

The Y states including Y(2175) at BESIII

Xuhong Li University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics 2021, 07-11 June

Introduction

- Since the discovery of J/ψ , a series of excited charmonium states ($\psi(2S), \psi(3770), ...$)
- Many charmonium-like states are observed beyond the prediction of potential model
- A series of charmonium-like Y states (Y(4220), Y(4390), Y(4660)...) are found

Some history of Y-states

Y(4220) and Y(4390)

- The Y(4260) observed by Belle and BaBar consists of Y(4220) and Y(4320)
- The Y(4360) observed by Belle and BaBar consists of Y(4220) and Y(4390)

BESIII data sets for XYZ study

- BESIII can directly generate Y states (J^{PC} = 1⁻⁻) by e⁺e⁻ annihilation
- Search for more possible Y states and more decay modes

above 3.8 GeV, L_{tot} ~22 fb⁻¹ 29 energy points with $L > 400 \ pb^{-1}$

Process $e^+e^- \rightarrow \pi^+ D^0 D^{*-}$

$$\sigma_{\rm dress}(m) = \left| c \sqrt{P(m)} + e^{i\phi_1} B_1(m) \sqrt{P(m)/P(M_1)} \right|^2 + e^{i\phi_2} B_2(m) \sqrt{P(m)/P(M_2)} \right|^2,$$

Parameter	Solution I	Solution II	Solution III	Solution IV
$c ({\rm MeV}^{-3/2})$		(6.2 ± 0)	$(.5) \times 10^{-4}$	
$M_1 ({\rm MeV}/c^2)$	4228.6 ± 4.1			
Γ_1 (MeV)	77.0 ± 6.8			
$M_2 ({\rm MeV}/c^2)$	4404.7 ± 7.4			
Γ_2 (MeV)	191.9 ± 13.0			
$\Gamma_1^{\rm el}$ (eV)	77.4 ± 10.1	8.6 ± 1.6	99.5 ± 14.6	11.1 ± 2.3
$\Gamma_2^{\rm el}$ (eV)	100.4 ± 13.3	64.2 ± 8.0	664.2 ± 80.0	423.0 ± 47.0
ϕ_1 (rad)	-2.0 ± 0.1	3.0 ± 0.2	-0.9 ± 0.1	-2.2 ± 0.1
ϕ_2 (rad)	2.1 ± 0.2	2.5 ± 0.2	-2.3 ± 0.1	-1.9 ± 0.1

• Replace Y(4390) by other resonances

- Add one additional resonance Y(4260), Y(4320), Y(4360), ψ(4415)
- \blacktriangleright D^0 is reconstructed by channel $D^0 \rightarrow K^- \pi^+$, D^{*-} is reconstructed by recoiling $\pi^+ D^0$
- Two resonant structures are in good agreement with Y(4220) and Y(4390)
- > The first observation of Y(4220) associated with an open-charm final states
- The parameters of second enhancement are strongly dependent on the model assumptions, and need further analysis to understand

Process $e^+e^- \rightarrow \pi^+\pi^- D^+ D^- \& \pi^+\pi^- D^0 \overline{D}^0$

Phys. Rev. D. 100, 032005 (2019)

```
(a) e^+e^- \to \pi^+\pi^-\psi(3770) \to \pi^+\pi^-D^+D^-

(b) e^+e^- \to D_1(2420)^0\overline{D}{}^0 \to \pi^+\pi^-D^0\overline{D}{}^0

(c) e^+e^- \to D_1(2420)^0\overline{D}{}^0 \to D^{*+}\overline{D}{}^0\pi^- \to \pi^+\pi^-D^0\overline{D}{}^0

(d) e^+e^- \to D_1(2420)^+D^- \to \pi^+\pi^-D^+D^-
```

- Double D tag method to reconstruct D mesons: $D^{0} \rightarrow K^{-}\pi^{+}, K^{-}\pi^{+}\pi^{0}, K^{-}\pi^{+}\pi^{+}\pi^{-}, K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$ $D^{+} \rightarrow K^{-}\pi^{+}\pi^{+}, K^{-}\pi^{+}\pi^{+}\pi^{0}, K_{S}^{0}\pi^{+}, K_{S}^{0}\pi^{+}\pi^{0}, K_{S}^{0}\pi^{+}\pi^{-}\pi^{+}$
- \overline{D}^{0} and D^{-} mesons are reconstructed in charge conjugate final states

Y(4390) or ψ(4415)?

- \succ e⁺e⁻ → π⁺π⁻ψ(3770) is observed with 5.2σ at 4.42 GeV
- $\succ e^+e^- \rightarrow D_1(2420)^0 \overline{D}{}^0 \rightarrow \pi^+\pi^- D^0 \overline{D}{}^0$ is observed with 7.4 σ at 4.42 GeV
- Cross section line shape are shown

Process $e^+e^- \rightarrow \pi^+\pi^- D^+D^-$

- > D^+ is reconstructed by channel $D^+ \to K^- \pi^+ \pi^+$, D^- is reconstructed by recoiling mass
- \blacktriangleright Clear signals of the $D_1(2420)$ and $\psi(3770)$
- > The contributions of $D_1(2420)^+D^-$ and $\psi(3770)\pi^+\pi^$ are determined using fits to the D^+ recoil mass spectra
- Some indications of enhanced cross sections for between 4.36 and 4.42 GeV

Fig. 2. (a), (b) and (c) correspond to the simultaneous fits to the $RM(D^+)$ distributions at $E_{c.m.} = 4358.3$, 4415.6 and 4599.5 MeV, respectively. The points with error bars are data, the (gray) shaded histograms are backgrounds, the (red) dash-dotted lines are $D_1(2420)^+D^- + c.c. \rightarrow D^+D^-\pi^+\pi^-$ signal process and the (blue) dotted lines are $\psi(3770)\pi^+\pi^- \rightarrow D^+D^-\pi^+\pi^-$. The (black) solid lines are the result of fit.

Process $e^+e^- ightarrow \pi^0\pi^0 J/\psi$

Phys. Rev. D 102, 012009 (2020)

$$\mathscr{R} = \frac{\sigma(e^+e^- \to \pi^0 \pi^0 J/\psi)}{\sigma(e^+e^- \to \pi^+ \pi^- J/\psi)} = 0.48 \pm 0.02$$

The average ratio consistent with the isospin symmetry

The relationship of Y(4220) and $Z_c^0(3900)$ is established for the first time

- Fit with two resonant structures, mass and width of Y(4320) are fixed to results of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- \triangleright PWA is performed to extract the cross section of $Z_c^0(3900)$
- > Y(4220) is confirmed in both $\pi^0 \pi^0 J/\psi$ and $\pi^0 Z_c^0(3900)$ line shape

Process $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$ and $\eta_c \pi^0 \gamma$

 $M = (4236.3 \pm 8.9) \text{MeV}/c^2 \Gamma = (70.0 \pm 32.1) \text{MeV}$

- → The process $e^+e^- \rightarrow \eta_c \pi^+ \pi^- \pi^0$ is observed for the first time (5.10 @ 4.23 GeV)
- \blacktriangleright The cross sections of $e^+e^- \rightarrow \eta_c \pi^+\pi^-$ and $e^+e^- \rightarrow \eta_c \pi^0 \gamma$ are found to be consistent with zero
- The Born cross section is consistent with the production via the intermediate Y(4220)

Decay	$B_i[\%]$ [39]	Mode No.
$3(\pi^{+}\pi^{-})$	1.8 ± 0.4	01
$2(\pi^{+}\pi^{-}\pi^{0})$	17.4 ± 3.3	02
$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	4.7 ± 1.0	03
$2(\pi^{+}\pi^{-})$	0.97 ± 0.12	04
$K^0_S K^+ \pi^-$	2.43 ± 0.17	05
$K^{+}K^{-}\pi^{+}\pi^{-}$	0.69 ± 0.11	06
$K^+K^-\pi^0$	1.21 ± 0.83	07
$K^{0}_{S}K^{+}\pi^{-}\pi^{+}\pi^{-}$	2.75 ± 0.74	08
$2(\pi^{+}\pi^{-})\eta$	4.4 ± 1.3	09
$\pi^+\pi^-\eta$	1.7 ± 0.5	10
$K^+K^-\eta$	1.35 ± 0.16	11
$K^+K^-K^+K^-$	0.146 ± 0.030	12
$K^+K^-2(\pi^+\pi^-)$	0.75 ± 0.24	13
$p\bar{p}$	0.150 ± 0.016	14
$p \bar{p} \pi^+ \pi^-$	0.53 ± 0.18	15
$p\bar{p}\pi^0$	0.36 ± 0.13	16
Summed up	$\sum_{i} B_{i} = 41.34 \pm 3.93$	

~40% of the total η_c branching fraction

Φ(2170)/Υ(2175)

Process $e^+e^- \rightarrow K^+K^-$

PRD 99, 032001 (2019)

- $> 1^{--}$ resonance observed in K^+K^- lineshape:
 - Differs from the world average parameters of φ(2170) by more than 3σ in mass and more than 2σ in width
 - Interpreted as isoscalar : ω^* , $\phi(2170)$ Or isovector : $\rho(2150)$

Process $e^+e^- \rightarrow \phi \eta'$ and $\phi \eta$

۲

Isoscalar ω^* is suppressed due to OZI rule

Conflict with $s\bar{s}g$ hybrid prediction on $\mathcal{B}_{\phi\eta}/\mathcal{B}_{\phi\eta'}$

13

Process $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$

 $M = (2126.5 \pm 16.8 \pm 12.4) \text{MeV}/c^2 \Gamma = (106.9 \pm 32.1 \pm 28.1) \text{MeV}$

- Mass is consistent with the $\phi(2170), \rho^*, \omega^*$
- Width is only consistent with $\phi(2170)$ and different from others

Phys. Rev.	Lett. 124,	112001(2020)
------------	------------	--------------

Channel		$\mathcal{B}_r \Gamma_R^{e^+e^-}$ (eV)	ϕ (rad)	signific- ance (σ)
$K^{+}(1460)K^{-}$		3.0 ± 3.8	5.6 ± 1.5	4.4
$K_1^+(1400)K^-$	Solution 1 Solution 2	$\begin{array}{c} 4.7\pm3.3\\ 98.8\pm7.8\end{array}$	$\begin{array}{c} 3.7\pm0.4\\ 4.5\pm0.3\end{array}$	4.8
$K_1^+(1270)K^-$		$\begin{array}{c} 7.6 \pm 3.7 \\ 152.6 \pm 14.2 \end{array}$		1.4
$K^{*+}(892)K^{*-}(892)$		0.04 ± 0.2	5.8 ± 1.9	1.2

- > PWA for $e^+e^- \rightarrow K^+K^-\pi^0\pi^0$ at multiple energy points
- Simultaneous fit is applied for 4 processes
- Cross section lineshapes for intermediate states

Summary

- > With the data collected by BESIII, lots of progress in study of Y states are made
- \succ The nature of charmonium-like Y states and $\phi(2170)$ are still unknown
- More results of BESIII are coming soon

Process $e^+e^- \rightarrow \omega \chi_{cJ}$

The clear Y(4220) can be seen

Process $e^+e^- \rightarrow \pi^+\pi^- J/\psi$

Simultaneous fit to XYZ data(left) and R-scan data (right)

- Two resonant structures are observed in the fit to the cross section
 - $M = (4222.0 \pm 3.1 \pm 1.4) \text{MeV}/c^2$, $\Gamma = (44.1 \pm 4.3 \pm 2.0) \text{MeV}$
 - $M = (4320.0 \pm 10.4 \pm 7.0) \text{MeV}/c^2$, $\Gamma = (101.4^{+25.3}_{-19.7} \pm 10.2) \text{MeV}$
- \succ The significance of the second resonance is 7.6 σ
- \succ The Y(4220) agrees with the Y(4260)
- The Y(4320) agrees with the Y(4360)

Y(4260) -> Y(4220) + Y(4360) ?

Process $e^+e^- \rightarrow \pi^+\pi^-h_c$

Phys. Rev. Lett. 111, 242001 (2013)

TABLE I. $e^+e^- \rightarrow \pi^+\pi^-h_c$ cross sections (or upper limits at the 90% confidence level). The third errors are from the uncertainty in $\mathcal{B}(h_c \rightarrow \gamma \eta_c)$ [11].

\sqrt{s} (GeV)	\mathcal{L} (pb ⁻¹)	$n_{h_c}^{obs}$	$\sigma(e^+e^- \rightarrow \pi^+\pi^-h_c) \text{ (pb)}$
3.900	52.8	<2.3	<8.3
4.009	482.0	<13	<5.0
4.090	51.0	<6.0	<13
4.190	43.0	8.8 ± 4.9	$17.7 \pm 9.8 \pm 1.6 \pm 2.8$
4.210	54.7	21.7 ± 5.9	$34.8 \pm 9.5 \pm 3.2 \pm 5.5$
4.220	54.6	26.6 ± 6.8	$41.9 \pm 10.7 \pm 3.8 \pm 6.6$
4.230	1090.0	646 ± 33	$50.2 \pm 2.7 \pm 4.6 \pm 7.9$
4.245	56.0	22.6 ± 7.1	$32.7 \pm 10.3 \pm 3.0 \pm 5.1$
4.260	826.8	416 ± 28	$41.0 \pm 2.8 \pm 3.7 \pm 6.4$
4.310	44.9	34.6 ± 7.2	$61.9 \pm 12.9 \pm 5.6 \pm 9.7$
4.360	544.5	357 ± 25	$52.3 \pm 3.7 \pm 4.8 \pm 8.2$
4.390	55.1	30.0 ± 7.8	$41.8 \pm 10.8 \pm 3.8 \pm 6.6$
4.420	44.7	29.1 ± 7.3	$49.4 \pm 12.4 \pm 4.5 \pm 7.6$

- \blacktriangleright h_c is reconstructed by $h_c \rightarrow \gamma \eta_c$, η_c is reconstructed by 16 exclusive hadronic final states
- → The cross sections are found to be of the same order of magnitude as those of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- Two resonant structures are observed in the fit to the cross section
 - $M = (4218.4^{+5.5}_{-4.5} \pm 0.9) \text{MeV}/c^2$, $\Gamma = (66.0^{+12.3}_{-8.3} \pm 0.4) \text{MeV}$
 - $M = (4391.5^{+6.3}_{-6.8} \pm 1.0) \text{MeV}/c^2$, $\Gamma = (139.5^{+16.2}_{-20.6} \pm 0.6) \text{MeV}$
- > The Y(4220) here is consistent with state in $\pi^+\pi^- J/\psi$
- \succ The Y(4390) is different from Y(4360) and $\psi(4415)$

Process $e^+e^- \rightarrow \pi^+\pi^-\psi(3686)$

Parameters	Solution I	Solution II
$M(Y4220) (MeV/c^2)$	4209.5 ± 7.4	
$\Gamma(Y(4220))$ (MeV)	80.1	± 24.6
$\mathcal{B}\Gamma^{e^+e^-}(Y(4220))$ (eV)	0.8 ± 0.7	0.4 ± 0.3
$M(Y4390)$ (MeV/ c^2)	4383.	8 ± 4.2
$\Gamma(Y(4390))$ (MeV)	84.2 ± 12.5	
$\mathcal{B}\Gamma^{e^+e^-}(Y(4390))$ (eV)	3.6 ± 1.5	2.7 ± 1.0
ϕ_1 (rad)	3.3 ± 1.0	2.8 ± 0.4
ϕ_2 (rad)	0.8 ± 0.9	4.7 ± 0.1

- The fit to the cross section shows contributions from two structures, Y(4220)+Y(4390)
- > The Y(4360) observed by Belle and BaBar consists of two structure.

Process $e^+e^- ightarrow \eta J/\psi$

	-		-
Parameters	Solution 1	Solution 2	Solution 3
$M_1(\text{MeV}/c^2)$		4039(fixed)	
$\Gamma_1(MeV)$		80(fixed)	
$\Gamma_1^{e^+e^-}\mathcal{B}r_1$ (eV)	1.5 ± 0.3	1.4 ± 0.3	7.0 ± 0.6
ϕ_1 (rad)	3.3 ± 0.3	3.1 ± 0.3	4.5 ± 0.2
$M_2(\text{MeV}/c^2)$		4218.6 ± 3.8	
$\Gamma_2(MeV)$		82.0 ± 5.7	
$\Gamma_2^{e^+e^-}\mathcal{B}r_2$ (eV)	8.0 ± 1.7	4.8 ± 1.0	7.0 ± 1.5
ϕ_2 (rad)	4.2 ± 0.4	3.6 ± 0.3	2.9 ± 0.3
$M_3(\text{MeV}/c^2)$		4382.0 ± 13.3	
$\Gamma_3(MeV)$		135.8 ± 60.8	
$\Gamma_3^{e^+e^-}\mathcal{B}r_3$ (eV)	3.4 ± 2.2	1.5 ± 1.0	1.7 ± 1.1
ϕ_3 (rad)	2.8 ± 0.4	3.3 ± 0.4	3.0 ± 0.4

- \succ The new study of $e^+e^- → η J/ψ$
- Simultaneous fit is performed to the XYZ data and scan data
- The Y(4220) and Y(4390) are observed for the first time in the $\eta J/\psi$ final states

Process $e^+e^- \rightarrow \eta' J/\psi$, $e^+e^- \rightarrow \eta \psi(2S)$

- Can't describe by a single $\psi(4160)$ or $\psi(4260)$ (Fixed mass and width)
- A coherent sum of $\psi(4160)$ and $\psi(4260)$ provides a reasonable \succ description of data
- The significance of $\psi(4160)$ and Y(4260) are 6.3 σ and 4.0 σ , respectively

 \geq

arXiv:2103.01480