Tau Mass Measurement and Tau Physics Prospects at Belle II

Conference on Flavor Physics and CP Violation (FPCP2021)

Robert Karl $^{\rm 1}$ on behalf of the Belle II collaboration

¹Deutsches Elektronen-Synchrotron (DESY)

June 8, 2021

SuperKEKB and the Belle II Experiment

- SuperKEKB
 - Energy-asymmetric e^+e^- -collider in Tsukuba, Japan
 - Center-of-mass energy at $\sqrt{s} = m \left(Y(4S) \right) = 10.58 \text{ GeV}$
 - Target:
 - \blacktriangleright Instantaneous luminosity of $6\cdot 10^{35}~{\rm cm}^{-2}{\rm s}^{-1}$ (30 larger than KEKB)
 - Integrated luminosity: 50 ab^{-1} (50 times larger than KEKB)
 - Improvement achieved via the nanobeam scheme

Belle II

- Wide physics program
 - Precision measurements of time-dependent CPV and CKM parameters
 - Searches for lepton flavor universality/number violations
 - Dark-sector searches
 - And many more
- Not only a B-factory but a au-factory, as well

$$\label{eq:stars} \begin{split} \hline \sigma \left(e^+ e^- \to \tau^+ \tau^- \right) &= 0.92 \; \mathrm{nb} \\ \\ \sigma \left(e^+ e^- \to Y(4S) \right) &= 1.11 \; \mathrm{nb} \qquad \sigma \left(e^+ e^- \to c \bar{c} \right) = 1.3 \; \mathrm{nb} \\ \\ \\ \hline \mathsf{DESY.} \; \mid \; m_\tau \; \text{and prospects} \; \mid \; \mathsf{Robert Karl, June 8, 2021} \end{split}$$

Current Status

- Achieved world record in an instantaneous luminosity: $L = 2.9 \cdot 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- Challenges to higher luminosity
 - Narrower beam at IP
 - Higher beam current
 - Detector works with higher beam background and trigger rates
- Challenging in the pandemic But stable data taking
- ~180/fb of data collected since 2019

$\tau\text{-}\mathbf{Physics}\ @$ Belle II

Advantages:

- Low background environment with known initial state (lepton collider)
- ▶ Will provide the world largest number $(5 \cdot 10^{10})$ of $e^+e^- \rightarrow \tau^+\tau^-$ events at (50/ab)

 π

 π

Search for Physics Beyond the Standard Model (BSM)

Does New Physics (NP) couple to 3rd generation strongly?

Indirect Search of BSM

- Precision measurement of SM parameters
- Significant deviations from the expectation is unambiguous signature of NP
- Example measurements of
 - CP violation in tau decay; $au \to K_s \pi \nu$
 - \blacktriangleright τ mass , $u_{ au}$ mass, au lifetime
 - Lepton universality

▶ ...

Unitarity relation in 1st row of the CKM matrix

Direct Search of BSM

- Search for forbidden/strongly suppressed channels/decays
- Any signal is unambiguous signature of NP
- Example of searches:

▶ ...

- Flavor / number violating decays
 - $\blacktriangleright \tau \to \mu\gamma, e\gamma, \mu\eta, e\eta, lll (e.g.: \mu\mu\mu), l\alpha, \dots$
 - $\blacktriangleright \ \tau \to p\gamma, \Lambda \pi$
- Electric Dipole Moment (CP/T violation)

τ Lifetime

Extraction from the τ -decay time t ►

$$l_{\tau} = \beta \gamma c t = \frac{p_{\tau} c}{m_{\tau}} t$$

- l_{τ} : flight distance in lab frame
- \triangleright p_{τ} : τ -momentum in the lab frame
- Proper time distribution:

$$p(t;\tau_{\tau}) = \frac{1}{\tau_{\tau}} \cdot \exp\left(-\frac{t}{\tau_{\tau}}\right) \times \Re(t)$$

- Has to be folded with proper time resolution
- **Result**: $\tau_{\tau} = (287.2 \pm 0.5)$ fs
- With respect to Belle:
 - Exploit the tiny beam spot size at the IP
 - Increase the statistical precision by a factor of 5 using 3×1 topology
 - Competitive statistical precision can already be reached with 200/fb
- PDG average: $\tau_{\tau} = (290.3 \pm 0.5)$ fs

3-prong

 ν_{τ}

BELLE2-NOTE-PH-2020-076

τ -Mass Measurement

C

- \succ τ cannot be fully reconstructed due to missing neutrino
- Calculate pseudomass M_{\min} for $\cos(\theta_{\nu,3\pi}) = 1$

MS:
$$M_{\min} := \sqrt{m_{3\pi}^2 + 2(E_{\text{beam}} - E_{3\pi})(E_{3\pi} - p_{3\pi})} \le m_{\tau}$$

b Determine m_{τ} from the edge of distribution

Study 3x1 Topology:

Pseudomass Technique

Mass extraction using ML fit

BELLE2-CONF-PH-2020-010

$$F(M_{\min}; \vec{P}) = (P_3 + P_4 \cdot M_{\min}) \cdot \tan^{-1} \left[(M_{\min} - P_1) / P_2 \right] + P_5 \cdot M_{\min} + 1$$

- \triangleright P_1 is an estimator for the τ -mass
- With multi/additive components to describe the tails

High signal purity

- Flat remaining continuum backgrounds
- Don't impact the shape of the distribution

Systematics

- Compatible precision with previous
 B factory results
- Dominated by uncertainty on the track momentum scale
- Expected to improve

Systematic uncertainty	MeV/c^2
Estimator bias	0.12
Momentum shift due to the B-feld map	0.29
Mass dependence of bias	0.02
Beam energy	0.03
Fit function	0.08
Fit window	0.04
Trigger efficiency	≤ 0.01
Initial parameters	≤ 0.01
Background processes	≤ 0.01
Decay model	≤ 0.01
Tracking efficiency	≤ 0.01

The τ -Lepton Mass

- > Future improvements on systematic uncertainty; eventually perform CPV test, as well
- Goal: Achieve best precision among pseudomass measurements

BELLE2-CONF-PH-2020-010

The Progress of τ LFV and LNV Searches and Perspectives at Belle II

arXiv:1808.10567v2

The searches at Belle II will push the current bounds further by more than one order of magnitude

$\tau ightarrow \mu \mu \mu$

- Signal-background-discrimination according to event kinematics
 - Two independent variables:

$$M_{3\mu} = \sqrt{E_{3\mu}^2 - P_{3\mu}^2} \qquad \Delta E = E_{3\mu}^{\rm CMS} - E_{\rm Beam}^{\rm CMS}$$

- Signal: $M_{3\mu} \approx m_{\tau}$ and $\Delta E \approx 0$
- Background suppression:
 - Background evaluated in side bands
 - Contribution in 3lepton mode is small due to good PID performance
 - Non-negligible in $l\gamma$ modes
- Higher efficiency foreseen @Belle II than @Belle or @BaBar

Search for LFV $\tau \rightarrow l\alpha(\alpha \rightarrow \text{Invisible})$

- Probe the existence of a new boson α :
 - Previous studied at Mark III (9.4 pb^{-1}) and ARGUS (476 pb^{-1})
 - **>** The search is based on measuring the production of LFV au o llpha decays with respect to the SM process $au o l
 u_l
 u_{ au}$
 - In the present study, only the electron decay channel is considered

Signature of the new boson search:

- > Search for a two body decay spectrum; Signal will manifest itself as a peak in the τ rest frame
- \blacktriangleright τ -rest frame not directly accessible due to missing neutrino

Search for LFV $\tau \rightarrow l\alpha(\alpha \rightarrow \text{Invisible})$

Approximate τ -momentum with following assumptions:

 \blacktriangleright $E_{\tau} = \sqrt{s}/2$

ARGUS method: $\hat{p}_{ au} pprox - \hat{p}_{3\pi}; \quad \vec{p}_{3\pi} = \sum_i \vec{p}_{\pi,i}$ [top right]

Thrust method:
$$\hat{p}_{ au} \approx \hat{T}; \quad \vec{T} = \max\left(\sum_{i} \frac{\vec{p}_{\pi,i} \cdot \hat{T}}{|\vec{p}_{\pi,i}|}\right)$$
 [bottom right]

• Upper Limit (UL) is provided for the ratio $\mathcal{B}(\tau \to e\alpha)/\mathcal{B}(\tau \to e\nu\nu)$

Summary

- **b** Belle II is not only a B-factory but a τ -factory, as well
 - ▶ Large cross section of $e^+e^- \rightarrow \tau^+\tau^-$ and high luminosity
 - \Rightarrow Will provide largest τ -pair sample ($\sim 5 \cdot 10^{10}$)

Tau mass measurement:

- Early data are very promising and show the potential of Belle II precision measurements
- Preliminary result: $m_{\tau} = 1777.28 \pm 0.75 \pm 0.33$ MeV

Large Potential for Searches for Physics Beyond the Standard Model

- Large variety of direct searches for BSM physics
- Future push of the current bounds by more than one order of magnitude

