Kaon decays from lattice QCD

Luchang Jin 靳路昶

University of Connecticut / RIKEN BNL Research Center

June 9, 2021

Flavor Physics and CP violation (FPCP) 2021 @ Fudan University

Introduction

- $K
 ightarrow \pi\pi$ and CP violation
- $K \to \ell \nu$, $K \to \pi \ell \nu$ and $|V_{us}|$
- Rare kaon decays
 - $K
 ightarrow \pi
 u ar{
 u}$
 - $K \to \pi \ell^+ \ell^-$
 - $K
 ightarrow \mu^+ \mu^-$
- Conclusion and outlook

Lattice QCD: action

3 / 30

Figure credit: Stephen R. Sharpe.

Lattice QCD: method

4 / 30

Operator quantum expectation value:

$$\begin{aligned} \langle \mathcal{O}(U, q, \bar{q}) \rangle &= \frac{\int [\mathcal{D}U] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{lat}}} \mathcal{O}(U, q, \bar{q})}{\int [\mathcal{D}U] \prod_{q} [\mathcal{D}q_{q}] [\mathcal{D}\bar{q}_{q}] e^{-S_{E}^{\text{lat}}}} \\ &= \frac{\int [\mathcal{D}U] e^{-S_{\text{gauge}}^{\text{lat}}} \prod_{q} \det \left(D_{\mu}^{\text{lat}} \gamma_{\mu} + am_{q} \right) \tilde{\mathcal{O}}(U)}{\int [\mathcal{D}U] e^{-S_{\text{gauge}}^{\text{lat}}} \prod_{q} \det \left(D_{\mu}^{\text{lat}} \gamma_{\mu} + am_{q} \right)} \end{aligned}$$

Monte Carlo:

- The integration is performed for all the link variables, U. Dimension is $L^3 \times T \times 4 \times 8$.
- Sample points in this large dimensional configuration space with the following distribution:

$$e^{-S_{\text{gauge}}^{\text{lat}}(U)}\prod_{q}\det\left(D_{\mu}^{\text{lat}}(U)\gamma_{\mu}+am_{q}
ight)$$

Sampled points are referred to as the "configurations", U^(k).

$$\langle \mathcal{O}(U, q, \bar{q}) \rangle = \frac{1}{N_{\text{conf}}} \sum_{k=1}^{N_{\text{conf}}} \tilde{\mathcal{O}}(U^{(k)})$$

• $N_{\rm conf} \sim 100$. Large lattice size, *i.e.* higher integration dimension, require fewer $N_{\rm conf}$.

Lattice QCD: correlation function

64I $a^{-1} = 2.359 \text{GeV}$ $am_{\pi} = 0.059 \text{ RBC-UKQCD}$

5

Lattice QCD: parameters

• How many parameters?

g am_l am_s

isospin symmetric ($m_u = m_d = m_l$) and three flavor u, d, s theory.

• We are supposed to take $a \rightarrow 0$ limit, how?

 $g \rightarrow 0$

For different g, as long as it is small, the lattice calculation is describe the same physics, just with different a.

$$a = a(g) \approx a_0 \exp\left(-\frac{1}{11 - \frac{2}{3}N_f}\frac{8\pi^2}{g^2}\right)$$

This is the renormalization equation. Since a decrease very fast when g decrease, g is not very small in realistic lattice QCD calculations.

• We need two physical inputs

$$m_{\pi}/m_{\Omega}$$
 m_{K}/m_{Ω}

to determine the remaining parameters am_l , am_s .

- Introduction
- $K \rightarrow \pi\pi$ and CP violation
- $K \to \ell
 u$, $K \to \pi \ell
 u$ and $|V_{us}|$
- Rare kaon decays
 - $K
 ightarrow \pi
 u ar{
 u}$
 - $K \to \pi \ell^+ \ell^-$
 - $K
 ightarrow \mu^+ \mu^-$
 - $K \rightarrow \ell \nu \ell'^+ \ell'^-$
- Conclusion and outlook

 $K \rightarrow \pi\pi$ and CP violation

• Two *neutral* kaons with definite CP quantum number:

$$|K_+\rangle = |K^0\rangle + |\bar{K}^0\rangle$$
 (CP even, decays to $\pi\pi$)
 $|K_-\rangle = |K^0\rangle - |\bar{K}^0\rangle$ (CP odd, decays to $\pi\pi\pi$)

- $K_L(\approx K_-) \rightarrow \pi\pi$ observed in experiments indicate CP violation! Two sources:
- Indirect CP violation: the decaying states are ($\epsilon = \overline{\epsilon} + i \text{Im}A_0/\text{Re}A_0$):

$$\begin{aligned} |K_{S}\rangle &= \frac{|K_{+}\rangle + \bar{\epsilon}|K_{-}\rangle}{\sqrt{1 + |\bar{\epsilon}|^{2}}} \\ |K_{L}\rangle &= \frac{|K_{-}\rangle + \bar{\epsilon}|K_{+}\rangle}{\sqrt{1 + |\bar{\epsilon}|^{2}}} \end{aligned}$$

• Direct CP violation due to $K_- \rightarrow \pi \pi$, characterized by ϵ'

$$\eta_{+-} = \frac{\langle \pi^+ \pi^- | H_w | K_L \rangle}{\langle \pi^+ \pi^- | H_w | K_S \rangle} = \epsilon + \epsilon'$$

$$\eta_{00} = \frac{\langle \pi^0 \pi^0 | H_w | K_L \rangle}{\langle \pi^0 \pi^0 | H_w | K_S \rangle} = \epsilon - 2\epsilon'$$

$K ightarrow \pi\pi$ and CP violation

9 / 30

This direct CP violation is a highly suppressed $O(10^{-6})$ effect in the Standard Model, making it a quantity which is especially sensitive to the effects of new physics in general, and new sources of CP violation in particular.

- Indirect CP violation characterized by ϵ . Experimental value: $|\epsilon| = (2.228 \pm 0.011) \times 10^{-3}$
- Direct CP violation characterized by ε'.
 Combined measurement from KTeV (Fermilab 2011) and NA48 (CERN 2002):

$$\epsilon'/\epsilon \approx \operatorname{Re}(\epsilon'/\epsilon) = (1.66 \pm 0.23) \times 10^{-3}$$

Non-perturbative QCD inputs is needed to obtain the Standard Model prediction!

• Lattice calculation is needed for the following two processes to determine A_0 and A_2 :

$$\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2}$$

 $\langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_2}$

$$\epsilon' = \frac{ie^{\delta_2 - \delta_0}}{\sqrt{2}} \Big| \frac{A_2}{A_0} \Big| \Big(\frac{\mathrm{Im}A_2}{\mathrm{Re}A_2} - \frac{\mathrm{Im}A_0}{\mathrm{Re}A_0} \Big)$$

 $K \rightarrow \pi\pi$ and CP violation

• $\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2}$

[PRD 91, 074502 (2015)] by the RBC-UKQCD collaborations.

- Calculation is at physical pion mass with domain wall fermion.
- Dominate source of error is from the perturbatively calculated Wilson coefficients for the low energy 4-quark operators. (12%, not included in the plot)

•
$$E_{\pi\pi} \to \delta_2 = -11.6(2.5)_{\text{stat}}(1.2)_{\text{sys}}^{\circ}$$

 $K \rightarrow \pi\pi$ and CP violation

• $\langle \pi \pi (I=2) | H_w | K^0 \rangle = A_2 e^{i\delta_2}$

[PRD 91, 074502 (2015)] by the RBC-UKQCD collaborations.

11

• $\langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_2}$ [PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations. Chris Kelly (BNL), Tianle Wang (Columbia University, Norman Christ's current graduate student).

• Calculation much more difficult due to the $l = 0 \pi \pi$ final state.

 $K \rightarrow \pi\pi$ and CP violation

- $\langle \pi \pi (I = 0) | H_w | K^0 \rangle = A_0 e^{i\delta_2}$ [PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Calculation direct at physical pion mass.
- G-parity boundary condition (and appropriate lattice size L = 4.6 fm) is used to ensure the ground state $\pi\pi$ system has the same energy as the kaon.
- All-to-All propagator technique are used to enhance the statistics efficiently.
- Use RI/MOM and step scaling up to 4 GeV to match with perturbatively obtained Wilson Coefficients.

Bare matrix elements

Contribution to A_0

i	$O'_{\rm c}$ [GeV ³]	$O_{\rm c}$ [GeV ³]		$\operatorname{Re}(A_0)$		Im(A ₀)	
	<u>g</u> ; [601]	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	i	(q, q) (×10 ⁻⁷ GeV)	$(\gamma^{\mu}, \gamma^{\mu}) (\times 10^{-7} \text{ GeV})$	(q, q) (×10 ⁻¹¹ GeV)	$(\gamma^{\mu}, \gamma^{\mu})$ (×10 ⁻¹¹ GeV)
1	0.143(93)	-0.119(32)	1	0.383(77)	0.335(64)	0	0
2	-0.147(24)	0.261(27)	2	2.89(30)	2.81(28)	0	0
3	0.233(23)	0.023(74)	3	0.0081(58)	0.0050(42)	0.20(14)	0.12(10)
4		0.403(72)	4	0.081(23)	0.088(17)	1.24(35)	1.34(27)
5	-0.723(91)	-0.723(91)	5	0.0380(68) -0.410(28)	0.0339(53) -0.398(27)	0.552(99) -8.78(60)	0.492(77) -8.54(57)
6	-2.211(144)	-2.211(144)	7	0.001863(56)	0.001900(56)	0.02491(75)	0.02540(75)
7	1.876(52)	1.876(52)	8	-0.00726(14)	-0.00708(13)	-0.2111(40)	-0.2060(39)
8	5 679(107)	5 679(107)	9	$-8.7(1.5) \times 10^{-5}$	$-8.5(1.4) \times 10^{-5}$	-0.133(22)	-0.128(21)
0	5.079(107)	5.079(107)	10	$2.37(38) \times 10^{-4}$	$2.13(32) \times 10^{-4}$	-0.0304(49)	-0.0273(41)
9		-0.190(39)	Total	2.99(32)	2.86(31)	-7.15(66)	-6.93(64)
10		0.190(35)					

 $K \rightarrow \pi\pi$ and CP violation

- $\langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_2}$ [PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Major improvements over the previous RBC-UKQCD 2015 $\Delta I = 1/2$ calculation
 - Increase statistics from 216 to 741 configurations.
 - Additional interpolation operators for the $\pi\pi$ state.

Lead to a more precise $\pi\pi$ ground state on the lattice.

$$E_0
ightarrow \delta_0 = 32.3(1.0)_{\mathsf{stat}}(1.8)^\circ_{\mathsf{sys}}$$

- The new σ operator is extremely effective.
- Extensive checks are made to ensure the true ground state is obtained.
- Consistent with dispersive value $\delta_0 = 35.9^{\circ}$.

$$E_0 = 0.3479(11) \leftarrow 0.3606(74)$$

 $K \rightarrow \pi\pi$ and CP violation

• $\langle \pi \pi (I=0) | H_w | K^0 \rangle = A_0 e^{i\delta_2}$

[PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.

Error source	Value				
Excited state		·			
Unphysical kinematics	5%	Error source	Value		
Finite lattice spacing	12%		$\operatorname{Re}(A_0)$	$\operatorname{Im}(A_0)$	
Finite-volume corrections	7%	Matrix elements	15.7%	15.7%	
Missing G_1 operator	3%	Parametric errors	0.3%	6%	
Renormalization	4%	Wilson coefficients	12%	12%	
Total	15.7%	Total	19.8%	20.7%	

• Systematic error estimation of the calculation:

- Two leading source of uncertainties (both 12%) are
 - Finite lattice spacing: only one lattice spacing @ $a^{-1} = 1.378$ GeV
 - Wilson coefficients: match 4 flavor theory to 3 flavor theory perturbatively.
- QED and strong isospin breaking correction can be important due to large A_0/A_2 . ChPT calculation of these effects available.

[JHEP. 02 (2020) 032] V. Cirigliano, H. Gisbert, A. Pich and A. Rodríguez-Sánchez.

• Final result $\operatorname{Re}(\epsilon'/\epsilon) = 2.17(26)_{\operatorname{stat}}(62)_{\operatorname{sys}}(50)_{\operatorname{isospin}} \times 10^{-3}$

Or, include the ChPT evaluation of the QED and strong isospin breaking effects: 1.67×10^{-3} . Recall the experimental value is $1.66(23) \times 10^{-3}$.

15

- Good agreement at this precision. RBC-UKQCD efforts to reduce the error:
 - Repeat the calculation with finer lattices.
 - Non-perturbative 3- to 4-flavor operator matching. Masaaki Tomii.
 M. Tomii, Proc. Sci., LATTICE2018 (2019) 216.
 - Periodic boundary condition $K \rightarrow \pi \pi$. Masaaki Tomii and Daniel Hoying.
- Developing method to study the QED and strong isospin breaking effects on the lattice
 - N. Christ and X. Feng, EPJ Web Conf. 175, 13016 (2018)
 - Y. Cai and Z. Davoudi, Proc. Sci., LATTICE2018 (2018) 280
- [PRD 98 (2018) 11, 114512] N. Ishizuka, K. I. Ishikawa, A. Ukawa and T. Yoshié Independent calculation with $m_{\pi} = 260$ MeV.

- Introduction
- $\mathcal{K}
 ightarrow \pi\pi$ and CP violation
- $K \rightarrow \ell \nu$, $K \rightarrow \pi \ell \nu$ and $|V_{us}|$
- Rare kaon decays
 - $K
 ightarrow \pi
 u ar{
 u}$
 - $K \to \pi \ell^+ \ell^-$
 - $K
 ightarrow \mu^+ \mu^-$
- Conclusion and outlook

 $K \to \ell \nu, K \to \pi \ell \nu$ and $|V_{\mu s}|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections from ChPT calculations.

 $K \to \ell \nu, K \to \pi \ell \nu$ and $|V_{\mu s}|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections for f_{K[±]}/f_{π[±]} from lattice QCD.
 [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo

 $K \rightarrow \ell \nu$ and $|V_{US}|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$\begin{split} &\Gamma(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0153 \pm 0.0019) \Gamma^{(0)}(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}), \\ &\Gamma(K^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0024 \pm 0.0010) \Gamma^{(0)}(K^{\pm} \to \mu^{\pm} \nu_{\ell}), \end{split}$$

- Calculation is performed on several lattices with different pion masses, physical sizes, lattice spacings.
- Final result is obtained by extrapolating to the physical point.
- QED effects are included in lattice simulation in finite volume.
 ⇒ O(1/L) universal finite volume effects.
 ⇒ O(1/L²) structure dependent finite volume effects.
 Subtract the O(1/L) effects and fit the remaining O(1/L²) effects.

 $K \rightarrow \ell \nu$ and $|V_{US}|$

- 20 / 30
- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$\begin{split} &\Gamma(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0153 \pm 0.0019) \Gamma^{(0)}(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}), \\ &\Gamma(K^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0024 \pm 0.0010) \Gamma^{(0)}(K^{\pm} \to \mu^{\pm} \nu_{\ell}), \end{split}$$

 $K \rightarrow \ell \nu$ and $|V_{US}|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$\begin{split} &\Gamma(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0153 \pm 0.0019) \Gamma^{(0)}(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}), \\ &\Gamma(K^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0024 \pm 0.0010) \Gamma^{(0)}(K^{\pm} \to \mu^{\pm} \nu_{\ell}), \end{split}$$

 $K \rightarrow \ell \nu$ and $|V_{US}|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$\begin{split} &\Gamma(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0153 \pm 0.0019) \Gamma^{(0)}(\pi^{\pm} \to \mu^{\pm} \nu_{\ell}), \\ &\Gamma(K^{\pm} \to \mu^{\pm} \nu_{\ell}[\gamma]) = (1.0024 \pm 0.0010) \Gamma^{(0)}(K^{\pm} \to \mu^{\pm} \nu_{\ell}), \end{split}$$

22

30

 $K \to \pi \ell \nu$ and $|V_{\mu s}|$

- [PRL. 124 (2020) 19, 192002] X. Feng, M. Gorchtein, L. C. Jin, P. X. Ma and C. Y. Seng
 - The γW -box contribution to $\pi^+ \to \pi^0 e^+ \nu$ is calculated on the lattice.
 - * All the non-hadronic part of the diagram is analytically calculated in infinite volume.

Finite volume effects is exponentially suppressed by the volume.

- * Calculation is directly performed at physical pion mass with domain wall fermion.
- In the dispersive framework, this is the only hadronic structure dependent part.
- The obtained QED correction is $\delta = 0.0332(1)_{\gamma W}(3)_{\text{higher order QED}}$.
- In comparison, ChPT gives $\delta = 0.0334(10)_{\text{LEC}}(3)_{\text{higher order QED}}$
- [arXiv:2102.12048] P. X. Ma, X. Feng, M. Gorchtein, L. C. Jin and C. Y. Seng – Data of the lattice calculation above $\delta^{\mu}_{K^0} = 0.99(19)$
 - re-analyzed to obtain the ChPT LECs.
 - $\mathcal{O}(e^2p^4)$ uncertainties from ChPT remain.

$$\delta^e_{K^0} = 0.99(19)_{e^2p^4}(11)_{\text{LEC}} \rightarrow 1.00(19)$$

$$\delta^{\mu}_{K^0} = 1.40(19)_{e^2p^4}(11)_{\text{LEC}} \rightarrow 1.41(19)$$

$$\delta_{K^{\pm}}^{e} = 0.10(19)_{e^{2}p^{4}}(16)_{\text{LEC}} \rightarrow -0.01(19)$$

$$\delta^{\mu}_{K^{\pm}} = 0.02(19)_{e^2p^4}(16)_{\text{LEC}} \rightarrow -0.09(19).$$

- Introduction
- $\mathcal{K}
 ightarrow \pi\pi$ and CP violation
- $K \to \ell \nu$, $K \to \pi \ell \nu$ and $|V_{us}|$
- Rare kaon decays
 - $K \to \pi \nu \bar{\nu}$
 - $K \to \pi \ell^+ \ell^-$
 - $K
 ightarrow \mu^+ \mu^-$
- Conclusion and outlook

- [PRD 100 (2019) 11, 114506] by the RBC-UKQCD collaborations
 Xu Feng (Peking University).
- The golden modes: an ideal process in which to search for signs of new physics.

– NA62 at CERN: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ (aim at 10% accuracy)

- KOTO at J-PARC: $K_L \rightarrow \pi^0 \nu \bar{\nu}$ (long distance contributions negligible)
- The long distance ($\mathcal{O}(1/m_c)$) contribution is estimated to be about 5% to 10% in $\mathcal{K}^+ \to \pi^+ \nu \bar{\nu}$.
- Two pioneer lattice calculations @ $m_{\pi} = 430$ MeV and $m_{\pi} = 170$ MeV and lighter charm quark mass due to coarse lattice spacing.

Rare kaon decays: $K \to \pi \ell^+ \ell^-$

- 26 / 30
- [PRD 94, 114516 (2016), J. Phys.: Conf. Ser. 1526 012015] by the RBC-UKQCD collaborations
 Antonin Portelli, Fionn Ó. HÓgáin (University of Edinburgh)
- Similar to $K \to \pi \nu \bar{\nu}$:
 - NA62 at CERN: ${\cal K}^+ \to \pi^+ \ell^+ \ell^-$
 - Prospective experiments planned at LHCb to study the: $K_S o \pi^0 \ell^+ \ell^-$
 - Pioneer lattice calculations @ $m_{\pi} = 430$ MeV
 - Calculation at physical pion mass under way.

- [PoS LATTICE2019 (2020) 128, PoS LATTICE2019 (2020) 097] by the RBC-UKQCD collaborations
 Yidi Zhao (Columbia University, Norman Christ's current graduate student)
- Branching fraction is accurately measured: $BR(K_L \rightarrow \mu^+ \mu^-) = 6.84 \pm 0.11) \times 10^{-9}$.
- Two mechanism of comparable sizes for the decay:
 - One-loop, second-order weak process, involving exchange of two weak bosons.
- $\mathcal{O}(\alpha_{\mathsf{EM}}^2 G_F)$ process shown below. • First step calculation $\pi \to e^+e^-$ successful. • Second step calculation $K_L \to \gamma\gamma$ in progress. • Final goal: lattice calculation of $K_L \to \gamma^*\gamma^* \to \mu^+\mu^-$

Rare kaon decays: $K \rightarrow \ell \nu \ell'^+ \ell'^-$

- [arXiv:2103.11331] X. Y. Tuo, X. Feng, L. C. Jin and T. Wang
- Good test of the lattice calculation for the kaon form factors also needed for the QED corrections to the kaon leptonic decay (photon can be emitted from kaon).
- Techniques are developed to treat the four (non-interacting) particle final state.
- Infinite volume reconstruction method [PRD 100, 094509 (2019)] X. Feng and L. Jin used to control the finite volume effects (no power-law suppressed finite volume error).
 Method will be used to calculate the full QED corrections to kaon leptonic decay.
- $m_{\pi} = 352$ MeV used in this calculation. Physical pion mass calculation underway.

Channels	m_{ee} cuts	Lattice $(m_{\pi} = 352 \text{ MeV})$	ChPT 5	experiments	
$Br[K \to e\nu_e e^+ e^-]$	$140 { m ~MeV}$	$3.29(35) imes 10^{-8}$	3.39×10^{-8}	$2.91(23) \times 10^{-8}$	
$Br[K \to \mu \nu_{\mu} e^+ e^-]$	$140~{\rm MeV}$	$11.08(39)\times 10^{-8}$	8.51×10^{-8}	$7.93(33) imes 10^{-8}$	
$Br[K \to e\nu_e \mu^+ \mu^-]$		$0.94(8) imes 10^{-8}$	1.12×10^{-8}	$1.72(45) \times 10^{-8}$	× - *
$Br[K \to \mu \nu_{\mu} \mu^{+} \mu^{-}]$		$1.52(7) \times 10^{-8}$	1.35×10^{-8}		γ 5° ~ *
					$\left \right\rangle = l$
				K	μ -

- Introduction
- $K
 ightarrow \pi\pi$ and CP violation
- $K
 ightarrow \ell
 u$, $K
 ightarrow \pi \ell
 u$ and $|V_{us}|$
- Rare kaon decays
 - $K
 ightarrow \pi
 u ar{
 u}$
 - $K \to \pi \ell^+ \ell^-$
 - $K
 ightarrow \mu^+ \mu^-$
 - $K \rightarrow \ell \nu \ell'^+ \ell'^-$
- Conclusion and outlook

Conclusion and outlook

- Accuracy of lattice QCD calculation is improving steadily.
- More hadronic processes are becoming accessible to lattice QCD calculations.

30

- Many lattice calculations are currently performed with physical parameters (pion/kaon masses).
- QED corrections in lattice QCD calculations are becoming important.

Thank You!