FPCP 2021

Lifetimes and non-leptonic decays of charmed baryons

Fanrong Xu Jinan University, Guangzhou

June 10, 2021

In Collaboration with

Hai-Yang Cheng, Xian-Wei Kang, & Guanbao Meng, Jinqi Zou, Sam Ming-Yin Wong, Shiyong Hu

Lifetimes

□ Singly charmed baryons

- Doubly charmed baryons
- Charm-bottom baryons

Evolution of lifetimes

Theory: Heavy Quark Expansion

$$\begin{split} \Gamma(H_Q \to f) &= \frac{G_F^2 m_Q^5}{192\pi^3} |V_{\rm CKM}|^2 \left(A_0 + \frac{A_2}{m_Q^2} + \frac{A_3}{m_Q^3} + \dots \right) \\ &= \frac{G_F^2 m_Q^5}{192\pi^3} |V_{\rm CKM}|^2 \left[c_{3,Q} \frac{\langle H_Q | \bar{Q}Q | H_Q \rangle}{2m_{H_Q}} + \frac{c_{5,Q}}{m_Q^2} \frac{\langle H_Q | \bar{Q}\sigma \cdot GQ | H_Q \rangle}{2m_{H_Q}} + \frac{c_{6,Q}}{m_Q^3} \frac{\langle H_Q | T_6 | H_Q \rangle}{2m_{H_Q}} \right] \end{split}$$

□ A_0 term: decay of heavy quark In the limit of $m_Q \rightarrow \infty$, all heavy hadrons have identical lifetimes.

 \Box Luke's theorem \rightarrow lack of $1/m_Q$ corrections.

 \Box A_2 term: interaction of heavy quark spin and gluon

 \Box A_3 term: dim-6 four-quark operators inducing spectator effects responsible for lifetime differences.

I HQE in $1/m_Q$ expansion up to $1/m_Q^3$ works very well for B mesons and bottom baryons.

Spectator effects: dim-6 operators $\Gamma = \Gamma^{dec} + \Gamma^{ann} + \Gamma^{int} + \Gamma^{semi}$

 Γ^{ann} W-exchange (or weak annihilation)

d(s)

 Γ^{int}_{-} Destructive P. I., (Pauli interference)

 $\Gamma^{\rm int}_+$ Constructive P. I.

 Γ^{semi} Additional constructive P. I.

	Dec	Ann	Int (-)	Int (+)	Semi	τ (10 ⁻¹³ s)	Expt (10 ⁻¹³ s)
Ξ _c +	1	S ²	1	C ²	small P.I.	3.06	4.42±0.26
Λ_{c}^{+}	1	C ²	1	S ²	no P.I.	2.91	2.00±0.06
Ξ _c ⁰	1	1		C ²	small P.I.	1.62	1.12 ^{+0.13} -0.10
Ω_{c}^{0}	1	6s ²		10/3 c ²	large P.I.	1.06	0.69±0.12

 $s=sin\theta_{c}, c=cos\theta_{c}$

- Lifetime hierarchy (PDG 2018): $\tau(\Omega_c^0) < \tau(\Xi_c^0) < \tau(\Lambda_c^+) < \tau(\Xi_c^+)$
- It is difficult to explain

$$\frac{\tau(\Xi_c^+)}{\tau(\Lambda_c^+)} = 2.21 \pm 0.15 \qquad \frac{\tau(\Xi_c^+)}{\tau(\Xi_c^0)} = 3.95 \pm 0.47$$

- Ω_c has the shortest lifetime as it receives a large contribution from constructive Pauli interference.
- 1/m_c expansion not well convergent and sensible

Incorporating dim-7 operators

$$\Gamma(H_Q \to f) = \frac{G_F^2 m_Q^5}{192\pi^3} |V_{\text{CKM}}|^2 \left(A_0 + \frac{A_2}{m_Q^2} + \frac{A_3}{m_Q^3} + \frac{\overline{A_4}}{m_Q^4} + \dots\right)$$

• Consider subleading $1/m_c$ corrections to spectator effects

$$\begin{split} P_1^q &= \frac{m_q}{m_Q} \bar{Q} (1 - \gamma_5) q \bar{q} (1 - \gamma_5) Q, \qquad P_2^q &= \frac{m_q}{m_Q} \bar{Q} (1 + \gamma_5) q \bar{q} (1 + \gamma_5) Q, \\ P_3^q &= \frac{1}{m_Q^2} \bar{Q} \overleftarrow{D}_\rho \gamma_\mu (1 - \gamma_5) D^\rho q \bar{q} \gamma^\mu (1 - \gamma_5) Q, \qquad P_4^q &= \frac{1}{m_Q^2} \bar{Q} \overleftarrow{D}_\rho (1 - \gamma_5) D^\rho q \bar{q} (1 + \gamma_5) Q, \\ P_5^q &= \frac{1}{m_Q} \bar{Q} \gamma_\mu (1 - \gamma_5) q \bar{q} \gamma^\mu (1 - \gamma_5) (i D) Q, \qquad P_6^q &= \frac{1}{m_Q} \bar{Q} (1 - \gamma_5) q \bar{q} (1 + \gamma_5) (i D) Q, \end{split}$$

Beneke, Buchalla, Dunietz ('96): width difference in B_s - \underline{B}_s system Gabbiani, Onishchenko, Petrov ('03,'04): lifetime difference of heavy hadrons Lenz, Rauh ('13): D meson lifetimes

Charmed baryon lifetimes \Box to $1/m_c^3$

	$\Gamma^{ m dec}$	Γ^{ann}	Γ^{int}	Γ^{int}_+	Γ^{semi}	Γ^{tot}	$ au(10^{-13}s)$	$ au_{ m expt}(10^{-13}s)$
Λ_c^+	0.886	1.479	-0.400	0.042	0.215	2.221	2.96	2.00 ± 0.06
Ξ_c^+	0.886	0.085	-0.431	0.882	0.726	2.148	3.06	4.42 ± 0.26
Ξ_c^0	0.886	1.591		0.882	0.726	4.084	1.61	$1.12\substack{+0.13 \\ -0.10}$
Ω_c^0	1.019	0.515		2.974	1.901	6.409	1.03	0.69 ± 0.12

 \Box to $1/m_c^4$

	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	Γ_+^{int}	$\Gamma^{\rm semi}$	$\Gamma^{ m tot}$	$ au(10^{-13}s)$	$ au_{ m expt}(10^{-13}s)$
Λ_c^+	0.886	2.179	-0.211	0.022	0.215	3.091	2.12	2.00 ± 0.06
Ξ_c^+	0.886	0.133	-0.186	0.407	0.437	1.677	3.92	4.42 ± 0.26
Ξ_c^0	0.886	2.501		0.405	0.435	4.228	1.56	$1.12\substack{+0.13 \\ -0.10}$
Ω_c^0	1.019	0.876		-0.559	-0.256	1.079	6.10	0.69 ± 0.12

• Right trend: $\Gamma(\Lambda_c^+)$ enhanced, $\Gamma(\Xi_c^+)$ suppressed

 $\frac{\tau(\Xi_c^+)}{\tau(\Lambda_c^+)}: 1.03 \rightarrow 1.84$

• Lifetime of Ω_c : shortest \implies longest

Ω^0_c	Γ^{dec}	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	Γ_+^{int}	$\Gamma^{\rm semi}$	Γ^{tot}	$\tau(10^{-13}s)$
$1/m_c^3$	1.019	0.515		2.974	1.901	6.409	1.03
$1/m_{c}^{4}$	1.019	0.876		-0.559	-0.256	1.079	6.10

• Destructive contributions from $\Gamma_7^{\text{int}} \& \Gamma_7^{\text{semi}}$ are too large to justify the validity of HQE

α	$\Gamma^{ m dec}$	Γ^{ann}	Γ_+^{int}	Γ^{semi}	Γ^{tot}	$\tau(10^{-13}s)$
0	1.019	0.876	-0.559	-0.256	1.079	6.10
0.12	1.019	0.876	-0.135	0.003	1.762	3.73
0.16	1.019	0.876	0.006	0.089	1.990	3.31
0.22	1.019	0.876	0.218	0.219	2.331	2.82
0.32	1.019	0.876	0.571	0.435	2.900	2.27
1	1.019	0.876	2.974	1.901	6.770	0.97

10

Location: Shanghai

	PDG(2018)	LHCb	Theory($1/m_c^3$)	Theory($1/m_c^4$)
Ξ_c^+	4.42±0.26	4.568±0.055	2.91	3.92
Λ_c^+	2.00±0.06	2.035±0.022	3.06	2.12
Ξ_c^0	$1.12^{+0.13}_{-0.10}$	1.545±0.025	1.62	1.56
Ω_c^0	0.69±0.12	2.68±0.26	1.06	2.3 ~ 3.3

$$\mathcal{O}(1/m_c^3) \Rightarrow \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0) > \tau(\Omega_c^0),$$
$$\mathcal{O}(1/m_c^4) \Rightarrow \tau(\Omega_c^0) > \tau(\Xi_c^+) > \tau(\Lambda_c^+) > \tau(\Xi_c^0),$$
$$(1/m_c^4) \text{ with } \alpha \Rightarrow \tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0),$$

 \mathcal{O}

Lifetimes of doubly charmed baryons

	Dec	Ann	Int(-)	Int(+)	Semi	τ(10 ⁻¹³ s)
Ξ _{cc} ++	1		1		1	1.9~15.5
Ξ_{cc}^{+}	1	1		S ²	1 + s² P.I.	0.5~ 2.5
Ω_{cc}^{+}	1	s ²		1	1 + c² P.I.	2.1~ 2.8

Lifetimes of doubly charmed baryons

	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	$\Gamma^{ ext{int}}_+$	Γ^{semi}	$\Gamma^{ m tot}$	$\tau(10^{-13} \text{ s})$	$ au_{\rm expt}(10^{-13} \ { m s})$
Ξ_{cc}^{++}	2.198		-1.383		0.450	1.265	5.20	$2.56^{+0.28}_{-0.26}$
Ξ_{cc}^+	2.198	8.628		0.123	0.525	11.475	0.57	0.20
Ω_{cc}^+	2.148	0.611		3.217	2.445	8.421	0.78	
		$\Gamma^{\rm ann} \gg \Gamma$	$\overset{\mathrm{vint}}{_{+}} \Rightarrow \tau$	$\neg(\Xi_{cc}^{++}) > \gamma$	$\tau(\Omega_{cc}^+) > \tau$	$ au(\Xi_{cc}^+)$		
		$\Gamma^{ m semi}({ m semi})$	$\Omega_{cc}^+) \gg I$	$\Sigma^{\text{semi}}(\Xi_{cc}^+)$	$> \Gamma^{\rm semi}(\Xi)$	$^{++}_{cc})$		
	$1/m_{c}^{4}$	-						
	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma_{-}^{\mathrm{int}}$	$\Gamma^{ ext{int}}_+$	Γ^{semi}	$\Gamma^{ m tot}$	$\tau(10^{-13} \text{ s})$	$ au_{\rm expt}(10^{-13} \ { m s})$
Ξ_{cc}^{++}	2.198		-0.437		0.451	2.212	2.98	$2.56^{+0.28}_{-0.26}$
Ξ_{cc}^+	2.198	12.260		0.030	0.469	14.958	0.44	0.20
Ω_{cc}^+	2.148	0.979		-0.246	0.318	3.200	2.06	

- $\tau(\Xi_{cc}^{++})$ becomes shorter, while $\tau(\Omega_{cc}^{+})$ becomes longer
- The use of HQE for constructive P.I. & semileptonic contribution is not valid

$$\Gamma_{+}^{\text{int}} = \Gamma_{+,6}^{\text{int}} + \Gamma_{+,7}^{\text{int}}$$

$$\Gamma^{\text{semi}} = \Gamma_{6}^{\text{semi}} + \Gamma_{7}^{\text{semi}}$$

$$\Gamma^{\text{semi}} = \Gamma_{6}^{\text{semi}} + (1 - \alpha)\Gamma_{+,7}^{\text{int}}$$

$$\Gamma^{\text{semi}} = \Gamma_{6}^{\text{semi}} + (1 - \alpha)\Gamma_{7}^{\text{semi}}$$

	α	$\Gamma^{ m dec}$	Γ^{ann}	$\Gamma^{ ext{int}}_+$	Γ^{semi}	$\Gamma^{ m tot}$	$\tau(10^{-13} \text{ s})$
\mathbf{O}^+	0	2.148	0.979	-0.246	0.318	3.200	2.06
	0.08	2.148	0.979	0.031	0.489	3.647	1.80
	0.30	2.148	0.979	0.792	0.956	4.876	1.35
	1	2.148	0.979	3.217	2.445	8.789	0.75

 $0.75 \times 10^{-13} \text{ s} < \tau(\Omega_{cc}^+) < 1.80 \times 10^{-13} \text{ s}$

• Ξ_{cc}^+ : insensitive to α (Cabibbo suppressed) $\tau(\Xi_{cc}^{++}) \sim 3.0 \times 10^{-13} \text{s} \qquad \tau(\Xi_{cc}^+) \sim 0.45 \times 10^{-13} \text{s}$

 $\tau(\Xi_{cc}^{++}) > \tau(\Omega_{cc}^{+}) > \tau(\Xi_{cc}^{+})$

$$au(\Xi_{cc}^{++}) = (2.56^{+0.24}_{-0.22} \pm 0.14) \times 10^{-13} \,\mathrm{s}$$
 LHCb '18

Summary (I)

- ■HQE in $1/m_c$ fails to provide a satisfactory description of the lifetimes of charmed baryons to O($1/m_c^3$). Need to consider sub-leading $1/m_c$ corrections to spectator effects.
- Lifetime pattern of singly charmed baryon is dramatically changed in the presence of dim-7 effects: $\tau(\Xi_c^+) > \tau(\Omega_c^0) > \tau(\Lambda_c^+) > \tau(\Xi_c^0)$.
- For doubly charmed baryons, we found $\tau(\Xi_{cc}^{++}) > \tau(\Omega_{cc}^{+}) > \tau(\Xi_{cc}^{+})$ with $\tau(\Xi_{cc}^{++}) \sim 0.30 \text{ ps}, \tau(\Xi_{cc}^{+}) \sim 0.05 \text{ ps}.$
- The lifetime pattern of charm-bottom baryons are predicted as $\tau(\Xi_{bc}^+) > \tau(\Omega_{bc}^0) > \tau(\Xi_{bc}^0)$.

Non-leptonic decays

- □ Antitriplet singly charmed baryons
- One sextet charmed baryon
- Doubly charmed baryons

Experimental progress

BESIII

> absolute branching ratio of Λ⁺_c → pK⁻π⁺, 2016
> observation of Λ⁺_c → nK⁰_Sπ⁺, 2017
> Λ⁺_c → pπ⁰ and Λ⁺_c → pπ⁰, 2017
> absolute branching fraction for Λ⁺_c → Ξ⁰K⁺, 2018
> decay asymmetries in Λ_c → PK_S, Λπ⁺, Σ⁺π⁰, Σ⁰π⁺, 2019
> absolute branching fraction of inclusive decay Λ⁺_c → K⁰_SX, 2020
> absolute branching fraction for Λ⁺_c → pK⁰_Sη, 2021
> ...

• Bell

 $\begin{array}{l} & \blacktriangleright \text{Measurement of } \Xi_c^+ \to \Xi^- \pi^+ \pi^+, 2019 \\ & \triangleright \text{ measurement of } \Xi_c^0 \to \Xi^- \pi^+, 2019 \\ & \triangleright \text{ asymmetry of } \Xi_c^0 \to \Xi^- \pi^+, 2021 \\ & \triangleright \text{ Branchng fractions of } \Lambda_c^+ \to p\eta \text{ and } \Lambda_c^+ \to p\pi^0, 2021 \\ & \triangleright \dots \end{array}$

• LHCb

 \succ Branching fraction of Λ_c^+ → $p \pi^- K^+$, 2018

> Observation of Ξ_{cc}^{++} , 2017

- > Observation of Ξ_{cc}^{++} → $\Xi_{c}^{+}\pi^{+}$,2018
- > Observation of Ξ_c^+ → $p\phi$, 2019

> Precision measurement of Ξ_{cc}^{++} mass, 2020

Search for Ξ_{cc}^+ , 2020, 2021

Search for Ω_{cc}^+ , 2021

≻...

Current situation

The situation we confront with:

Improve and more modes of charmed baryon decays are being measured,

• explore the dynamics at charm scale,

□ be a good helper to the experimentalist.

The requirement of <u>a universal tool</u>:

- ✓ can identify all types of contributions,
- \checkmark can give instructions to further estimations.

The application of topological-diagram in charmed baryons

$$M(\mathcal{B}_i \to \mathcal{B}_f P) = i\bar{u}_f (A - B\gamma_5) u_i$$

$$A = A^{\text{fac}} + A^{\text{nf}}$$
$$B = B^{\text{fac}} + B^{\text{nf}}$$

- fac. and nonfac. contribution can be identified
- the estimation of two types of contribution resort to different methods

Factorizable part: naive factorization

$$M = \langle P\mathcal{B} | \mathcal{H}_{\text{eff}} | \mathcal{B}_c \rangle = \begin{cases} \frac{G_F}{\sqrt{2}} V_{cd} V_{us}^* a_1 \langle P | (\bar{u}s) | 0 \rangle \langle \mathcal{B} | (\bar{d}c) | \mathcal{B}_c \rangle, \ P = K^+, \\ \frac{G_F}{\sqrt{2}} V_{cd} V_{us}^* a_2 \langle P | (\bar{s}d) | 0 \rangle \langle \mathcal{B} | (\bar{u}c) | \mathcal{B}_c \rangle \\ \frac{\partial (B(p_2) | \bar{c}\gamma_\mu (1 - \gamma_5) u | \mathcal{B}_c(p_1) \rangle}{\int d | (1 - \gamma_5) u | \mathcal{B}_c(p_1) \rangle} P = K^0, \\ \langle \mathcal{B}(p_2) | \bar{c}\gamma_\mu (1 - \gamma_5) u | \mathcal{B}_c(p_1) \rangle = \bar{u}_2 \left[f_1(q^2) \gamma_\mu - f_2(q^2) i \sigma_{\mu\nu} \frac{q^{\nu}}{M} + f_3(q^2) \frac{q_\mu}{M} - \left(g_1(q^2) \gamma_\mu - g_2(q^2) i \sigma_{\mu\nu} \frac{q^{\nu}}{M} + g_3(q^2) \frac{q_\mu}{M} \right) \gamma_5 \right] u_1 \end{cases}$$

Lattice results of FFs

□ Stefen Meinel, $\Lambda_c \rightarrow \Lambda$, PRL 2017; $\Lambda_c \rightarrow N$, PRD 2018

Tue 08/06 Wed 09/06 Thu 10/06 All days

11:00	Xi_c Semileptonic decays from lattice QCD	Prof. Wei WANG
	东方绿舟宾馆合欢厅, Shanghai	11:00 - 11:15

Factorizable part: form factor

• MIT bag model estimation

Static limit

$$f_1^{B_f B_i}(q_{\max}^2) = \langle B_f \uparrow | b_{q_1}^{\dagger} b_{q_2} | B_i \uparrow \rangle \int d^3 \boldsymbol{r} (u_{q_1} u_{q_2} + v_{q_1} v_{q_2})$$
$$g_1^{B_f B_i}(q_{\max}^2) = \langle B_f \uparrow | b_{q_1}^{\dagger} b_{q_2} \sigma_z | B_i \uparrow \rangle \int d^3 \boldsymbol{r} (u_{q_1} u_{q_2} - \frac{1}{3} v_{q_1} v_{q_2})$$

Run

$$f_i(q^2) = \frac{f_i(0)}{(1 - q^2/m_V^2)^2}, \qquad g_i(q^2) = \frac{g_i(0)}{(1 - q^2/m_A^2)^2}$$

modes	$(car{q})$	$f_1(q_{\max}^2)$	$f_1(m_P^2)/f_1(q_{\rm max}^2)$	$g_1(q_{\max}^2)$	$g_1(m_P^2)/g_1(q_{\rm max}^2)$
$\Xi_c^+ \to \Sigma^+ \overline{K}{}^0$	$(c\overline{s})$	$-\frac{\sqrt{6}}{2}Y_1$	0.44907	$-\frac{\sqrt{6}}{2}Y_2$	0.60286
$\Xi_c^+\to \Xi^0\pi^+$	$(c\bar{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.49628	$-\frac{\sqrt{6}}{2}Y_2^s$	0.63416
$\Xi_c^0\to\Lambda\overline{K}^0$	$(c \overline{s})$	$\frac{1}{2}Y_1$	0.38700	$\frac{1}{2}Y_2$	0.55337
$\Xi_c^0\to \Sigma^0 \overline{K}{}^0$	$(c\bar{s})$	$\frac{\sqrt{3}}{2}Y_1$	0.44929	$\frac{\sqrt{3}}{2}Y_2$	0.60304
$\Xi_c^0\to \Xi^-\pi^+$	$(c\bar{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.49911	$-rac{\sqrt{6}}{2}Y_2^s$	0.63636
$\Xi_c^+\to \Sigma^0\pi^+$	$(car{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.36045	$\frac{\sqrt{3}}{2}Y_2$	0.52523
$\Xi_c^+\to\Lambda\pi^+$	$(car{d})$	$-\frac{1}{2}Y_1$	0.30260	$-\frac{1}{2}Y_2$	0.47622
$\Xi_c^+\to \Sigma^+\pi^0$	$(car{d})$	$-\frac{\sqrt{6}}{2}Y_1$	0.35774	$-\frac{\sqrt{6}}{2}Y_2$	0.52294
$\Xi_c^+ \to \Sigma^+ \eta_8$	$(car{d})$	$-\frac{\sqrt{6}}{2}Y_1$	0.41371	$-\frac{\sqrt{6}}{2}Y_2$	0.57735
$\Xi_c^+\to \Xi^0 K^+$	$(c\bar{s})$	$-rac{\sqrt{6}}{2}Y_1^s$	0.55058	$-rac{\sqrt{6}}{2}Y_2^s$	0.68080
$\Xi_c^0\to\Lambda\eta_8$	$(c\bar{s}), (c\bar{d})$	$\frac{1}{2}Y_1$	0.39685, 0.34715	$\frac{1}{2}Y_2$	0.56286, 0.52343
$\Xi_c^0 \to \Sigma^0 \eta_8$	$(c\bar{s}),(c\bar{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.46073, 0.41395	$\frac{\sqrt{3}}{2}Y_2$	0.61338, 0.57754
$\Xi_c^0\to\Lambda\pi^0$	$(car{d})$	$\frac{1}{2}Y_1$	0.30019	$\frac{1}{2}Y_2$	0.47410
$\Xi_c^0\to \Sigma^0\pi^0$	$(car{d})$	$\frac{\sqrt{3}}{2}Y_1$	0.35795	$\frac{\sqrt{3}}{2}Y_2$	0.52311
$\Xi_c^0\to \Sigma^-\pi^+$	$(car{d})$	$\frac{\sqrt{6}}{2}Y_1$	0.36183	$\frac{\sqrt{6}}{2}Y_2$	0.52638
$\Xi_c^0\to \Xi^- K^+$	$(c\bar{s})$	$-\frac{\sqrt{6}}{2}Y_1^s$	0.55371	$-\frac{\sqrt{6}}{2}Y_2^s$	0.68316

Non-factorizable part: pole model

Current algebra

Advantage: avoid $\frac{1}{2}$ ullet

$$A^{\text{com}} = -\frac{\sqrt{2}}{f_{P^a}} \langle B_f | [Q_5^a, H_{\text{eff}}^{PV}] | B_i \rangle = \frac{\sqrt{2}}{f_{P^a}} \langle B_f | [Q^a, H_{\text{eff}}^{PC}] | B_i \rangle$$
$$B^{\text{pole}} = \frac{\sqrt{2}}{f_{P^a}} \sum_{B_n} \left[g_{B_f B_n}^A \frac{m_f + m_n}{m_i - m_n} a_{ni} + a_{fn} \frac{m_i + m_n}{m_f - m_n} g_{B_n B_i}^A \right]$$

- S-wave: commutator $A^{\text{com}}(B_i \to B_f K^{\pm}) = \frac{1}{f_K} \langle B_f | [V_{\mp}, H_{\text{eff}}^{PC}] | B_i \rangle$ $V_{+\Lambda} = -\frac{\sqrt{6}}{2}p$ $V_{+\Sigma^0} = -\frac{\sqrt{2}}{2}p$ $V_{+\Sigma^0} = -\frac{\sqrt{2}}{2}p$ $V_{+\Xi^-} = -\frac{\sqrt{2}}{2}\Sigma^0 - \frac{\sqrt{6}}{2}\Lambda$
- •

$$g_{\mathcal{B}'\mathcal{B}P^a} = \frac{\sqrt{2}}{f_{P^a}}(m_{\mathcal{B}'} + m_{\mathcal{B}})g^A_{\mathcal{B}'\mathcal{B}},$$

Baryon matrix elements & axial form factors

• MIT bag model estimation

$$a_{B'B} \equiv \langle B' | \mathcal{H}_{\text{eff}}^{\text{PC}} | B \rangle = \frac{G_F}{2\sqrt{2}} \sum_{q=d,s} V_{cq} V_{uq}^* c_- \langle B' | O_-^q | B \rangle$$
$$O_{\pm}^q = O_1^q \pm O_2^q = (\bar{q}c)(\bar{u}q) \pm (\bar{q}q)(\bar{u}c)$$
$$c_- = c_1 - c_2$$
$$g_{\mathcal{B'B}}^{A(P)} = \langle \mathcal{B'} \uparrow | b_{q_1}^\dagger b_{q_2} \sigma_z | \mathcal{B} \uparrow \rangle \int d^3 r \left(u_{q_1} u_{q_2} - \frac{1}{3} v_{q_1} v_{q_2} \right)$$

Selected results

This work	Geng et al. [14, 46]	Expt.
1.30(-0.93)	$1.27 \pm 0.07 (-0.77 \pm 0.07)$	$1.30 \pm 0.07 (-0.84 \pm 0.09)$
$2.24 \ (-0.76)$	$1.26 \pm 0.06 (-0.58 \pm 0.10)$	$1.29 \pm 0.07 (-0.73 \pm 0.18)$
$2.24 \ (-0.76)$	$1.26 \pm 0.06 \ (-0.58 \pm 0.10)$	$1.25 \pm 0.10 \ (-0.55 \pm 0.11)$
0.74(-0.95)	$0.29 \pm 0.12 (-0.70^{+0.59}_{-0.30})$	0.53 ± 0.15
$2.11 \ (-0.75)$	$3.14 \pm 0.15 (-0.99^{+0.09}_{-0.01})$	$3.18 \pm 0.16 ~(~0.18 \pm 0.45)$
$0.73\ (\ 0.90)$	0.57 ± 0.09 $(1.00^{+0.00}_{-0.02})$	0.55 ± 0.07
0.13 (-0.97)	$0.11^{+0.13}_{-0.11}$ (0.24 ± 0.68)	< 0.27 < 0.08
1.28(-0.55)	$1.12 \pm 0.28 (-1.00^{+0.06}_{-0.00})$	$1.24 \pm 0.29 \qquad 1.42 \pm 0.12$
0.09(-0.73)	$0.76 \pm 0.11~(~0.27 \pm 0.11)$	BESIII'17 Belle'2
$1.07 \ (-0.96)$	$0.66 \pm 0.09~(~0.09 \pm 0.26)$	0.61 ± 0.12
$0.72 \ (-0.73)$	$0.52 \pm 0.07 (-0.98^{+0.05}_{-0.02})$	0.52 ± 0.08
$1.44 \ (-0.73)$	$1.05 \pm 0.14 (-0.98^{+0.05}_{-0.02})$	
	This work 1.30 (-0.93) 2.24 (-0.76) 2.24 (-0.76) 0.74 (-0.95) 2.11 (-0.75) 0.73 (0.90) 0.13 (-0.97) 1.28 (-0.55) 0.09 (-0.73) 1.07 (-0.96) 0.72 (-0.73) 1.44 (-0.73)	This workGeng et al. [14, 46] $1.30 (-0.93)$ $1.27 \pm 0.07 (-0.77 \pm 0.07)$ $2.24 (-0.76)$ $1.26 \pm 0.06 (-0.58 \pm 0.10)$ $2.24 (-0.76)$ $1.26 \pm 0.06 (-0.58 \pm 0.10)$ $2.24 (-0.76)$ $1.26 \pm 0.06 (-0.58 \pm 0.10)$ $0.74 (-0.95)$ $0.29 \pm 0.12 (-0.70^{+0.59}_{-0.30})$ $2.11 (-0.75)$ $3.14 \pm 0.15 (-0.99^{+0.09}_{-0.01})$ $0.73 (0.90)$ $0.57 \pm 0.09 (1.00^{+0.00}_{-0.02})$ $0.13 (-0.97)$ $0.11^{+0.13}_{-0.11} (0.24 \pm 0.68)$ $1.28 (-0.55)$ $1.12 \pm 0.28 (-1.00^{+0.06}_{-0.00})$ $0.09 (-0.73)$ $0.76 \pm 0.11 (0.27 \pm 0.11)$ $1.07 (-0.96)$ $0.66 \pm 0.09 (0.09 \pm 0.26)$ $0.72 (-0.73)$ $0.52 \pm 0.07 (-0.98^{+0.05}_{-0.02})$ $1.44 (-0.73)$ $1.05 \pm 0.14 (-0.98^{+0.05}_{-0.02})$

- Some modes are consistent well with experimental results.
- Most predictions for branching fraction and decay asymmetry are consistent with fitting results based on SU(3) symmetry.

Discussion

- 1. Resolve the branching ratio of $\Lambda_c^+ \to \Xi^0 K^+$
- 2. $\Xi_c^+ \to \Xi^0 \pi^+ \& \Xi_c^0 \to \Xi^- \pi^+$ tension
- 3. Promising modes to discover $\Xi_{cc}^+ \& \Omega_{cc}^+$

$$\Lambda_c^+ \to \Xi^0 K^+$$
 : diagrams

Prediction for $\Lambda_c^+ \to \Xi^0 K^+$

(b)

J.G. Korner, M. Kramer '92 P. Zenczykowski '94

Channel	A^{fac} A^{cc}	$^{\mathrm{om}}$ A^{tot}	B^{fac}	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$\mathcal{B}_{\mathrm{exp}}$ [7]	$lpha_{ m theo}$	$lpha_{ m exp}$
$\Lambda_c^+ \to \Xi^0 K^+$	0 - 4.4	48 - 4.48	0	-12.10	-12.10	0.73×10^{-2}	$(0.55 \pm 0.07)10^{-2}$	0.90	

$$\begin{aligned} \Xi_c^0 &\to \Sigma^+ K^- \\ \Xi_c^0 &\to p K^-, \Sigma^+ \pi^- \end{aligned}$$

28

$\Xi_c^+ \to \Xi^0 \pi^+ \& \Xi_c^0 \to \Xi^-$	π^+
$\Xi_c^+ \to \Xi^0 \pi^+$	$\Xi_c^0 \to \Xi^- \pi^+$
$\begin{array}{c} & & \pi^+ \\ & & & \\ & & \Xi_c^+ & \Xi_c^0 & \\ & & \Xi_c^0 & \\ \end{array}$	$\begin{array}{c} & \pi^+ \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \end{array} \\ \hline \\ \hline \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \hline \\ \\ \\ \end{array} \\ \hline \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \pi^+ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
$A^{\rm com}(\Xi_c^+ \to \Xi^0 \pi^+) = -\frac{1}{f_\pi} a_{\Xi^0 \Xi_c^0}$	$A^{\rm com}(\Xi_c^0 \to \Xi^- \pi^+) = \frac{1}{f_\pi} a_{\Xi^0 \Xi_c^0}$
$B^{\mathrm{ca}}(\Xi_{c}^{+}\to\Xi^{0}\pi^{+}) = \frac{1}{f_{\pi}} \left(a_{\Xi^{0}\Xi_{c}^{0}} \frac{m_{\Xi_{c}^{+}} + m_{\Xi_{c}^{0}}}{m_{\Xi^{0}} - m_{\Xi_{c}^{0}}} g_{\Xi_{c}^{0}\Xi_{c}^{+}}^{A(\pi^{+})} + a_{\Xi^{0}\Xi_{c}^{\prime 0}} \frac{m_{\Xi_{c}^{+}} + m_{\Xi_{c}^{\prime 0}}}{m_{\Xi^{0}} - m_{\Xi_{c}^{\prime 0}}} g_{\Xi_{c}^{\prime 0}\Xi_{c}^{+}}^{A(\pi^{+})} \right)$	$B^{\rm ca}(\Xi_c^0 \to \Xi^- \pi^+) = \frac{1}{f_\pi} \left(g_{\Xi^- \Xi^0}^{A(\pi^+)} \frac{m_{\Xi^-} + m_{\Xi^0}}{m_{\Xi_c^0} - m_{\Xi^0}} a_{\Xi^0 \Xi_c^0} \right)$
Channel $A^{\text{fac}} A^{\text{com}} A^{\text{tot}} B^{\text{fac}} B^{\text{ca}}$	$\mathcal{B}_{\text{theo}}^{\text{tot}} \mathcal{B}_{\text{theo}} \mathcal{B}_{\text{exp}} \alpha_{\text{theo}} \alpha_{\text{exp}}$
$\Xi_c^0 \to \Xi^- \pi^+$ -7.42 -5.36 -12.78 28.24 2.65	30.89 <u>6.47</u> 1.80 ± 0.52 -0.95 -0.6 ± 0.4
$\Xi_c^+ \to \Xi^0 \pi^+$ -7.41 5.36 -2.05 28.07 -14.03	14.04 <u>1.72</u> $1.57 \pm 0.83 - 0.78 -$
des	structive 2

$\Xi_{cc}^{++} \rightarrow \Xi_{c}^{+}\pi^{+}$: the examining channel

Our prediction

$$(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+) \approx 0.7\%$$

D Experimental hint

 $\frac{\mathcal{B}(\Xi_{cc}^{++}\to\Xi_{c}^{+}\pi^{+})\times\mathcal{B}(\Xi_{c}^{+}\to pK^{-}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++}\to\Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})\times\mathcal{B}(\Lambda_{c}^{+}\to pK^{-}\pi^{+})} = 0.035 \pm 0.009(\text{stat.})\pm 0.003(\text{syst.}).$ LHCb, PRL 121 (2018) 162002 $\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+) = (6.28 \pm 0.32)\%$ PDG2018 $\mathcal{E}(\Xi_c^+ \to pK^-\pi^+) = (0.45 \pm 0.21 \pm 0.07)\%$ Belle, PRD100(2019) 031101 $\frac{\mathcal{B}(\Xi_{cc}^{++} \to \Xi_{c}^{+}\pi^{+})}{\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_{c}^{+}K^{-}\pi^{+}\pi^{+})} = 0.49 \pm 0.27$ $\mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+) \approx \frac{2}{3} \mathcal{B}(\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^{*0})$ assumption $\mathcal{B}(\Xi_{cc}^{++} \to \Sigma_{c}^{++} \overline{K}^{*0}) = 5.61\%$ T. <u>Gutsche</u>, et. al. PRD100(2019) 114037 $\mathcal{B}(\Xi_{cc}^{++} \to \Xi_c^+ \pi^+)_{\text{expt}} \approx (1.83 \pm 1.01)\%$

B

Mode Our Dhir Gutsche et al. Wang Gerasimov et al. [8, 10][11, 13, 17]et al. [7] $et \ al. \ [14]$ $\Xi_{cc}^{++} \rightarrow \Xi_c^+ \pi^+$ 0.696.64 (N) 0.706.187.019.19 (H) $\Xi_{cc}^{++} \to \Xi_c^{'+} \pi^+$ 4.655.39 (N) 3.034.335.85 $\Xi_{cc}^{++} \to \Sigma_c^{++} \overline{K}^0$ 7.34 (H)

1.25

2.39 (N)

4.69 (H)

Comparison

1.36

Promising channels

Channel	A^{fac}	A^{com}	$A^{\rm tot}$	B^{fac}	B^{ca}	B^{tot}	$\mathcal{B}_{ ext{theo}}$	$\alpha_{\rm theo}$
$\Xi_{cc}^{++}\to \Xi_c^+\pi^+$	7.40	-10.79	-3.38	-15.06	18.91	3.85	0.69	-0.41
$\Xi_{cc}^{++}\to\Xi_c^{\prime+}\pi^+$	4.49	-0.04	4.45	-48.50	0.06	-48.44	4.65	-0.84
$\Xi_{cc}^{+}\to \Xi_{c}^{0}\pi^{+}$	8.52	10.79	19.31	-16.46	-0.08	-16.54	3.84	-0.31

 $B(\Xi_{cc}^{++} \to \Xi_{c}^{\prime+}\pi^{+}) = 4.65\%$

LHCb, Sci. China Phys. Mech. Astron. 63 221062 (2020)

Explanation

$$\Xi_{cc}^{+} \to \Sigma_{c}^{++} K^{-} \to \Lambda_{c}^{+} K^{-} \pi^{+} \to p K^{-} \pi^{+} K^{-} \pi^{+}$$
$$B(\Xi_{cc}^{+} \to \Sigma_{c}^{++} K^{-}) = 0.13\%$$

H.-Y. Cheng, G. Meng, FX, J. Zou, Phys. Rev. D 101 (2020), 034034

$$\begin{split} \Xi_{cc}^+ &\to \Lambda_c^+ \, \overline{K}^{0*} \to \Lambda_c^+ K^- \pi^+ \to p K^- \pi^+ \, K^- \pi^+ \\ & B(\Xi_{cc}^+ \to \Lambda_c^+ \overline{K}^{0*}) = 0.48\% \end{split}$$

L.J. Jiang, B. He, R.H. Li, EPJC 78(2018)no.11,961

Ξ_{cc}^+ and Ω_{cc}^+ : the suggested discovering mode

 $\Box \text{ A suggested discovering channel for } \Xi_{cc}^{+}: \\ \Xi_{cc}^{+} \to \Xi_{c}^{0}\pi^{+} \to \Xi^{-}\pi^{+}\pi^{+} \to \Lambda\pi^{-}\pi^{+}\pi^{+} \to p\pi^{-}\pi^{-}\pi^{+}\pi^{+} \\ B(\Xi_{cc}^{+} \to \Xi_{c}^{0}\pi^{+}) = 3.84\% \text{ (large Br)} \\ H.-Y. Cheng, G. Meng, FX, J. Zou, \\ Phys. Rev. D 101 (2020), 034034 \\ B(\Xi_{c}^{0} \to \Xi^{-}\pi^{+}) = 6.47\% \text{ (the largest channel)}$

J. Zou, FX, G. Meng and H.-Y. Cheng, PRD101(2020), 014011

 $\Box \text{ A similar suggested discovering channel for } \Omega_{cc}^{+}:$ $\Omega_{cc}^{+} \to \Xi^{0} \overline{\mathrm{K}}^{0} \pi^{+} \to \Lambda \pi^{0} \overline{\mathrm{K}}^{0} \pi^{+} \to p \pi^{-} \pi^{0} \overline{\mathrm{K}}^{0} \pi^{+}$ $B(\Omega_{cc}^{+} \to \Omega_{c}^{0} \pi^{+}) = 3.96\% \text{ (large Br)}$ H.-Y. Cheng, G. Meng, FX, J. Zou, Phys. Rev. D 101 (2020), 034034

 $B(\Omega_c^0 \to \Xi^0 \overline{K}^0) = 3.78\%$ (CF, the largest channel)

Summary (II)

- Weak decays of singly & doubly charmed baryons are predicted.
- Branching fraction of $\Lambda_c^+ \to \Xi^0 K^+$ is resolved.
- A tension exists in $\Xi_c^+ \to \Xi^0 \pi^+$ and $\Xi_c^0 \to \Xi^- \pi^+$.
- Promising modes to discovery the remaining 2 doubly charmed baryons are proposed.