The Y states including Y（2175） at BESIII

Introduction

$>$ Since the discovery of J / ψ, a series of excited charmonium states $(\psi(2 S), \psi(3770), \ldots)$
$>$ Many charmonium-like states are observed beyond the prediction of potential model
$>$ A series of charmonium-like Y states $(\mathrm{Y}(4220), \mathrm{Y}(4390)$, $Y(4660)$...) are found

$0^{-+} \quad 1^{--} \quad 1^{+(-)} \quad 0^{++} \quad 1^{++} \quad 2^{++} \quad 2^{--}$\& other

meson-antimeson molecule

hadrocharmonium

meson-baryon molecule
d)

Some history of Y-states

$>$ BaBar and Belle study $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$ by ISR, Y(4260) was observed
$>$ BaBar and Belle study $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(2 S)$ by ISR, $\mathrm{Y}(4360)$ and $\mathrm{Y}(4660)$ were observed

$Y(4220)$ and $Y(4390)$

$>$ The $Y(4260)$ observed by Belle and BaBar consists of $Y(4220)$ and $Y(4320)$
$>$ The $Y(4360)$ observed by Belle and BaBar consists of $Y(4220)$ and $Y(4390)$

BESIII data sets for XYZ study

$>$ BESIII can directly generate Y states ($J^{P C}=1^{--}$) by $e^{+} e^{-}$ annihilation
> Search for more possible Y states and more decay modes

above $3.8 \mathrm{GeV}, L_{\text {tot }} \sim 22 \mathrm{fb}^{-1}$ 29 energy points with $L>400 \mathrm{pb}^{-1}$

Process $e^{+} e^{-} \rightarrow \pi^{+} D^{0} D^{*-}$

$$
\begin{aligned}
\sigma_{\mathrm{dress}}(m)= & \mid c \sqrt{P(m)}+e^{i \phi_{1}} B_{1}(m) \sqrt{P(m) / P\left(M_{1}\right)} \\
& +\left.e^{i \phi_{2}} B_{2}(m) \sqrt{P(m) / P\left(M_{2}\right)}\right|^{2}
\end{aligned}
$$

Parameter	Solution I	Solution II	Solution III	Solution IV
$c\left(\mathrm{MeV}^{-3 / 2}\right)$		$(6.2 \pm 0.5) \times 10^{-4}$		
$M_{1}\left(\mathrm{MeV} / c^{2}\right)$		4228.6 ± 4.1		
$\Gamma_{1}(\mathrm{MeV})$	77.0 ± 6.8			
$M_{2}\left(\mathrm{MeV} / c^{2}\right)$		4404.7 ± 7.4		
$\Gamma_{2}(\mathrm{MeV})$		191.9 ± 13.0		
$\Gamma_{1}^{\mathrm{cl}}(\mathrm{eV})$	77.4 ± 10.1	8.6 ± 1.6	99.5 ± 14.6	11.1 ± 2.3
$\Gamma_{2}^{\mathrm{cl}}(\mathrm{eV})$	100.4 ± 13.3	64.2 ± 8.0	664.2 ± 80.0	423.0 ± 47.0
$\phi_{1}(\mathrm{rad})$	-2.0 ± 0.1	3.0 ± 0.2	-0.9 ± 0.1	-2.2 ± 0.1
$\phi_{2}(\mathrm{rad})$	2.1 ± 0.2	2.5 ± 0.2	-2.3 ± 0.1	-1.9 ± 0.1

- Replace $\mathrm{Y}(4390)$ by other resonances
- Add one additional resonance

$$
Y(4260), Y(4320), Y(4360), \psi(4415)
$$

$>D^{0}$ is reconstructed by channel $D^{0} \rightarrow K^{-} \pi^{+}, D^{*-}$ is reconstructed by recoiling $\pi^{+} D^{0}$
$>$ Two resonant structures are in good agreement with $Y(4220)$ and $Y(4390)$
$>$ The first observation of $Y(4220)$ associated with an open-charm final states
$>$ The parameters of second enhancement are strongly dependent on the model assumptions, and need further analysis to understand

Process $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \pi^{+} \pi^{-} \boldsymbol{D}^{+} \boldsymbol{D}^{-} \& \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-} \boldsymbol{D}^{0} \overline{\boldsymbol{D}}^{0}$

Phys. Rev. D. 100, 032005 (2019)
(a) $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(3770) \rightarrow \pi^{+} \pi^{-} D^{+} D^{-}$
(b) $e^{+} e^{-} \rightarrow D_{1}(2420)^{0} \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} D^{0} \bar{D}^{0}$
(c) $e^{+} e^{-} \rightarrow D_{1}(2420)^{0} \bar{D}^{0} \rightarrow D^{*+} \bar{D}^{0} \pi^{-} \rightarrow \pi^{+} \pi^{-} D^{0} \bar{D}^{0}$
(d) $e^{+} e^{-} \rightarrow D_{1}(2420)^{+} D^{-} \rightarrow \pi^{+} \pi^{-} D^{+} D^{-}$

- Double D tag method to reconstruct D mesons:

$$
\begin{aligned}
& D^{0} \rightarrow K^{-} \pi^{+}, K^{-} \pi^{+} \pi^{0}, K^{-} \pi^{+} \pi^{+} \pi^{-}, K^{-} \pi^{+} \pi^{+} \pi^{-} \pi^{0} \\
& D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}, K^{-} \pi^{+} \pi^{+} \pi^{0}, K_{\mathrm{S}}^{0} \pi^{+}, K_{\mathrm{S}}^{0} \pi^{+} \pi^{0}, K_{\mathrm{S}}^{0} \pi^{+} \pi^{-} \pi^{+}
\end{aligned}
$$

- \bar{D}^{0} and D^{-}mesons are reconstructed in charge conjugate final states

$$
\begin{aligned}
& Y(4390) \text { or } \\
& \psi(4415) ?
\end{aligned}
$$

$>e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(3770)$ is observed with 5.2σ at 4.42 GeV
$>e^{+} e^{-} \rightarrow D_{1}(2420)^{0} \bar{D}^{0} \rightarrow \pi^{+} \pi^{-} D^{0} \bar{D}^{0}$ is observed with 7.4σ at 4.42 GeV
$>$ Cross section line shape are shown

Process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} D^{+} D^{-}$

Phys. Lett. B 804, 135395 (2020)
$>D^{+}$is reconstructed by channel $D^{+} \rightarrow K^{-} \pi^{+} \pi^{+}, D^{-}$is reconstructed by recoiling mass
$>$ Clear signals of the $D_{1}(2420)$ and $\psi(3770)$
$>$ The contributions of $D_{1}(2420)^{+} D^{-}$and $\psi(3770) \pi^{+} \pi^{-}$ are determined using fits to the D^{+}recoil mass spectra
> Some indications of enhanced cross sections for between 4.36 and 4.42 GeV

Fig. 2. (a), (b) and (c) correspond to the simultaneous fits to the $R M\left(D^{+}\right)$distributions at $E_{\mathrm{c} \mathrm{m} .}=4358.3,4415.6$ and 4599.5 MeV , respectively. The points with error bars are data, the (gray) shaded histograms are backgrounds, the (red) dash-dott
$\psi(3770) \pi^{+} \pi^{-} \rightarrow D^{+} D^{-} \pi^{+} \pi^{-}$. The (black) solid lines are the result of fit.

$$
\begin{aligned}
& Y(4390) \text { or } \\
& \Psi(4415) ?
\end{aligned}
$$

Process $e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi$

$$
\begin{aligned}
& M=(4220.4 \pm 2.4 \pm 2.3) \mathrm{MeV} / c^{2} \\
& \Gamma=(46.2 \pm 4.7 \pm 2.1) \mathrm{MeV}
\end{aligned}
$$

$$
\begin{aligned}
& M=(4231.9 \pm 5.3 \pm 4.9) \mathrm{MeV} / c^{2} \\
& \Gamma=(41.2 \pm 16.0 \pm 16.4) \mathrm{MeV}
\end{aligned}
$$

> Fit with two resonant structures, mass and width of $Y(4320)$ are fixed to results of $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$
P PWA is performed to extract the cross section of $Z_{c}^{0}(3900)$
> $\mathrm{Y}(4220)$ is confirmed in both $\pi^{0} \pi^{0} J / \psi$ and $\pi^{0} Z_{c}^{0}(3900)$ line shape

$$
\mathscr{R}=\frac{\sigma\left(e^{+} e^{-} \rightarrow \pi^{0} \pi^{0} J / \psi\right)}{\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi\right)}=0.48 \pm 0.02
$$

The average ratio consistent with the isospin symmetry

The relationship of $\mathrm{Y}(4220)$ and $Z_{c}^{0}(3900)$ is established for the first time

Process $e^{+} e^{-} \rightarrow \eta_{c} \pi^{+} \pi^{-} \pi^{0}, \eta_{c} \pi^{+} \pi^{-}$and $\eta_{c} \pi^{0} \gamma$

$>$ The process $e^{+} e^{-} \rightarrow \eta_{c} \pi^{+} \pi^{-} \pi^{0}$ is observed for the first time (5.1σ @ 4.23 GeV)
$>$ The cross sections of $e^{+} e^{-} \rightarrow \eta_{c} \pi^{+} \pi^{-}$and $e^{+} e^{-} \rightarrow \eta_{c} \pi^{0} \gamma$ are found to be consistent with zero
$>$ The Born cross section is consistent with the production via the intermediate $Y(4220)$

Phys. Rev. D 103, 032006 (2021)

Decay	$\mathcal{B}_{i}[\%][39]$	Mode No. i
$3\left(\pi^{+} \pi^{-}\right)$	1.8 ± 0.4	01
$2\left(\pi^{+} \pi^{-} \pi^{0}\right)$	17.4 ± 3.3	02
$\pi^{+} \pi^{-} \pi^{0} \pi^{0}$	4.7 ± 1.0	03
$2\left(\pi^{+} \pi^{-}\right)$	0.97 ± 0.12	04
$K_{S}^{0} K^{+} \pi^{-}$	2.43 ± 0.17	05
$K^{+} K^{-} \pi^{+} \pi^{-}$	0.69 ± 0.11	06
$K^{+} K^{-} \pi^{0}$	1.21 ± 0.83	07
$K_{S}^{0} K^{+} \pi^{-} \pi^{+} \pi^{-}$	2.75 ± 0.74	08
$2\left(\pi^{+} \pi^{-}\right) \eta$	4.4 ± 1.3	09
$\pi^{+} \pi^{-} \eta$	1.7 ± 0.5	10
$K^{+} K^{-} \eta$	1.35 ± 0.16	11
$K^{+} K^{-} K^{+} K^{-}$	0.146 ± 0.030	12
$K^{+} K^{-} 2\left(\pi^{+} \pi^{-}\right)$	0.75 ± 0.24	13
$p \bar{p}$	0.150 ± 0.016	14
$p \bar{p} \pi^{+} \pi^{-}$	0.53 ± 0.18	15
$p \bar{p} \pi^{0}$	0.36 ± 0.13	16
Summed up	$\sum_{i} \mathcal{B}_{i}=41.34 \pm 3.93$	

$\sim 40 \%$ of the total η_{c} branching fraction

$\Phi(2170) \mathcal{Y}(2175)$

Eur. Phys. J. C72, 2008
$e^{+} e^{-} \Rightarrow \begin{cases}Y(2175) \rightarrow \phi(1020) \pi^{+} \pi^{-} & \text {strange, } \\ Y(4260) \rightarrow J / \psi \pi^{+} \pi^{-} & \text {charm, } \\ \Upsilon(10860) \rightarrow \Upsilon(1 S, 2 S) \pi^{+} \pi^{-} & \text {bottom },\end{cases}$
$>\phi(2170)$ as strange analogue of $Y(4220)$
$>$ The nature of $\phi(2170)$ is still not fully understood

Process $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-}$

PRD 99, 032001 (2019)

$>1^{--}$resonance observed in $K^{+} K^{-}$lineshape:

- Differs from the world average parameters of $\phi(2170)$ by more than 3σ in mass and more than 2σ in width
- Interpreted as isoscalar : $\omega^{*}, \phi(2170)$

Or isovector : $\rho(2150)$

Process $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \boldsymbol{\phi} \eta^{\prime}$ and $\boldsymbol{\phi} \eta$

Process $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow \mathbf{K}^{+} \mathbf{K}^{-} \boldsymbol{\pi}^{0} \boldsymbol{\pi}^{\mathbf{0}}$

$$
M=(2126.5 \pm 16.8 \pm 12.4) \mathrm{MeV} / c^{2} \Gamma=(106.9 \pm 32.1 \pm 28.1) \mathrm{MeV}
$$

- Mass is consistent with the $\phi(2170), \rho^{*}, \omega^{*}$
- Width is only consistent with $\phi(2170)$ and different from others

Phys. Rev. Lett. 124, 112001(2020)

		$\mathcal{B}_{r} \Gamma_{R}^{e^{+} e^{-}}$ (eV)	ϕ (rad)	signific- ance (σ)
Channel		3.0 ± 3.8	5.6 ± 1.5	4.4
$K^{+}(1460) K^{-}$	Solution 1	4.7 ± 3.3	3.7 ± 0.4	4.8
$K_{1}^{+}(1400) K^{-}$	Solution 2	98.8 ± 7.8	4.5 ± 0.3	
	Solution 1	7.6 ± 3.7	4.0 ± 0.2	1.4
$K_{1}^{+}(1270) K^{-}$	Solution 2	152.6 ± 14.2	4.5 ± 0.1	
		0.04 ± 0.2	5.8 ± 1.9	1.2
$K^{*+}(892) K^{*-}(892)$				

\Rightarrow PWA for $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{K}^{+} \mathrm{K}^{-} \pi^{0} \pi^{0}$ at multiple energy points
> Simultaneous fit is applied for 4 processes
> Cross section lineshapes for intermediate states

Summary

With the data collected by BESIII, lots of progress in study of Y states are made

The nature of charmonium-like Y states and $\phi(2170)$ are still unknown
More results of BESIII are coming soon

BACKUP

Process $e^{+} e^{-} \rightarrow \omega \chi_{c J}$

Phys. Rev. D 99, 091103(R) (2019)

$>$ The study of $e^{+} e^{-} \rightarrow \omega \chi_{c J}(\mathrm{~J}=0,1,2)$
$>\chi_{c 0} \rightarrow \pi^{+} \pi^{-} / K^{+} K^{-}, \omega \rightarrow \pi^{+} \pi^{-} \pi^{0}$
$>$ A resonant structures are observed in the fit to the cross section

- $M=(4218.5 \pm 1.6 \pm 4.0) \mathrm{MeV} / c^{2}$, $\Gamma=(28.2 \pm 3.9 \pm 1.6) \mathrm{MeV}$
$>$ The clear $\mathrm{Y}(4220)$ can be seen

Phys. Rev. Lett. 114, 092003 (2015)
Phys. Rev. D 93, 011102(R) (2016)

Process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} J / \psi$

$>$ Simultaneous fit to XYZ data(left) and R-scan data (right)
$>$ Two resonant structures are observed in the fit to the cross section

- $M=(4222.0 \pm 3.1 \pm 1.4) \mathrm{MeV} / c^{2}, \Gamma=(44.1 \pm 4.3 \pm 2.0) \mathrm{MeV}$
- $M=(4320.0 \pm 10.4 \pm 7.0) \mathrm{MeV} / c^{2}, \Gamma=\left(101.4_{-19.7}^{+25.3} \pm 10.2\right) \mathrm{MeV}$
> The significance of the second resonance is 7.6σ
$>$ The $Y(4220)$ agrees with the $Y(4260)$
$>$ The $Y(4320)$ agrees with the $Y(4360)$

$$
Y(4260) \text {-> } Y(4220)+Y(4360) \text { ? }
$$

$$
\operatorname{Process} e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}
$$

Phys. Rev. Lett. 118, 092002 (2017)

Phys. Rev. Lett. 111, 242001 (2013)

TABLE I. $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}$ cross sections (or upper limits at the 90% confidence level). The third errors are from the uncertainty in $\mathcal{B}\left(h_{c} \rightarrow \gamma \eta_{c}\right)$ [11].			
$\sqrt{s}(\mathrm{GeV})$	$\mathcal{L}\left(\mathrm{pb}^{-1}\right)$	$n_{h_{c}}^{\text {obs }}$	$\sigma\left(e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} h_{c}\right)(\mathrm{pb})$
3.900	52.8	<2.3	<8.3
4.009	482.0	<13	<5.0
4.090	51.0	<6.0	<13
4.190	43.0	8.8 ± 4.9	$17.7 \pm 9.8 \pm 1.6 \pm 2.8$
4.210	54.7	21.7 ± 5.9	$34.8 \pm 9.5 \pm 3.2 \pm 5.5$
4.220	54.6	26.6 ± 6.8	$41.9 \pm 10.7 \pm 3.8 \pm 6.6$
4.230	1090.0	646 ± 33	$50.2 \pm 2.7 \pm 4.6 \pm 7.9$
4.245	56.0	22.6 ± 7.1	$32.7 \pm 10.3 \pm 3.0 \pm 5.1$
4.260	826.8	416 ± 28	$41.0 \pm 2.8 \pm 3.7 \pm 6.4$
4.310	44.9	34.6 ± 7.2	$61.9 \pm 12.9 \pm 5.6 \pm 9.7$
4.360	544.5	357 ± 25	$52.3 \pm 3.7 \pm 4.8 \pm 8.2$
4.390	55.1	30.0 ± 7.8	$41.8 \pm 10.8 \pm 3.8 \pm 6.6$
4.420	44.7	29.1 ± 7.3	$49.4 \pm 12.4 \pm 4.5 \pm 7.6$

$>h_{c}$ is reconstructed by $h_{c} \rightarrow \gamma \eta_{c}, \eta_{c}$ is reconstructed by 16 exclusive hadronic final states
$>$ The cross sections are found to be of the same order of magnitude as those of $e^{+} e^{-} \rightarrow$ $\pi^{+} \pi^{-} J / \psi$
$>$ Two resonant structures are observed in the fit to the cross section

- $M=\left(4218.4_{-4.5}^{+5.5} \pm 0.9\right) \mathrm{MeV} / c^{2}, \Gamma=\left(66.0_{-8.3}^{+12.3} \pm 0.4\right) \mathrm{MeV}$
- $M=\left(4391.5_{-6.8}^{+6.3} \pm 1.0\right) \mathrm{MeV} / c^{2}, \Gamma=\left(139.5_{-20.6}^{+16.2} \pm 0.6\right) \mathrm{MeV}$
$>$ The $\mathrm{Y}(4220)$ here is consistent with state in $\pi^{+} \pi^{-} J / \psi$
$>$ The $\mathrm{Y}(4390)$ is different from $\mathrm{Y}(4360)$ and $\psi(4415)$

Process $e^{+} e^{-} \rightarrow \pi^{+} \pi^{-} \psi(3686)$

$>$ The fit to the cross section shows contributions from two structures, $Y(4220)+Y(4390)$
$>$ The $\mathrm{Y}(4360)$ observed by Belle and BaBar consists of two structure.

Process $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \eta \mathrm{J} / \boldsymbol{\psi}$

Parameters	Solution 1	Solution 2	Solution 3
$M_{1}\left(\mathrm{MeV} / c^{2}\right)$		4039 (fixed)	
$\Gamma_{1}(\mathrm{MeV})$		80 (fixed)	
$\Gamma_{1}^{e^{+} e^{-} \mathcal{B} r_{1}(\mathrm{eV})}$	1.5 ± 0.3	1.4 ± 0.3	7.0 ± 0.6
$\phi_{1}(\mathrm{rad})$	3.3 ± 0.3	3.1 ± 0.3	4.5 ± 0.2
$M_{2}\left(\mathrm{MeV} / c^{2}\right)$		4218.6 ± 3.8	
$\Gamma_{2}(\mathrm{MeV})$		82.0 ± 5.7	
$\Gamma_{2}^{e^{+} e^{-} \mathcal{B} r_{2}(\mathrm{eV})}$	8.0 ± 1.7	4.8 ± 1.0	7.0 ± 1.5
$\phi_{2}(\mathrm{rad})$	4.2 ± 0.4	3.6 ± 0.3	2.9 ± 0.3
$M_{3}\left(\mathrm{MeV} / c^{2}\right)$		4382.0 ± 13.3	
$\Gamma_{3}(\mathrm{MeV})$		135.8 ± 60.8	
$\Gamma_{3}^{e^{+} e^{-} \mathcal{B} r_{3}(\mathrm{eV})}$	3.4 ± 2.2	1.5 ± 1.0	1.7 ± 1.1
$\phi_{3}(\mathrm{rad})$	2.8 ± 0.4	3.3 ± 0.4	3.0 ± 0.4

$>$ The new study of $e^{+} e^{-} \rightarrow \eta J / \psi$
$>\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$ channels are used for reconstruction
> Simultaneous fit is performed to the XYZ data and scan data
> The $\mathrm{Y}(4220)$ and $\mathrm{Y}(4390)$ are observed for the first time in the $\eta J / \psi$ final states

Process $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\eta}^{\prime} \boldsymbol{J} / \boldsymbol{\psi}, \boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{\eta} \boldsymbol{\psi}(\mathbf{2 S})$

Phys. Rev. D 101, 012008 (2020)

arXiv:2103.01480

$>$ Can't describe by a single $\psi(4160)$ or $\psi(4260)$ (Fixed mass and width)
$>$ A coherent sum of $\psi(4160)$ and $\psi(4260)$ provides a reasonable description of data
$>$ The significance of $\psi(4160)$ and $Y(4260)$ are 6.3σ and 4.0σ, respectively
 is observed for the first time(5σ for 14 data points)
> Impossible to extract the Y state due to limitation of statistics

