

[source]

$|V_{cb}|$ and $|V_{ub}|$ measurements at LHCb and Belle (II)

Conference on Flavor Physics and CP Violation (FPCP2021) (virtual) Shanghai, June 7 - 11, 2021

> Michel De Cian, EPFL on behalf of the LHCb and Belle (II) collaborations

in the main roles:

The Belle (II) experiment at the e^+e^- SuperKEK B accelerator.

and: The LHCb experiment at the pp accelerator LHC.

Measuring $|V_{cb}|$ and $|V_{ub}|$ at LHCb and Belle (II)

- Two main ways to measure $\left|V_{ub}
 ight|$ and $\left|V_{cb}
 ight|$
- Exclusive:
 - Focus on a single final state, e.g. $B^+ \to \pi^+ \mu^- \overline{\nu}_\mu$ or $B^0 \to D^{*-} \mu^+ \nu_\mu$.
 - Challenges: Possibly small signal yield, knowledge of hadronic form factors.
- Inclusive:
 - Consider "all" final states, e.g. $B^+ \to X_c \mu^- \overline{\nu}_\mu$ or $B^0 \to X_u \mu^+ \nu_\mu$.
 - Challenges: Background contamination, shape functions, ...

Table: Matrix of success

Exclusive measurements – $|V_{cb}|$

$$\frac{d^4\Gamma(B\to D^{*0}\mu\nu)}{dwd\Omega} = \frac{3m_B^3 m_{D^{*0}}^2 G_F^2}{16(4\pi)^4} \eta_{EW}^2 |V_{cb}|^2 |\mathcal{A}(w,\Omega)|^2, w = \frac{m_B^2 + m_{D^*}^2 - q^2}{2m_B m_{D^{*0}}}$$

- Helicity amplitudes in $\mathcal{A}(w,\Omega)$ depend on 3 form factors: $h_{A_1}(w), R_1(w), R_2(w)$
- External input: $\eta_{EW} = 1.0066$

CLN parametrisation ightarrow 4 free parameters: $ho^2, h_{A_1}, R_1(1), R_2(1)$ [Nucl. Phys. B530, 153 (1998)]

$$\begin{split} h_{A_1}(w) &= h_{A_1}(1) \left(1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right) \\ R_1(w) &= R_1(1) - 0.12(w-1) + 0.05(w-1)^2 \\ R_2(w) &= R_2(1) - 0.11(w-1) - 0.06(w-1)^2 \end{split}$$

Similar, but simpler for $B^+ \!
ightarrow D^0 \mu^+
u_\mu$

BGL parametrisation \rightarrow Converging series [PRL 74, 4603 (1995)]

$$f(z) = \frac{1}{P_{1+}(z)\phi_{f}(z)} \sum_{n=0}^{\infty} b_{n}z^{n} \qquad z = \frac{\sqrt{w+1}-\sqrt{z}}{\sqrt{w+1}+\sqrt{z}}$$
$$g(z) = \frac{1}{P_{1-}(z)\phi_{g}(z)} \sum_{n=0}^{\infty} a_{n}z^{n}$$
$$\mathcal{F}_{1}(z) = \frac{1}{P_{1+}(z)\phi_{\mathcal{F}_{1}}(z)} \sum_{n=0}^{\infty} c_{n}z^{n}$$

Exclusive measurements – $|V_{ub}|$

$$\frac{d\Gamma(B \to \pi \ell \nu)}{dq^2} = \frac{G_F^2 |V_{ub}|^2}{14\pi^3} |p_\pi|^3 |f_+(q^2)|^2$$

- Less data available than for exclusive $|V_{cb}|$ measurements: Use theoretical input for form factors (and use different parametrisations), often a mix of LQCD (high q^2) and LCSR (low q^2).
- Different $b \rightarrow u$ transitions have different FF uncertainties and experimental challenges.

• Not discussing purely leptonic decays

Inclusive measurements of $\left|V_{ub} ight|$ and $\left|V_{cb} ight|$

$|V_{cb}|$

- $\Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu)\langle O_5(\mu) \rangle}{m_b^2} + \frac{c_6(\mu)\langle O_6(\mu) \rangle}{m_b^3} + \mathcal{O}\left(\frac{1}{m_b^4}\right) \right)$
- HQE with non-perturbative coefficients, determined with moments of the lepton energy / q^2 / the hadronic mass of $B\to X_c\ell\nu$

$|V_{ub}|$

- Dominated by feed-down from X_c : Select region in lepton energy / m_u inaccessible to $B\to X_c\ell\nu$ decays.
- Use "shape-functions" to describe dynamics of the b quark inside the hadron: Different models used with different uncertainties in the perturbative and non-perturbative parameters.

Inclusive $|V_{cb}|$ using higher-order terms

- Use a novel strategy to measure $|V_{cb}|$ with higher-order terms: Exploit parametrization invariance to reduce number of non-perturbative elements in the expansion. [JHEP 02 (2019) 177]
 - Holds only for some observables, e.g. $\langle q^2
 angle$ (but not for $\langle M_X
 angle$
 - Reduces # parameters at order 4 from $13 \rightarrow 8$.
- \therefore Measure $\langle q^2
 angle^{1...4}$ with Belle data
- Use hadronic tagging to fully reconstruct tag-side kinematics, using Full Reconstruction (FR).

Inclusive $|V_{cb}|$ using higher-order terms

- Using simulation, correct for:
 - Difference between true and reconstructed $\langle q^2 \rangle$
 - Biases from the calibration procedure
 - Biases from the reconstruction.
- as a function of the $q_{\rm cut}^2$ value.
- Good agreement between electron and muon results
 → Combine for the moments determination.

Inclusive $|V_{cb}|$ using higher-order terms

Towards inclusive $|V_{cb}|$ with Belle II

- Similar strategy as in the Belle measurement, but much smaller dataset: Measure $\langle M_X^{1...6} \rangle$.
- Use hadronic tagging with Full Event Interpretation (FEI), reconstruct a high-momentum lepton and use the rest of the event to construct M_X .
- Similar correction procedure as for the Belle measurement.

Towards inclusive $|V_{cb}|$ with Belle II

Results in agreement with earlier measurements but not competitive yet

- Normalize to $B^0 \rightarrow D^{(*)-} \mu^+ \nu_\mu, D^- \rightarrow K^+ K^- \pi^-$
- B_s^0 mesons abundantly produced at LHCb.
- Use the corrected mass variable $m_{\rm corr}=\sqrt{m_{vis}^2+p_{\rm T}^2_{vis}}+p_{\rm T}_{vis}$ to distinguish signal and background
- and the correlation between $p_{\mathrm{T}rel}$ and w, $\cos heta_D$ and $\cos heta_\mu$ to determine the angular shape.

- Normalize to $B^0 \! \to D^{(*)-} \mu^+ \nu_\mu, D^- \! \to K^+ K^- \pi^-$
- B_s^0 mesons abundantly produced at LHCb.
- Use the corrected mass variable $m_{\rm corr}=\sqrt{m_{vis}^2+p_{\rm T}^2_{vis}}+p_{\rm T}_{vis}$ to distinguish signal and background
- and the correlation between $p_{\mathrm{T}rel}$ and w, $\cos heta_D$ and $\cos heta_\mu$ to determine the angular shape.

- B_s^0 mesons abundantly produced at LHCb.
- Use the corrected mass variable $m_{\rm corr}=\sqrt{m_{vis}^2+p_{\rm T}^2_{vis}}+p_{\rm T}_{vis}$ to distinguish signal and background
- and the correlation between $p_{\mathrm{T}rel}$ and w, $\cos heta_D$ and $\cos heta_\mu$ to determine the angular shape.

Exclusive $|V_{cb}|$ using B_s^0 decays

- Clean signal and normalization samples
- $D_s^{*+} \rightarrow D_s^+ \gamma / \pi^0$: Neutral objects with low $p_{\rm T}$ have a low reconstruction efficiency in LHCb, so only D_s^+ is reconstructed.
- Similar for $D^{*-}\!\to D^-\gamma/\pi^0$

Exclusive $|V_{cb}|$ using B_s^0 decays

- Perform fit using both, CLN and BGL, parametrisation.
- Leading to:
 - $|V_{cb}|_{\rm CLN}$ = $(40.8 \pm 0.6 \pm 0.9 \pm 1.1) \cdot 10^{-3}$
 - $|V_{cb}|_{\rm BGL}$ = $(41.7 \pm 0.8 \pm 0.9 \pm 1.1) \cdot 10^{-3}$
- Updated results wrt to [Phys. Rev. D101 (2020) 072004] due to new value of f_s/f_d from [LHCb-PAPER-2020-046].

IHC

Exclusive $|V_{cb}|$ using B^0_s decays

- Used the latest average of f_s/f_d from [LHCb-PAPER-2020-046] for the LHCb numbers.

Measuring the shape of the $B^0_s o D^{*-}_s \mu^+ u_\mu$ decay rate

- Determine the FFs of $B^0_s o D^{*-}_s \mu^+
 u_\mu$ by measuring the shape of its differential decay rate.
- + Fully reconstruct D_s^{*-} with (low- $p_{\rm T}$) photon from $D_s^{*-} \to D_s^- \gamma$
- Use $m_{
 m corr}$ to separate signal from background, determine q^2 (and w) using kinematical constraints.

Measuring the shape of the $B^0_s o D^{*-}_s \mu^+ u_\mu$ decay rate

- Provide \boldsymbol{w} data for phenomenological analysis for the first time.
- Good agreement with FFs from [Phys. Rev. D101 (2020) 072004]
- and with recent LQCD calculation from HPQCD [arXiv:2105.11433]

Partial \mathcal{B} and inclusive $|V_{ub}|$

- The dilemma of inclusive $|V_{ub}|$:
 - Want to reduce contributions from $B\to X_c\ell\nu$ as much as possible \to Only consider small phase space.
 - Precision of shape functions decreases for small phase space ightarrow Increase phase space.
- "Resolve" dilemma by enlarging the regions where $\Delta \mathcal{B}(B \to X_u \ell \nu)$ is measured and suppress $B \to X_c \ell \nu$ background using machine learning.
- Use hadronic tagging with FR to constrain the kinematics of B_{sig}
 - Use M^2_{miss} , D^* veto variables, presence of kaons, B_{sig} vertex fit quality and the total net charge of the event to distinguish $B \to X_c \ell \nu$ from $B \to X_u \ell \nu$.

[arXiv:2102.00020]

Partial \mathcal{B} and inclusive $|V_{ub}|$

before BDT

after BDT

Partial \mathcal{B} and inclusive $|V_{ub}|$

$$\begin{split} |V_{ub}| \ (\text{BLNP}) &= \left(4.05\pm0.09^{+0.21+0.18}_{-0.22-0.20}\right)\times10^{-3}\,, \\ |V_{ub}| \ (\text{DGE}) &= \left(4.16\pm0.09^{+0.22+0.12}_{-0.22-0.12}\right)\times10^{-3}\,, \\ |V_{ub}| \ (\text{GGOU}) &= \left(4.15\pm0.09^{+0.21+0.08}_{-0.22-0.09}\right)\times10^{-3}\,, \\ |V_{ub}| \ (\text{ADFR}) &= \left(4.05\pm0.09^{+0.21}_{-0.22}\pm0.18\right)\times10^{-3}\,. \end{split}$$

- $|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}(B \to X_u \ell \nu)}{\tau_B \Delta \Gamma(B \to X_u \ell \nu)}}$
- Use 4 different theoretical predictions for $\Delta\Gamma(B\!
 ightarrow X_u\ell\nu)$
- Use a 2D fit in M_X and q^2 in the most inclusive sample with $E_\ell^B > 1 \text{ GeV}/c$ to determine $|V_{ub}|$ with the 4 different predictions.

- Average of the most precise ones leads to: $|V_{ub}| = (4.10\pm0.09\pm0.22\pm0.15)\cdot10^{-3}$

Partial \mathcal{B} and inclusive $|V_{ub}|$

• Obtained result shows a discrepancy with respect to $|V_{ub}|$ exclusive from $B \rightarrow \pi \ell \nu$ (1.3 σ) and from CKM constraints (1.6 σ).

First Belle II results on $B\! ightarrow X_u\ell u$

- Rediscover $B o X_u \ell \nu$ close to the kinematic endpoint of p_ℓ^*

- And $B^0\!\to\pi^-\ell\nu$ using FEI.

Exclusive $|V_{ub}|$ from B_s^0 mesons

- Use $B_s^0 \to K^- \mu^+ \nu_\mu$ decays to measure $|V_{ub}|$: First observation of $B_s^0 \to K^- \mu^+ \nu_\mu$. • Measure $\frac{|V_{ub}|}{|V_{cb}|} = R_{FF} \cdot \frac{\mathcal{B}(B_s^0 \to K^- \mu^+ \nu_\mu)}{\mathcal{B}(B_s^0 \to D_s^- \mu^+ \nu_\mu)}$, use m_{corr} to discriminate signal and background.
- Divide $B^0_s o K^- \mu^+
 u_\mu$ in two bins of q^2 with equal number of signal events.

Exclusive $|V_{ub}|$ from B^0_s mesons

- Two different FF predictions for $B^0_s \to K^- \mu^+ \nu_\mu$ used to extract $|V_{ub}|$:

- Low q^2 : LCSR based on [JHEP 08 112]
- High q^2 : LQCD based on [Phys. Rev. D100, 034501]
- Provide two values of $|V_{ub}|$. Differential rate will help understanding the $B_s^0 \to K^- \mu^+ \nu_\mu$ decay better.

Exclusive $\left|V_{ub} ight|$ from B_{s}^{0} mesons

Uncertainty	All q^2	low q^2	high q^2
Tracking	2.0	2.0	2.0
Trigger	1.4	1.2	1.6
Particle identification	1.0	1.0	1.0
$\sigma(m_{\rm corr})$	0.5	0.5	0.5
Isolation	0.2	0.2	0.2
Charged BDT	0.6	0.6	0.6
Neutral BDT	1.1	1.1	1.1
q^2 migration	-	2.0	2.0
Efficiency	1.2	1.6	1.6
Fit template	$^{+2.3}_{-2.9}$	$^{+1.8}_{-2.4}$	$^{+3.0}_{-3.4}$
Total	$^{+4.0}_{-4.3}$	$^{+4.3}_{-4.5}$	$^{+5.0}_{-5.3}$

- Measurement (in individual q^2 bins) is systematically limited, many are connected with limited size of simulation sample.
- More q^2 bins will allow for a more precise measurement using the full LHCb data set.

Conclusions

- After 20 years of precision measurements, $|V_{cb}|$ and $|V_{ub}|$ are still an exciting research topic with unresolved puzzles.
- Many recent measurements by Belle (II) and LHCb add precision, but did not resolve all mysteries.
- Belle II and LHCb will continue to show a "collaborative competition".
- Exciting new results expected for the future: More exploitation of the Belle data set, new results by Belle II in the following months, start of the LHCb upgrade, results using B_c^+ mesons, $B^+ \rightarrow \tau^+/\mu^+ \nu$, etc.

- Use the corrected mass variable to separate signal and background.
 - $m_{\rm corr} = \sqrt{m_{vis}^2 + p_{\rm T}^2} + p_{\rm T}$
- Yields about 15'000 signal events.
- Measure $|V_{ub}| = R_{FF} \cdot \frac{\mathcal{B}(\Lambda_b^0 \rightarrow p\mu^- \overline{\nu}_\mu)}{\mathcal{B}(\Lambda_b^0 \rightarrow \Lambda_c^+ \mu^- \overline{\nu}_\mu)} \cdot |V_{cb}|$ in high- q^2 region, using R_{FF} from [Phys Rev D. 92 (2015) 034503]
- $|V_{ub}| = (3.27 \pm 0.15 \pm 0.16 \pm 0.06) \cdot 10^{-3}$. Most precise exclusive result.

Exclusive $|V_{cb}|$ using B_s^0 decays

- Clean signal and normalization samples
- $D_s^{*+} \rightarrow D_s^+ \gamma / \pi^0$: Neutral objects with low $p_{\rm T}$ have a low reconstruction efficiency in LHCb, so only D_s^+ is reconstructed.
- Similar for $D^{*-}\!\to D^-\gamma/\pi^0$

$B \! ightarrow D^{(*)} \ell u$ at Belle II

- Reconstruct $B \to D^* \ell \nu$ using hadronic tagging and FEI or $B \to D^{(*)} \ell \nu$ without tagging.
- Determine $\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu)$ = $(4.51 \pm 0.41 \pm 0.27 \pm 0.45)\%$ with FEI
- and $\mathcal{B}(B^0 \to D^{*-} \ell^+ \nu)$ = $(4.60 \pm 0.05 \pm 0.17 \pm 0.45)\%$ without tagging.

 $|V_{ub}|$ from $B^+\!
ightarrow
ho/\omega\ell
u$

- Large discrepancy between values extracted from $B^+ \to \rho/\omega\ell\nu$ and $B \to \pi\ell\nu$

