay rate after ϕ is integrated out

$$\begin{split} \frac{1}{\Gamma} \frac{\mathrm{d}^{3}\Gamma}{\mathrm{d}\cos\theta_{\mathrm{K}}\,\mathrm{d}\cos\theta_{\ell}\,\mathrm{d}q^{2}} &= \frac{9}{16} \left\{ \frac{2}{3} \Big[F_{S} + 2A_{S}\cos\theta_{\mathrm{K}} \Big] \left(1 - \cos^{2}\theta_{\ell} \right) \right. \\ &+ \left(1 - F_{S} \right) \Big[2F_{\mathrm{L}}\cos^{2}\theta_{\mathrm{K}} \left(1 - \cos^{2}\theta_{\ell} \right) \\ &+ \frac{1}{2} \left(1 - F_{\mathrm{L}} \right) \left(1 - \cos^{2}\theta_{\mathrm{K}} \right) \left(1 + \cos^{2}\theta_{\ell} \right) \\ &+ \frac{4}{3} A_{\mathrm{FB}} \left(1 - \cos^{2}\theta_{\mathrm{K}} \right) \cos\theta_{\ell} \Big] \right\}. \end{split}$$

F_L: fraction of longitudinally polarized *K**+
 A_{FB}: forward-backward asymmetry of dimuon
 F_S: fraction of S wave
 A_S: interference between S and P wave

Bin index	q^2 (GeV ²)
1	1-8.68
2	8.68 – 10.09 (J/ψ)
3	10.09 - 12.86
4	12.86 – 14.18 (ψ(2S))
5	14.18 - 19
0	Bin1 + Bin3 + Bin5

Event Selection

HLT: especially designed trigger to reduce trigger rate

Single muon p_T > 3.5 GeV
Dimuon p_T > 6.9 GeV
1 < m(μμ) < 4.8 GeV
Lxy/σ > 3 wrt beamspot
Vtx CL > 10%

Offline reconstruction: two oppositely charged muons and a K^{*+} meson $> K^{*+}: K_S^0 \pi^+$ mode $> K_S^0: \pi^+ \pi^-$ mode > Mass and vertex quality constraints on K_S^0 and K^{*+}

Background rejections and suppressions

- Suppress resonant backgrounds $B^+ \to K^{*+}J/\psi$ and $B^+ \to K^{*+}\psi(2S)$ through dimuon invariant mass and anti-radiation cuts
- > Optimize selection criteria based on the maximization of $S/\sqrt{S + B}$
- \succ Remove Λ → $p\pi$ decays based on $p\pi$ invariant mass hypothesis

2D Efficiency is obtained from simulated samples using a two-step fit process

- For each angular variable: polynomial/sum of three Gaussians
- > An additional correlation term: product of Legendre and ordinary polynomials

$$arepsilon(\cos heta_{K},\cos heta_{I})=arepsilon_{1D}(\cos heta_{K})\cdotarepsilon_{1D}(\cos heta_{I})\cdot[1+\mathcal{C}(\cos heta_{K},\cos heta_{I})]$$

3D likelihood fit

For each q2 Bin: $3D(m, cos\theta_K, cos\theta_l)$ pdf :

 $pdf(m, \cos \theta_{\rm K}, \cos \theta_{\ell}) = Y_S S^m(m) S^a(\cos \theta_{\rm K}, \cos \theta_{\ell}) \epsilon(\cos \theta_{\rm K}, \cos \theta_{\ell})$ $+ Y_B B^m(m) B^{\theta_{\rm K}}(\cos \theta_{\rm K}) B^{\theta_{\ell}}(\cos \theta_{\ell}).$

- Unbinned extended maximum likelihood estimator used
- Y_S , Y_B : signal and background yields
- Signal component
 - > $S^m(m)$: double Gaussian with parameters obtained from MC
 - > $S^a(cos\theta_K, cos\theta_l)$: decay rate
 - $\succ \epsilon(\cos\theta_K, \cos\theta_l)$: last slide
- Background component
 - $\succ B^m(m)$: exponential
 - > $B^{\theta_K}(cos\theta_K)$, $B^{\theta_l}(cos\theta_l)$: analytical models from data sidebands
- Float parameters: 2 yields + angular parameters + bkg slope

Fit projections to data

- Projections of each variables from 3D fit
- Bmass(*m*) fit range: [4.76, 5.8] GeV
- $cos\theta_K$, $cos\theta_l$ fit range: [-1,1]

Post-fit check

- Validation of angular PDFs ($cos\theta_K$, $cos\theta_l$) from final fit with signal region events \rightarrow Bmass(m): 5.18-5.38 GeV
- Angular distributions for the events in the above Bmass region overlaid with final fit PDF
- Good consistency between data events and pdfs in the signal region

Systematic uncertainties

Source	$A_{\rm FB} \ (10^{-3})$	$F_{\rm L} \ (10^{-3})$
MC statistical uncertainty	12 - 29	18-38
Efficiency model	3 - 25	4 - 12
Background shape functional form	0–9	0 - 33
Background shape statistical uncertainty	16 - 73	20 - 87
Background shape sideband region	28 - 153	38 - 78
S-wave contamination	4 - 22	5 - 12
Total systematic uncertainty	42 - 174	55 - 127

Dominate systematic uncertainty from background description and effect:

- Shape functional form
- Effect of alternate sideband region
- Sideband statistical uncertainty

Results

- Inner error bar: statistical uncertainty
- Total error bar: total uncertainty
- Consistent with SM predictions within uncertainties 2021/6/9

Prospect of $B^0 \rightarrow K^{*0} \mu \mu$ at HL-LHC

- Motivation: discrepancies in P₅' between experimental measurements with SM
- Run 1 results used as base line, the expected sensitivity of P₅' with HL-LHC statistics at 3000 fb⁻¹ was studied
 - Improved mass resolution with upgraded tracker detector
 - No changes in trigger performances and analysis strategy have been considered
 - Expected signal yield: ~700k in full q² bin in 200 pileup scenario

- Statistical uncertainty: scaled according to simulation yield
- Systematic uncertainty
 - Based on data control channel: scaled according to statistics
 - Others: scaled by factor of 2
- Total uncertainty: improve by up to a factor of 15 compared with Run 1 results
- Allow to split q² range in finer bins

- FCNC B rare decays play an important role in search for New Physics
- Several angular analyses based on CMS Run 1 data
 - ✓ Results are compatible with Standard Model
 - ✓ Latest results on $B^+ \to K^{*+} \mu \mu$ angular analysis JHEP 04 (2021) 124
- Analyses based on CMS Run 2 data are underway: $B \to K^* \mu \mu$, $B^+ \to K^+ \mu \mu$, $B_s \to \phi \mu \mu$ etc
- More sensitive results can be expected on HL-LHC

Thank you!