Atmospheric Neutrino Oscillation Experiments

Wing Yan Ma (DESY) for the IceCube Collaboration

FPCP 2021 (Shanghai, China) 9th June 2021

Outline

- > Neutrino oscillations and atmospheric neutrinos
- > Status of 3-flavour neutrino oscillation studies using atmospheric neutrinos
- > BSM measurements with atmospheric neutrinos
- > Future prospects

2

Neutrino Oscillations

Mixing matrix in standard 3-neutrino mixing framework:

$$U = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_1 \\ 0 & 1 \\ -s_{13}e^{+i\delta} & 0 \end{pmatrix}$$

3 mixing angles θ_{12} , θ_{13} , θ_{23} and complex phase δ_{CP} (+ α_1 , α_2 if neutrinos are Majorana) >

Non-zero δ_{CP} would give $P(\nu_{\alpha} \rightarrow \nu_{\beta}) \neq P(\bar{\nu}_{\alpha} \rightarrow \bar{\nu}_{\beta})$

Mixing amplitude: $A_{\nu_{\alpha} \rightarrow \nu_{\beta}} = \sum_{\alpha i}^{N_{\nu}} U_{\alpha i}^{*} e^{-i(E_{i}t - p_{i}L)} U_{\beta i}$

Oscillation probability: $P_{\nu_{\alpha} \to \nu_{\beta}} \approx sin^{2}(2\theta)$. $sin^{2} \left(\frac{1.267\Delta m^{2}(eV^{2})L(km)}{E(GeV)} \right)$

- Amplitude of oscillations depends on θ >
- Frequency of oscillations depends on Δm^2 , *L*, *E*

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

$\begin{pmatrix} Atmospheric & Majorana \\ \delta_{13}e^{-i\delta} \\ 0 \\ 0 \\ c_{12} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{22} & c_{23} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha_1/2} & 0 \\ 0 & 0 & e^{i\alpha_2/2} \end{pmatrix} c_{ij} = cos\theta_{ij}$

3

Neutrino Oscillations Open Questions

- > m_3 state is heaviest (normal ordering) or lightest (inverted ordering) still undetermined
- Octant of θ_{23} (symmetry in μ/τ ?) >
 - > Current data consistent with $\theta_{23} = \pi/4$ (maximal mixing)
- Value of δ_{CP} >
 - Could explain matter/antimatter asymmetry in the universe
 - Weak global preference for $\delta_{CP} \sim 3\pi/2$ mainly driven by > LBL+Reactor results

Oscillation Physics

- Atmospheric neutrinos have large energy range (GeV-TeV), with baseline: $\sim O(10) O(10^4)$ km > Most sensitive to flavour oscillations with $\Delta m^2 \sim 10^{-1} - 10^{-4} eV^2$
- Matter effects for core-crossing neutrinos >
- >
 - > $\nu_{\mu} \rightarrow \nu_{\tau}$ transition and Neutrino Mass Ordering (NMO)

DESY.

Atmospheric neutrino production

- Decay of pions/kaons from cosmic ray interactions atmospheric > nuclei produces $\mu + \bar{\nu}_{\mu} (e + \bar{\nu}_{e})$
- > μ decay produces $e + \bar{\nu}_e + \nu_\mu$
- If all muons decay, expect $\frac{\nu_{\mu} + \bar{\nu}_{\mu}}{\nu_{e} + \bar{\nu}_{e}} = 2$
- Kamiokande experiment first reported an indication of a deficit > of ν_{μ} flux
- Clear evidence of neutrino oscillation: >
 - μ -like events showed a clear deficit of up-going events
 - No deficit for e-like events

2015

Atmospheric neutrino detectors

- > These photons can be collected by PMTs that instrument the detection medium

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

Charged particles travelling through water/ice faster than light will emit Cherenkov radiation

Event Signatures

Electrons

Muons

- Electrons: multiple scattering inside the > detector gives "fuzzy" ring
- Muons: little scattering, produces a well-> defined Cherenkov cone

Event Signatures

- Photons arrive at a few strings/PMTs >
- Cannot tell topology by eye >
- Rely on advance reconstruction algorithm > for PID

Event Signatures

Comparison between detectors

Detector	Energy range	Energy resolution	Zenith resolution	PID
SuperK	~ few MeV - GeV	3% @ 1GeV	2-3°	e, μ, π ⁰
ANTARES*	~ 20 GeV - PeV	50 ± 22%	3º @ 20 GeV	µ, "cascade"
IceCube/ DeepCore*	~ 5 GeV - PeV	25% @ 20 GeV	8º @ 20 GeV	µ, "cascade"

- *ANTARES and DeepCore resolutions quoted for tracks
- > SK: lower energy range, can distinguish e, μ, π^0
- > ANTARES: good directional resolution
- > IceCube: good energy resolution

11

Atmospheric Neutrino Analysis

DeepCore Atmospheric Neutrino Analysis

- Maximal disappearance of up-going ν_{μ} at ~25 GeV
- Mostly oscillated to ν_{τ} at this energy
- 8 years of DeepCore data with new analysis framework
- Major advances in calibration, BDT, reconstruction, treatment of systematic uncertainties, etc.
 - Robust reconstruction to select **sub-sample of ~24k** > high-quality, track-like "Golden events"
 - Final sample: ~80% signal events ($\nu_{\mu}/\bar{\nu}_{\mu}$ CC), ~2% background atmospheric muons
 - Focus on measurement of $sin^2\theta_{23}$ and Δm^2_{32} in NO >

Analysis space

Mixed PID channel

Total : 11405 events ~70% ν_{μ} CC															Т	ota	: 12	237	6 ev	vent	s~($94\% \ u_{\mu} \ C$	С				
	$\cap \cap -$	34	72	123	189	210	208	156	96	52	43		200			4	15	35	82	133	189	213	194	147	186		
	0.0	32	76	125	189	218	217	166	113	62	49		200		0.0	5	16	38	88	139	208	243	226	171	230		
	-0.2 -	33	71	124	184	213	221	167	113	64	55			_	-0.2	4	15	34	79	127	199	232	225	182	240		
0	•	36	75	119	174	204	212	165	110	62	51		150		0	4	15	31	72	120	193	231	231	178	236		
) rec	-0.4	38	76	120	159	188	195	153	102	61	46			6 –	-0.4	5	12	25	63	111	184	230	228	187	228		
osf		53	89	117	160	173	176	142	89	53	40		100	Ð	ost	6	14	24	54	104	174	229	232	194	219		
U .	-0.6	76	113	133	159	165	155	119	76	43	32		100	—	0.6	9	19	27	47	97	162	220	231	188	209		•
		126	161	167	156	143	126	92	60	32	27					16	32	35	49	83	145	201	221	180	195		
•	-0.8-	184	195	182	155	122	100	70	43	25	21		- 50	—	-0.8	36	62	60	55	74	120	173	190	161	174		
	1 0	165	190	196	159	117	79	54	32	20	18				1 0	79	115	111	91	85	114	147	163	134	132		
	-1.0-	8			16		32		6	4	128		_	—	-1.0-	8		-	L6		32		6	4	128	_	
E _{reco} (GeV)															Erec	_o (G	eV)										
												_	_	_													

> Extract oscillation parameters by comparing data with expectation of standard 3-flavour neutrino oscillation DESY. Atmos n M | FPCP 2021,-09.06

Track PID channel

10 (E) x 10 (cosZ) x 2 (PID) bins

θ

Systematic Uncertainties

- Include uncertainties from atmospheric flux, cross-sections and detector
- > Extensive studies to include systematics that have non-negligible effect
- > Detector uncertainty dominates the systematic uncertainty

	name	nominal	prior		
	neutrino Δγ	0	±0.1		
	barr_af_Pi	0.0	±0.63		
	barr_g_Pi	0.0	±0.3		
flux	barr_h_Pi	0.0	±0.15		
	barr_w_K	0.0	±0.4		
	barr_y_K	0.0	±0.3		
	barr_w_antiK	0.0	±0.4		
	GENIE MAQE	0.0	±1.0		
cross sec.	GENIE MARES	0.0	±1.0		
	DIS CSMS	0.0	±1.0		
nuwoiaht	A _{eff} scale	1.0	uniform		
nu weight	nu NC norm	1.0	±0.2		
	DOM efficiency	1.0	±0.1		
	hole ice p0	0.101569	uniform		
detector systematics	hole ice p1	-0.049344	uniform		
e y e ternatie e	ice absorption coeff	1.0	±0.05		
	ice scattering coeff	1.05	±0.05		
muons	muon weight scale	1.0	uniform		

Systematic Uncertainties Detector systematics

DOM efficiency

- MC sets generated at > different values: [0.8, 1.2]
- prior: 1±0.1 >

- modelled as change in > angular acceptance
- parametrisation: > 2 components (p0, p1) from PCA over different existing models
- flat prior

•

Hole ice

Ice scattering and absorption

- scale scattering and absorption coefficients of all ice layers
- 4 systematic simulation sets: ±5% scattering, ±5% absorption
- bounds: ±10% around nominal >
- prior $1\sigma = 5\%$

Analysis results using Sub-Sample

- > Using this sub-sample ("Golden events") shows improvement compare to previous results
- > Results consistent with both analyses, continues to be compatible with maximal mixing
- Best-fit: >

>
$$\sin^2 \theta_{23} = 0.505^{+0.051}_{-0.050}$$

> $\Delta m_{32}^2 = 2.41^{+0.084}_{-0.084} \times 10^{-3} eV^2$

Expected Sensitivity with full statistics

- Expect even better constrains with full statistics >
 - Consistent with all other DeepCore results >

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

18

SK Atmospheric Neutrino Analysis

- > Lower energy threshold, sensitive to δ_{CP}
- > Simultaneous fit to 3 parameters, fixed θ_{13}
- > Full SK I-IV livetime, exposure: 364.8 kton-yrs
- > 78 data samples, > 150 systematics are taken into account
- > Main improvements:
 - > Neutron tagging efficiency ~ 25% (for $\nu/\bar{\nu}$ separation)
 - > New BDT-based selection for multi-ring events
 - Increased signal efficiency, sample purity

ICHEP2020 Talk + Proceedings

19

SK Atmospheric Neutrino Analysis

- > Data disfavours IH (IO) at 71.4 90.3% C.L.
- > Data prefers 1st θ_{23} octant and $\delta_{CP} \sim 3\pi/2$

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

ICHEP2020 Talk + Proceedings

Atmospheric oscillation parameters sensitivity

- Comparison with other experiment results >
 - > shows comparable precision with LBL experiments

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

ANTARES Atmospheric Neutrino Analysis

- Data taken from 2007-2016, 2830 days of lifetime >
- Track channel only, 7710 events selected >
- Atmospheric muon background extrapolated from data >
- Binned likelihood fit in 2D ($log_{10}E_{reco}$, $cos(\theta_{reco})$) >
- Consistent with other results >

| Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021 DESY.

J. High Energ. Phys. 2019, 113 (2019)

Other Measurements

Selection of results

ν_{τ} appearance

- Measure ν_{τ} normalisation ($N_{\nu_{\tau}}$) w.r.t. unitary PMNS > expectation
 - > Constraining ν_{τ} normalisation ($N_{\nu_{\tau}}$) can test PMNS mixing matrix unitarity
 - Deviation from 1 would imply non-unitarity >
 - Not accessible by LBL experiments >
- 8 year results with DeepCore (low energy) data on the way >
 - > Expect ~2 times world-best measurement on $N_{\nu_{-}}$

eV-scale sterile neutrino search

- IceCube 8 years of data, ~300k up-going atmospheric and astrophysical ν_{μ}
- **Results consistent with the no sterile neutrino** > **hypothesis**, increased tension with short baseline anomalies

> ANTARES uses same dataset for atmospheric neutrino analysis to set constrains on $|U_{\mu4}|^2 = sin^2\theta_{24}$ and $|U_{\tau4}|^2 = sin^2\theta_{34}cos^2\theta_{24}$ > $|U_{\mu4}|^2 < 0.13$ and $|U_{\tau4}|^2 < 0.68$ at 99% C.L.

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

Non-Standard Interaction (NSI)

- Search for modified matter potential due to new vector forces as neutrinos cross the Earth >
- > Modify effective matter Hamiltonian via a 3×3 NSI matrix

$$H_{\text{mat}}(x) = V_{\text{CC}}(x) \begin{pmatrix} 1 + \epsilon_{ee}^{\oplus} \\ \epsilon_{e\mu}^{\oplus} \\ \epsilon_{e\tau}^{\oplus} \end{pmatrix}$$

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

Non-Standard Interaction (NSI)

- DeepCore data can be used to put > constraints on all matrix elements
- > Results consistent with no NSI hypothesis
- Can achieve world-best limits in multiple > channels
- ϵ_{tt} > SK reported best fit ϵ in $e - \tau$ sector and $\mu - \tau$ sector

Future Prospects

KM3NeT/ORCA

Next generation Water Cherenkov telescope

- > Large volume of sea water as detection volume
- > ORCA : low energy neutrino telescope optimised for GeV neutrino detection
- > Can achieve competitive sensitivity with atmospheric mixing parameters and NMO with 3 years of data
- > First 6 Detection Unit (Strings) operating since Feb 2020 shows good data/MC agreement

SK with Gadolinium Improving neutron tagging efficiency

- > Delayed gamma cascades from Gd can help distinguish between $\nu | \bar{\nu} \rangle$
- > CC/NC separation, neutrino energy reconstruction
- > Currently loading 0.02% Gd achieved ~50% ncapture on Gd
 - > Aim to achieve 90% with 0.2% loading
- > Also benefits other analyses such as supernova neutrinos and proton decay

Talk at Neutrino2020

IceCube Upgrade Improvements to low-energy sensitivity

- > 7 new strings deploy within DeepCore
- > Densely packaged in 2 Mton core
- > Improved detector/ice calibration
- > Funded, planned deployment in 2022/3
- > Schedule under review due to COVID-19
- > Large increase in detected photons with the Upgrade
- > Events as low as ~1 GeV can be triggered and reconstructable by the Upgrade
- > All DeepCore science but better!

3.8 GeV ν_{μ}

Summary

- > Atmospheric neutrinos provides good opportunities for exploring oscillations
 - Many new measurements with full 8 year statistics of DeepCore on the way
- > Upcoming experimental developments shows high potential in further probing BSM Physics
- > Some effects could complicate extraction of CP phase because of degenerate effects (e.g. NSI, sterile) neutrinos)

- > Together with next generation LBL experiments, promise to be an exciting decade with many new measurements
- Important to get high precision oscillation parameters to determine the amount of CPV in leptonic sector

Thank you for listening!

DESY. | Atmospheric Neutrino Oscillation Experiments | Wing Yan Ma | FPCP 2021, 09.06.2021

Overlap between Samples DeepCore 8 year High Statistics Sample and Sub-sample

	24.044	Verification Sample Only	4,844 events	
Entire Verification Sample	21,914 events	Present in Both Samples	17,070 events	
Entire High Stats Sample		High Stats Sample Only	243,594 events	

243594

From K. DeHolton

High Stats Sample 260664 Events Total

