Z_c and Z_{cs} studies at BESIII

Ruiting Ma

University of Chinese Academy of Sciences, Beijing, China

On behalf of the BESIII Collaboration

June. 9, 2021

PRL 126, 102001 (2021)

PRD 103, 032006 (2021)

PRD 103, 052010 (2021)

• **BEPCII** and **BESIII**

- Overview of Z_c analyses @ BESIII
- The observation of $Z_{cs}(3985)^+$ @ BESIII
- Recent Z_c analyses @ BESIII
 - Study of the process $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ and neutral charmoniumlike state $Z_c(3900)^0$. PRD 102, 012009 (2020)
 - Search for a Z_c state close to the $D\overline{D}$ threshold decaying to $\eta_c \pi$ at $\sqrt{s} = 4.23$ GeV.
 - Search for the reaction $e^+e^- \rightarrow \chi_{cJ}\pi^+\pi^-$ and a charmoniumlike structure decaying to $\chi_{cJ}\pi^{\pm}$ between 4.18 and 4.6 GeV.

• Summary

The XYZ states

Charmonium(-like) structures^[1]

Many charmonium and charmonium -(like) states are observed.

• A series of **theoretical models** for *XYZ* states:

• Joint efforts from both theories and experiments are needed to understand the nature of the *XYZ* states.

[1] From Fengkun's talk on the XYZ Workshop in China

BEPCII and BESIII

Z_c and Z_{cs} @ BESIII

Beam energy: 1.0 ~ 2.45 GeV	RPC: 9 RPC: 8	Sub-system	Performance
	Electro Magnetic Calorimeter SC Solenoid	MDC	$\sigma_{xy} = 130 \mu\text{m}$ $\Delta P/P = 0.5\% @ 1 \text{GeV}$ $\sigma_{dE/dx} = 6\%$
	Barrel ToF Endcap	TOF	$\sigma_{\rm T} = 68 \text{ ps (barrel)}$ 60 ps (endcaps)
	ToF SC Quadrupole	EMC	$\Delta E/\sqrt{E} = 2.5\% @ 1 \text{GeV}$ $\sigma_z = 0.5 \text{cm} @ 1 \text{GeV}$
		Magnet	1.0 Tesla
BEPCII	BESIII	MUC	$0.9 \times 4\pi$

• Datasets in BESIII (~13 years):

- > The worldwide largest e^+e^- datasets in τ -charm region
- ≻ 46 datasets with \sqrt{s} > 3.8 GeV, $\sum L_i = 21.9 \text{ fb}^{-1}$
- ▶ 29 energy points with $L_i > 0.4$ fb⁻¹
- Large datasets for *XYZ* analyses!

Overview of Z_c analyses @ BESIII

Z_c and Z_{cs} @ BESIII

The ~4 fb⁻¹ data with \sqrt{s} from 4.23 to 4.42 GeV collected in 2013 and 2014 years.

✓ Observation of the charmonium-like Z_c and Z^{*}_c states in both open charm and hidden charm final states!

> The ~13 fb⁻¹ data with \sqrt{s} from 4.13 to 4.70 GeV collected in 2016 ~ 2020.

 \checkmark Understanding the nature of the exotic Z_c states && Potential SU(3) counter-part Z_{cs} state?

The observation of Z_{cs} state @ BESIII

The observation of $Z_{cs}(3985)^+$ at BESIII

- $e^+e^- \rightarrow K^+Z^-_{cs} \rightarrow K^+(D^-_sD^{*0} + D^{*-}_sD^0)$
 - > BESIII collected ~3.7 fb⁻¹ datasets with \sqrt{s} from 4.626 to 4.7 GeV in 2020.
 - > Allow to search for the Z_{cs} ($c\bar{c}u\bar{s}$) state.
 - > Search for charged Z_{cs} state in the open charm $D_s^- D^{*0}$ and $D_s^{*-} D^0$ final states.
 - **Partial reconstruction method:** Tag the D_s^- and bachelor K^+ .
 - Wrong sign: $D_s^- K^-$ combinations to model the combinatorial backgrounds.
 - $RM(K^+D_s^-)$ spectrum is selected to distinguish the signal process.

 Z_c and Z_{cs} @ BESIII

PRL 126, 102001 (2021)

D*-

 $e^+e^- \rightarrow K^+D_s^{*-}D^0$

The observation of $Z_{cs}(3985)^+$ at BESIII

• $e^+e^- \to K^+Z_{cs}^- \to K^+(D_s^-D^{*0} + D_s^{*-}D^0)$

- \succ A structure near the threshold of $D_s^- D^{*0}$ and $D_s^{*-}D^0$ is found to be peaked at the left side of $RM(K^+)$ spectrum, and cannot be described by $D_{(s)}^{**}$ decays.
- > Simultaneous fit is performed to the all the datasets with \sqrt{s} > 4.626 GeV.
- ✓ The **mass and width** are measured to be (with $J^P = 1^+$ Breit-Wigner):

 $m(Z_{cs}(3985)^+) = (3985.2^{+2.1}_{-2.0} \pm 1.7) \text{ MeV}/c^2$ $\Gamma(Z_{cs}(3985)^+) = (13.8^{+8.1}_{-5.2} \pm 4.9) \text{ MeV}$

 \checkmark The significance is 5. 3σ after consider the look elsewhere effect.

 Z_c and Z_{cs} @ BESIII

• First observation of the open-strange hidden-charm tetraquark candidates.

 $\sqrt{s} = 4.681 \text{ GeV}$

4.05

Events/

The observation of $Z_{cs}(3985)^+$ at BESIII

Z_c and Z_{cs} @ BESIII

- $e^+e^- \rightarrow K^+Z^-_{cs} \rightarrow K^+(D^-_sD^{*0} + D^{*-}_sD^0)$
 - > Compare with $Z_c(3885)^-$.

	$Z_{cs}(3985)^{-}$	$Z_c(3885)^-$	
Mass (MeV/ c^2)	$3985.2^{+2.1}_{-2.0} \pm 1.7$	3883.9 ± 1.5 ± 4.2	
Width (MeV)	$13.8^{+8.1}_{-5.2} \pm 4.9$	$24.8 \pm 3.3 \pm 11.0$	
$D^0 D^{*-}_{(s)} (\text{MeV}/c^2)$	3977.04	3875.10	
$D^{*0}D_{(s)}^{-}$ (MeV/ c^{2})	3975.20	3876.51	

- ✓ ~10 MeV/ c^2 above $D^{*0}D^-_{(s)}/D^0D^{*-}_{(s)}$ mass. -- SU(3) counter-part.
- ✓ Search for Z_{cs} in hidden charm decays.
- > Compare to $Z_{cs}(4000)^-$ observed by LHCb.

	$Z_{cs}(3985)^{-}$	$Z_{cs}(4000)^{-}$
$M_{ploe} ({\rm MeV}/c^2)$	$3985.2^{+2.1}_{-2.0} \pm 1.7$	$4003 \pm 6^{+4}_{-14}$
Γ _{ploe} (MeV)	$13.8^{+8.1}_{-5.2} \pm 4.9$	$131 \pm 15 \pm 26$

- ✓ Mass is **consistent**, but width is **one order larger** than BESIII result.
- \checkmark They are same things?

Ruiting Ma (UCAS)

Recent Z_c analyses @ BESIII

Study of the $Z_c(3900)^0$ state with PWA

Z_c and Z_{cs} @ BESIII

- $e^+e^- \to \pi^0 Z_c(3900)^0 \to \pi^0 \pi^0 J/\psi$
- A simultaneous PWA is performed on the four data samples of $\sqrt{s} = 4.226, 4.236, 4.244$ and 4.258 GeV.
- ➤ The fitting model includes four intermediate processes: $\pi^0 Z_c(3900)^0$, $e^+e^- \rightarrow \sigma J/\psi$, $f_0(980)J/\psi$, $\psi, f_0(1370)J/\psi$.
- ✓ The mass and width of $Z_c(3900)^0$ is determined to be:

 $m(Z_c(3900)^0) = (3893.0 \pm 2.3 \pm 3.2) \text{ MeV}/c^2$ $\Gamma(Z_c(3900)^0) = (44.2 \pm 5.4 \pm 8.3) \text{ MeV}$

✓ The spin-parity of the $Z_c(3900)^0$ is determined to be $J^P = \mathbf{1}^+$ with a statistical significance of more than 9σ over alternative J^P hypotheses.

PRD 102, 012009 (2020)

Ruiting Ma (UCAS)

Search for Z_c states in $\eta_c \pi$ final states

- $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, $\eta_c \pi^0 \gamma$
 - > Several theoretical studies suggest to search for charmonium-like Z_c state with $J^P = 0^+$ in $\eta_c \pi$ final states.
 - ≻ The LHCb Collaboration reported an $\eta_c \pi$ resonance, $Z_c(4100)^+$, in $B^0 \to K^+ \eta_c \pi^-$ decays^[1].
 - > The cross sections of $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$, $\eta_c \pi^+\pi^-$, $\eta_c \pi^0 \gamma$ are studied in this analysis.
 - ✓ Only the $e^+e^- \rightarrow \eta_c \pi^+\pi^-\pi^0$ process was observed with 5.2 σ after summing up all the datasets.
 - ✓ The upper limits of the cross section of $e^+e^- \rightarrow Z_c^+\pi^-\pi^0$ and $e^+e^- \rightarrow Z_c^0\pi^+\pi^-$ with different Z_c mass and width assumptions are extracted at $\sqrt{s} = 4.23$ GeV.

[1] EPJC 78, 1019 (2018)

PRD 103, 032006 (2021)

Search for Z_c states in $\chi_{cI}\pi$ final states

• $e^+e^- \rightarrow \pi^+\pi^-\chi_{cJ}$

- → Two charmonium-like states, $Z_c(4050)^+$ and $Z_c(4250)^+$ are observed by Belle collaboration in $\overline{B}^0 \to K^- \pi^+ \chi_{c1}$ decays^[1], but not confirmed by *BaBar*^[2].
- > The $e^+e^- \rightarrow \pi^+\pi^+\chi_{cJ}$, $\chi_{cJ} \rightarrow \gamma J/\psi$ processes are searched in BESIII with \sqrt{s} form 4.18 GeV to 4.60 GeV.
- > Non of the three $\pi^+\pi^+\chi_{cl}$ processes are found in the datasets.
- ✓ The upper limits of the **born cross sections of** $\pi^+\pi^+\chi_{cJ}$ are reported in the analysis.

 Z_c and Z_{cs} @ BESIII

PRD 103, 052010 (2021)

Future Z_c and Z_{cs} analyses at BESIII

Z_c and Z_{cs} @ BESIII

• On going analyses:

- $e^+e^- \rightarrow K^+K^-J/\psi$
- $e^+e^- \to K^0_s(D^-_sD^{*+} + D^{*-}_sD^+)$
- $e^+e^- \rightarrow K^0_s K^0_s J/\psi$

• Data taking:

- > About 1.8 fb⁻¹ datasets with \sqrt{s} from 4.74 ~ 4.95 GeV @ 2021.
- > Possibilities for **future** *XYZ* **data taking** at BESIII.

CPC Vol. 44 No.126, 102001 (2021)

 \succ Detailed Z_c and Z_{cs} analyses with large statistic and more energy point will come soon!

plan	data sets	
XYZ plan (1)	500 pb ⁻¹ at a large number of points between 4.0 and 4.6 GeV	
XYZ plan (2)	5 fb ⁻¹ at 4.23, 4.42 GeV for large Z_c samples	
XYZ plan (3)	5 fb^{-1} above 4.6 GeV	
charmonium plan	$3 \times 10^9 \psi(3686)$ decays	

Table 3.4. Data taking requirements for XYZ physics and charmonium physics.

Ruiting Ma (UCAS)

Summary

What's Next?

- More than **20 fb⁻¹** data samples above **3.8 GeV** have been collected by BEPCII/BESIII Collaboration.
- Several Z_c and Z_c^* states have been observed by BESIII during 2013-2015.
 - $Z_c(3885)^+ \to \pi^+ J/\psi, Z_c(3900)^+ \to (DD^*)^+ \dots$
- Recently, based on the new datasets collected in **2017-2020**, more highlight results on *Z* physics are published:
 - ✓ The observation of $Z_{cs}(3985)^+$.
 - ✓ PWA result of $e^+e^- \rightarrow \pi^0 \pi^0 J/\psi$ for $Z_c(3900)^0$.
 - ✓ Searching for Z_c states in $\eta_c \pi$, $\chi_{cJ} \pi$ final states.
- > More detailed analyses on Z_c and Z_{cs} states are **ongoing.**
- The BESIII Collaboration planed to collected more XYZ datasets, to further understanding the nature of Z states.

Thank you!

Ruiting Ma (UCAS)

Back Up

Beijing Electron Positron Collider (BEPCII)

Ruiting Ma (UCAS)

BEPCII peaking luminosity

- Increase of beam energy 2.30 → 2.35 (2018) → 2.45 GeV (2020)
 - \rightarrow 2.35 GeV in 2018 summer (done).
 - \rightarrow 2.45 GeV in 2020 summer (done).
- Top-up injection (done)
 - Data taking efficiency increases by 20~30%.

 Z_c and Z_{cs} @ BESIII

BESIII data samples

Z_c and Z_{cs} @ BESIII

