Searching for leptoquarks with the ATLAS detector

Magnar K. Bugge* on behalf of the ATLAS Collaboration

*University of Oslo

Conference on Flavor Physics and CP Violation June 10th 2021

What are leptoquarks?

- Hypothetical particles coupling simultaneously to quarks and leptons, which could explain symmetry between quark and lepton sectors of the SM
- Pair production via strong force at the LHC
 - Single production also possible, not the focus here

What are leptoquarks?

- Couplings within same generation or across generations
 - Cross-generation couplings could explain observed B-decay anomalies
- Focus of this talk:
 - Decays to the third generation
 - Mixing between third and first/second generations

Tau lepton, b-jets, and $\not\!\!\!E_{\rm T}$

 τ + b-jets + $\not\!\!E_{\rm T}$

 Simultaneous fit to dedicated control regions and signal region binned in p_T(τ)

Tau lepton, b-jets, and $\not\!\!\!E_{\rm T}$

- Limits set on the leptoquark mass as function of ${
 m BR}({
 m LQ} o q au)$
- Sensitivity extends to $m_{LQ} \approx 1.25 \,\mathrm{TeV}$ for 50% branching fraction
- Cases of BR(LQ $\rightarrow q\tau$) = 100% and BR(LQ $\rightarrow q\tau$) = 0% covered by other analyses

Tau lepton, light leptons, and jets

 Background estimates in signal regions supported by large number of control regions

Tau lepton, light leptons, and jets

- Simultaneous fit to 7 signal regions and 15 control regions
- Discovery potential for leptoquark masses up to 1.2 TeV
- Limits set on cross section and in terms of BR(LQ $\rightarrow t\tau$)
- Mass limit approximately 1.4 TeV for BR(LQ $\rightarrow t\tau$) = 100%

Hadronic tops and $\not\!\!E_{\rm T}$

- Detailed selection based on angular variables, b-tagging, m_T, m_{T2}, ∉_T significance
- Split into Top+Top, Top+*W*, Top+*X*

• Boosted hadronic tops reconstructed by reclustering R = 0.4 jets into large-radius R = 1.2 jets (m > 120 GeV)

Hadronic tops and $E_{\rm T}$

- Simultaneous fit to signal regions (A+B) and control regions
- Limits set on cross section and in terms of ${
 m BR}({
 m LQ} o b au)$
- Mass limit approximately 1.25 TeV for BR(LQ $\rightarrow t\nu$) = 100%

b-jets and $\not\!\!\!E_{\rm T}$

- 2-4 jets (2 b-tags)
- Hard requirements on jet *p*_T, *m_{bb}*, *m_{eff}*, *m_{CT}*, ∉_T significance, angular variables (incl. BDT)

• Signal regions binned in m_{CT}, m_{eff}, and BDT discriminant

- Simultaneous fit to signal regions (A+B) and control regions
- Limits set in terms of BR(LQ $\rightarrow t\tau$)
- Mass limit approximately 1.25 TeV for BR(LQ $\rightarrow b\nu$) = 100%

Hadronic tops and light leptons

 BDT selection based on Lorentz-transformed kinematical variables ("recursive jig-saw") + jet substructure variables (μ-channel), parametrized in m_{LQ}

Hadronic tops and light leptons

- Simultaneous fit to signal region binned in BDT discriminant and control regions
- Limits set on cross section and in terms of BR(LQ → t/)
- Mass limit approximately $1.5 \, \text{TeV}$ for $BR(LQ \rightarrow t/) = 100\%$

Light leptons and (heavy flavour) jets

- Mass asymmetry (m^{max}_{lj} m^{min}_{lj})/(m^{max}_{lj} + m^{min}_{lj}) used to define signal region (< 0.2) and side-band
- Discriminating variable: $m_{lj}^{Av} = (m_{lj}^{max} + m_{lj}^{min})/2$

Light leptons and (heavy flavour) jets

- Limits set on inclusive *ql* decays as well as *cl* and *bl* decays
- Mass limits around 1.7 TeV for $BR(LQ \rightarrow ql) = 100\%$

Light leptons and 0/1 b-jet

- Lepton triggers
- Single-bin signal regions $m_{ll} > m_{ll}^{\min}$ from 400 GeV to 3.2 TeV for exactly 1 or no b-jet
- Limits far below $\Lambda/g_* pprox$ 30 TeV favoured by *B*-anomalies

Summary

- Several ATLAS searches for leptoquarks already published with the full Run-2 dataset, emphasis on
 - Decays to third generation quarks and leptons (large overlap with SUSY searches)
 - Generation mixing (possible link to B-decay anomalies)
- Mass limits from 1.2 1.7 TeV depending on final state
- Dedicated analysis in terms of contact interactions related to *B*-decay anomalies
 - Sensitivity far from parameter space favoured by the anomalies

