Kaon decays from lattice QCD

Luchang Jin 靳路昶
University of Connecticut／RIKEN BNL Research Center

June 9， 2021

Flavor Physics and CP violation（FPCP） 2021 ＠Fudan University

Outline

$2 / 30$

- Introduction
- $K \rightarrow \pi \pi$ and CP violation
- $K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$
- Rare kaon decays

$$
\begin{aligned}
& -K \rightarrow \pi \nu \bar{\nu} \\
& -K \rightarrow \pi \ell^{+} \ell^{-} \\
& -K \rightarrow \mu^{+} \mu^{-} \\
& -K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}
\end{aligned}
$$

- Conclusion and outlook

Wilson gauge action Lattice fermion action

Figure credit: Stephen R. Sharpe.

Lattice QCD: method

Operator quantum expectation value:

$$
\begin{aligned}
\langle\mathcal{O}(U, q, \bar{q})\rangle & =\frac{\int[\mathcal{D} U] \prod_{q}\left[\mathcal{D} q_{q}\right]\left[\mathcal{D} \bar{q}_{q}\right] e^{-S_{E}^{\text {lat }}} \mathcal{O}(U, q, \bar{q})}{\int[\mathcal{D} U] \prod_{q}\left[\mathcal{D} q_{q}\right]\left[\mathcal{D} \bar{q}_{q}\right] e^{-S_{E}^{\text {att }}}} \\
& =\frac{\int[\mathcal{D} U] e^{-S_{\text {gatue }}^{\text {lat }}} \prod_{q} \operatorname{det}\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{q}\right) \tilde{\mathcal{O}}(U)}{\int[\mathcal{D} U] e^{-S_{\text {gauge }}} \prod_{q} \operatorname{det}\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{q}\right)}
\end{aligned}
$$

Monte Carlo:

- The integration is performed for all the link variables, U. Dimension is $L^{3} \times T \times 4 \times 8$.
- Sample points in this large dimensional configuration space with the following distribution:

$$
e^{-S_{\text {gauge }}^{\text {lat }}(U)} \prod_{q} \operatorname{det}\left(D_{\mu}^{\mathrm{lat}}(U) \gamma_{\mu}+a m_{q}\right)
$$

- Sampled points are referred to as the "configurations", $U^{(k)}$.

$$
\langle\mathcal{O}(U, q, \bar{q})\rangle=\frac{1}{N_{\text {conf }}} \sum_{k=1}^{N_{\text {conf }}} \tilde{\mathcal{O}}\left(U^{(k)}\right)
$$

- $N_{\text {conf }} \sim 100$. Large lattice size, i.e. higher integration dimension, require fewer $N_{\text {conf }}$.

Lattice QCD: correlation function

$641 a^{-1}=2.359 \mathrm{GeV} \quad a m_{\pi}=0.059$ RBC-UKQCD

Correlation function:

$$
\begin{aligned}
& C(t)=\left\langle\pi^{-}(\vec{x}, t) \sum_{\vec{y}} \pi^{+}(\vec{y}, 0)\right\rangle \\
&=\left\langle\bar{d}(\vec{x}, t) i \gamma_{5} u(\vec{x}, t) \sum_{\vec{y}} \bar{u}(\vec{y}, 0) i \gamma_{5} d(\vec{y}, 0)\right\rangle \\
&= \frac{\int[\mathcal{D} U] \prod_{q}\left[\mathcal{D} q_{q}\right]\left[\mathcal{D} \bar{q}_{q}\right] e^{-S_{E}^{\text {lat }}} \bar{d}(\vec{x}, t) i \gamma_{5} u(\vec{x}, t) \sum_{\vec{y}} \bar{u}(\vec{y}, 0) i \gamma_{5} d(\vec{y}, 0)}{\int[\mathcal{D} U] \prod_{q}\left[\mathcal{D} q_{q}\right]\left[\mathcal{D} \bar{q}_{q}\right] e^{-S_{E}^{\text {lat }}}} \\
&= \int[\mathcal{D} U] e^{-S_{\bar{g} \text { lue }}^{\text {lat }} \prod_{q} \operatorname{det}\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{q}\right)} \\
& \propto \times \sum_{\vec{y}} \operatorname{Tr}\left[\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{u}\right)_{(\vec{x}, t ; \vec{y}, 0)}^{-1} \gamma_{5}\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{d}\right)_{(\vec{y}, 0 ; \vec{x}, t)}^{-1} \gamma_{5}\right] \\
& \int[\mathcal{D} U] e^{-S_{\text {glue }}^{\text {lat }} \prod_{q} \operatorname{det}\left(D_{\mu}^{\text {lat }} \gamma_{\mu}+a m_{q}\right)} \\
& m_{\pi}^{\text {eff }}(t)=\ln \left(\frac{C(t)}{C(t+1)}\right)
\end{aligned}
$$

Lattice QCD: parameters

- How many parameters?

$$
g \quad a m_{l} \quad a m_{s}
$$

isospin symmetric ($m_{u}=m_{d}=m_{l}$) and three flavor u, d, s theory.

- We are supposed to take $a \rightarrow 0$ limit, how?

$$
g \rightarrow 0
$$

For different g, as long as it is small, the lattice calculation is describe the same physics, just with different a.

$$
a=a(g) \approx a_{0} \exp \left(-\frac{1}{11-\frac{2}{3} N_{f}} \frac{8 \pi^{2}}{g^{2}}\right)
$$

This is the renormalization equation. Since a decrease very fast when g decrease, g is not very small in realistic lattice QCD calculations.

- We need two physical inputs

$$
m_{\pi} / m_{\Omega} \quad m_{K} / m_{\Omega}
$$

to determine the remaining parameters $a m_{l}, a m_{s}$.

Outline

- Introduction
- $K \rightarrow \pi \pi$ and CP violation
- $K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$
- Rare kaon decays

$$
\begin{aligned}
& -K \rightarrow \pi \nu \bar{\nu} \\
& -K \rightarrow \pi \ell^{+} \ell^{-} \\
& -K \rightarrow \mu^{+} \mu^{-} \\
& -K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}
\end{aligned}
$$

- Conclusion and outlook

$K \rightarrow \pi \pi$ and CP violation

- Two neutral kaons with definite CP quantum number:

$$
\begin{array}{ll}
\left|K_{+}\right\rangle=\left|K^{0}\right\rangle+\left|\bar{K}^{0}\right\rangle & (C P \text { even, decays to } \pi \pi) \\
\left|K_{-}\right\rangle=\left|K^{0}\right\rangle-\left|\bar{K}^{0}\right\rangle & (\text { CP odd, decays to } \pi \pi \pi)
\end{array}
$$

- $K_{L}\left(\approx K_{-}\right) \rightarrow \pi \pi$ observed in experiments indicate CP violation! Two sources:
- Indirect $C P$ violation: the decaying states are $\left(\epsilon=\bar{\epsilon}+i \operatorname{lm} A_{0} / \operatorname{Re} A_{0}\right)$:

$$
\begin{aligned}
\left|K_{S}\right\rangle & =\frac{\left|K_{+}\right\rangle+\bar{\epsilon}\left|K_{-}\right\rangle}{\sqrt{1+|\bar{\epsilon}|^{2}}} \\
\left|K_{L}\right\rangle & =\frac{\left|K_{-}\right\rangle+\bar{\epsilon}\left|K_{+}\right\rangle}{\sqrt{1+|\bar{\epsilon}|^{2}}}
\end{aligned}
$$

- Direct CP violation due to $K_{-} \rightarrow \pi \pi$, characterized by ϵ^{\prime}

$$
\begin{aligned}
\eta_{+-} & =\frac{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{+} \pi^{-}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon+\epsilon^{\prime} \\
\eta_{00} & =\frac{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{L}\right\rangle}{\left\langle\pi^{0} \pi^{0}\right| H_{w}\left|K_{S}\right\rangle}=\epsilon-2 \epsilon^{\prime}
\end{aligned}
$$

This direct CP violation is a highly suppressed $\mathcal{O}\left(10^{-6}\right)$ effect in the Standard Model, making it a quantity which is especially sensitive to the effects of new physics in general, and new sources of $C P$ violation in particular.

- Indirect CP violation characterized by ϵ. Experimental value: $|\epsilon|=(2.228 \pm 0.011) \times 10^{-3}$
- Direct CP violation characterized by ϵ^{\prime}.

Combined measurement from KTeV (Fermilab 2011) and NA48 (CERN 2002):

$$
\epsilon^{\prime} / \epsilon \approx \operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=(1.66 \pm 0.23) \times 10^{-3}
$$

Non-perturbative QCD inputs is needed to obtain the Standard Model prediction!

- Lattice calculation is needed for the following two processes to determine A_{0} and A_{2} :

$$
\begin{array}{r}
\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle=A_{2} e^{i \delta_{2}} \\
\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{2}} \\
\epsilon^{\prime}=\frac{i e^{\delta_{2}-\delta_{0}}}{\sqrt{2}}\left|\frac{A_{2}}{A_{0}}\right|\left(\frac{\operatorname{Im} A_{2}}{\operatorname{Re} A_{2}}-\frac{\operatorname{Im} A_{0}}{\operatorname{Re} A_{0}}\right)
\end{array}
$$

$K \rightarrow \pi \pi$ and CP violation

- $\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle=A_{2} e^{i \delta_{2}}$
[PRD 91, 074502 (2015)] by the RBC-UKQCD collaborations.

- Calculation is at physical pion mass with domain wall fermion.
- Dominate source of error is from the perturbatively calculated Wilson coefficients for the low energy 4-quark operators. (12\%, not included in the plot)
- $E_{\pi \pi} \rightarrow \delta_{2}=-11.6(2.5)_{\text {stat }}(1.2)_{\text {svs }}^{\circ}$

$K \rightarrow \pi \pi$ and CP violation

- $\langle\pi \pi(I=2)| H_{w}\left|K^{0}\right\rangle=A_{2} e^{i \delta_{2}}$
[PRD 91, 074502 (2015)] by the RBC-UKQCD collaborations.

- $\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{2}}$
[PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
Chris Kelly (BNL), Tianle Wang (Columbia University, Norman Christ's current graduate student).

(a) typel

(c) type 3

(b) type 2

(d) type 4
- Calculation much more difficult due to the $I=0 \pi \pi$ final state.

$K \rightarrow \pi \pi$ and CP violation

- $\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{2}}$
[PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Calculation direct at physical pion mass.
- G-parity boundary condition (and appropriate lattice size $L=4.6 \mathrm{fm}$) is used to ensure the ground state $\pi \pi$ system has the same energy as the kaon.
- All-to-All propagator technique are used to enhance the statistics efficiently.
- Use $\mathrm{RI} / \mathrm{MOM}$ and step scaling up to 4 GeV to match with perturbatively obtained Wilson Coefficients.

Bare matrix elements

i	$Q_{i}^{\prime}\left[\mathrm{GeV}^{3}\right]$	$Q_{i}\left[\mathrm{GeV}^{3}\right]$
1	$0.143(93)$	$-0.119(32)$
2	$-0.147(24)$	$0.261(27)$
3	$0.233(23)$	$0.023(74)$
4	\ldots	$0.403(72)$
5	$-0.723(91)$	$-0.723(91)$
6	$-2.211(144)$	$-2.211(144)$
7	$1.876(52)$	$1.876(52)$
8	$5.679(107)$	$5.679(107)$
9	\ldots	$-0.190(39)$
10	\cdots	$0.190(35)$

Contribution to A_{0}

	$\operatorname{Re}\left(A_{0}\right)$			$\operatorname{Im}\left(A_{0}\right)$	
i	$(\not \subset, \not \subset)\left(\times 10^{-7} \mathrm{GeV}\right)$	$\left(\gamma^{\mu}, \gamma^{\mu}\right)\left(\times 10^{-7} \mathrm{GeV}\right)$		$(\not, q, \not)\left(\times 10^{-11} \mathrm{GeV}\right)$	$\left(\gamma^{\mu}, \gamma^{\mu}\right)\left(\times 10^{-11} \mathrm{GeV}\right)$
1	$0.383(77)$	$0.335(64)$		0	0
2	$2.89(30)$	$2.81(28)$	0	0	
3	$0.0081(58)$	$0.0050(42)$		$0.20(14)$	$0.12(10)$
4	$0.081(23)$	$0.088(17)$		$1.24(35)$	$1.34(27)$
5	$0.0380(68)$	$0.0339(53)$		$0.552(99)$	$0.492(77)$
6	$-0.410(28)$	$-0.398(27)$		$-8.78(60)$	$-8.54(57)$
7	$0.001863(56)$	$0.001900(56)$		$0.02491(75)$	$0.02540(75)$
8	$-0.00726(14)$	$-0.00708(13)$		$-0.2111(40)$	$-0.2060(39)$
9	$-8.7(1.5) \times 10^{-5}$	$-8.5(1.4) \times 10^{-5}$		$-0.133(22)$	$-0.128(21)$
10	$2.37(38) \times 10^{-4}$	$2.13(32) \times 10^{-4}$		$-0.0304(49)$	$-0.0273(41)$
Total	$2.99(32)$	$2.86(31)$		$-7.15(66)$	$-6.93(64)$

$K \rightarrow \pi \pi$ and CP violation

- $\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{2}}$
[PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Major improvements over the previous RBC-UKQCD $2015 \Delta I=1 / 2$ calculation
- Increase statistics from 216 to 741 configurations.
- Additional interpolation operators for the $\pi \pi$ state.

Lead to a more precise $\pi \pi$ ground state on the lattice.

$$
E_{0}=0.3479(11) \leftarrow 0.3606(74)
$$

- $E_{0} \rightarrow \delta_{0}=32.3(1.0)_{\text {stat }}(1.8)_{\text {sys }}^{\circ}$
- The new σ operator is extremely effective.
- Extensive checks are made to ensure the true ground state is obtained.
- Consistent with dispersive value $\delta_{0}=35.9^{\circ}$.

$K \rightarrow \pi \pi$ and CP violation

- $\langle\pi \pi(I=0)| H_{w}\left|K^{0}\right\rangle=A_{0} e^{i \delta_{2}}$
[PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Systematic error estimation of the calculation:

Error source	Value			
Excited state				
Unphysical kinematics	$\begin{gathered} 5 \% \\ 12 \% \\ 1.5 \% \end{gathered}$	Error source	Value	
Finite lattice spacing			$\operatorname{Re}\left(A_{0}\right)$	$\operatorname{Im}\left(A_{0}\right)$
Lellouch-Lüscher factor		Matrix elements	15.7\%	15.7\%
Finite-volume corrections	7%	Matrix elements	15.7	
Missing G_{1} operator	3\%	Parametric errors	0.3\%	6\%
Renormalization	4\%	Wilson coefficients	12\%	12\%
Total	15.7\%	Total	19.8\%	20.7\%

- Two leading source of uncertainties (both 12%) are
- Finite lattice spacing: only one lattice spacing @ $a^{-1}=1.378 \mathrm{GeV}$
- Wilson coefficients: match 4 flavor theory to 3 flavor theory perturbatively.
- QED and strong isospin breaking correction can be important due to large A_{0} / A_{2}. ChPT calculation of these effects available.
[JHEP. 02 (2020) 032] V. Cirigliano, H. Gisbert, A. Pich and A. Rodríguez-Sánchez.
- [PRD 102, 054509 (2020)] by the RBC-UKQCD collaborations.
- Final result $\operatorname{Re}\left(\epsilon^{\prime} / \epsilon\right)=2.17(26)_{\text {stat }}(62)_{\text {sys }}(50)_{\text {isospin }} \times 10^{-3}$

Or, include the ChPT evaluation of the QED and strong isospin breaking effects:
1.67×10^{-3}. Recall the experimental value is $1.66(23) \times 10^{-3}$.

- Good agreement at this precision. RBC-UKQCD efforts to reduce the error:
- Repeat the calculation with finer lattices.
- Non-perturbative 3- to 4-flavor operator matching. Masaaki Tomii. M. Tomii, Proc. Sci., LATTICE2018 (2019) 216.
- Periodic boundary condition $K \rightarrow \pi \pi$. Masaaki Tomii and Daniel Hoying.
- Developing method to study the QED and strong isospin breaking effects on the lattice
- N. Christ and X. Feng, EPJ Web Conf. 175, 13016 (2018)
- Y. Cai and Z. Davoudi, Proc. Sci., LATTICE2018 (2018) 280
- [PRD 98 (2018) 11, 114512] N. Ishizuka, K. I. Ishikawa, A. Ukawa and T. Yoshié Independent calculation with $m_{\pi}=260 \mathrm{MeV}$.

Outline

- Introduction
- $K \rightarrow \pi \pi$ and CP violation
- $K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$
- Rare kaon decays

$$
\begin{aligned}
& -K \rightarrow \pi \nu \bar{\nu} \\
& -K \rightarrow \pi \ell^{+} \ell^{-} \\
& -K \rightarrow \mu^{+} \mu^{-} \\
& -K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}
\end{aligned}
$$

- Conclusion and outlook

$K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections from ChPT calculations.

$K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$

- Dashed line is the CKM matrix first row unitary constraint.
- All the bands and line should cross the same point. There are visible tensions in the plot.
- QED and strong isospin breaking corrections for $f_{K^{ \pm}} / f_{\pi^{ \pm}}$from lattice QCD. [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$
\begin{aligned}
& \Gamma\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}[\gamma]\right)=(1.0153 \pm 0.0019) \Gamma^{(0)}\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}\right), \\
& \Gamma\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\ell}[\gamma]\right)=(1.0024 \pm 0.0010) \Gamma^{(0)}\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\ell}\right),
\end{aligned}
$$

- Calculation is performed on several lattices with different pion masses, physical sizes, lattice spacings.
- Final result is obtained by extrapolating to the physical point.
- QED effects are included in lattice simulation in finite volume.
$\Rightarrow \mathcal{O}(1 / L)$ universal finite volume effects.
$\Rightarrow \mathcal{O}\left(1 / L^{2}\right)$ structure dependent finite volume effects.
Subtract the $\mathcal{O}(1 / L)$ effects and fit the remaining $\mathcal{O}\left(1 / L^{2}\right)$ effects.

$K \rightarrow \ell \nu$ and $\left|V_{u s}\right|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$K \rightarrow \ell \nu$ and $\left|V_{u s}\right|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$
\begin{aligned}
& \Gamma\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}[\gamma]\right)=(1.0153 \pm 0.0019) \Gamma^{(0)}\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}\right), \\
& \Gamma\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\ell}[\gamma]\right)=(1.0024 \pm 0.0010) \Gamma^{(0)}\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\ell}\right),
\end{aligned}
$$

$K \rightarrow \ell \nu$ and $\left|V_{u s}\right|$

- [PRD 100 (2019) 034514] M. Di Carlo, D. Giusti, V. Lubicz, G. Martinelli, C.T. Sachrajda, F. Sanfilippo, S. Simula, N. Tantalo
- Main result:

$$
\begin{aligned}
& \Gamma\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}[\gamma]\right)=(1.0153 \pm 0.0019) \Gamma^{(0)}\left(\pi^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}\right), \\
& \Gamma\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{\ell}[\gamma]\right)=(1.0024 \pm 0.0010) \Gamma^{(0)}\left(K^{ \pm} \rightarrow \mu^{ \pm} \nu_{t}\right),
\end{aligned}
$$

$K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$

- [PRL. 124 (2020) 19, 192002] X. Feng, M. Gorchtein, L. C. Jin, P. X. Ma and C. Y. Seng
- The γW-box contribution to $\pi^{+} \rightarrow \pi^{0} e^{+} \nu$ is calculated on the lattice.
* All the non-hadronic part of the diagram is analytically calculated in infinite volume.

Finite volume effects is exponentially suppressed by the volume.

* Calculation is directly performed at physical pion mass with domain wall fermion.
- In the dispersive framework, this is the only hadronic structure dependent part.
- The obtained QED correction is $\delta=0.0332(1)_{\gamma W}(3)_{\text {higher order QED. }}$.
- In comparison, ChPT gives $\delta=0.0334(10)_{\text {LEC }}(3)_{\text {higher order QED }}$
- [arXiv:2102.12048] P. X. Ma, X. Feng,
M. Gorchtein, L. C. Jin and C. Y. Seng
- Data of the lattice calculation above re-analyzed to obtain the ChPT LECs.

$$
\begin{aligned}
& \delta_{K^{0}}^{e}=0.99(19)_{e^{2} p^{4}}(11)_{\mathrm{LEC}} \rightarrow 1.00(19) \\
& \delta_{K^{0}}^{\mu}=1.40(19)_{e^{2} p^{4}}(11)_{\mathrm{LEC}} \rightarrow 1.41(19) \\
& \delta_{K^{ \pm}}^{e}=0.10(19)_{e^{2} p^{4}}(16)_{\text {LEC }} \quad \rightarrow \quad-0.01(19) \\
& \delta_{K^{ \pm}}^{\mu}=0.02(19)_{e^{2} p^{4}}(16)_{\mathrm{LEC}} \quad \rightarrow \quad-0.09(19) .
\end{aligned}
$$

Outline

- Introduction
- $K \rightarrow \pi \pi$ and CP violation
- $K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$
- Rare kaon decays

$$
\begin{aligned}
& -K \rightarrow \pi \nu \bar{\nu} \\
& -K \rightarrow \pi \ell^{+} \ell^{-} \\
& -K \rightarrow \mu^{+} \mu^{-} \\
& -K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}
\end{aligned}
$$

- Conclusion and outlook

Rare kaon decays: $K \rightarrow \pi \nu \bar{\nu}$

- [PRD 100 (2019) 11, 114506] by the RBC-UKQCD collaborations Xu Feng (Peking University).
- The golden modes: an ideal process in which to search for signs of new physics.
- NA62 at CERN: $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ (aim at 10% accuracy)
- KOTO at J-PARC: $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ (long distance contributions negligible)
- The long distance $\left(\mathcal{O}\left(1 / m_{c}\right)\right)$ contribution is estimated to be about 5% to 10% in $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$.
- Two pioneer lattice calculations @ $m_{\pi}=430 \mathrm{MeV}$ and $m_{\pi}=170 \mathrm{MeV}$ and lighter charm quark mass due to coarse lattice spacing.

Type 2
$W-W$ diagram

Rare kaon decays: $K \rightarrow \pi \ell^{+} \ell^{-}$

- [PRD 94, 114516 (2016), J. Phys.: Conf. Ser. 1526 012015] by the RBC-UKQCD collaborations
Antonin Portelli, Fionn Ó. HÓgáin (University of Edinburgh)
- Similar to $K \rightarrow \pi \nu \bar{\nu}$:
- NA62 at CERN: $K^{+} \rightarrow \pi^{+} \ell^{+} \ell^{-}$
- Prospective experiments planned at LHCb to study the: $K_{S} \rightarrow \pi^{0} \ell^{+} \ell^{-}$
- Pioneer lattice calculations @ $m_{\pi}=430 \mathrm{MeV}$
- Calculation at physical pion mass under way.

Connected

Wing

Saucer

Eye

Rare kaon decays: $K \rightarrow \mu^{+} \mu^{-}$

- [PoS LATTICE2019 (2020) 128, PoS LATTICE2019 (2020) 097] by the RBC-UKQCD collaborations
Yidi Zhao (Columbia University, Norman Christ's current graduate student)
- Branching fraction is accurately measured: $\left.\operatorname{BR}\left(K_{L} \rightarrow \mu^{+} \mu^{-}\right)=6.84 \pm 0.11\right) \times 10^{-9}$.
- Two mechanism of comparable sizes for the decay:
- One-loop, second-order weak process, involving exchange of two weak bosons.
- $\mathcal{O}\left(\alpha_{\mathrm{EM}}^{2} G_{F}\right)$ process shown below.
- First step calculation $\pi \rightarrow e^{+} e^{-}$successful.
- Second step calculation $K_{L} \rightarrow \gamma \gamma$ in progress.
- Final goal: lattice calculation of $K_{L} \rightarrow \gamma^{*} \gamma^{*} \rightarrow \mu^{+} \mu^{-}$

Rare kaon decays: $K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}$

- [arXiv:2103.11331] X. Y. Tuo, X. Feng, L. C. Jin and T. Wang
- Good test of the lattice calculation for the kaon form factors also needed for the QED corrections to the kaon leptonic decay (photon can be emitted from kaon).
- Techniques are developed to treat the four (non-interacting) particle final state.
- Infinite volume reconstruction method [PRD 100, 094509 (2019)] X. Feng and L. Jin used to control the finite volume effects (no power-law suppressed finite volume error). Method will be used to calculate the full QED corrections to kaon leptonic decay.
- $m_{\pi}=352 \mathrm{MeV}$ used in this calculation. Physical pion mass calculation underway.

Channels	$m_{e e}$ cuts	Lattice $\left(m_{\pi}=352 \mathrm{MeV}\right)$	ChPT[5]	experiments
$\operatorname{Br}\left[K \rightarrow e \nu_{e} e^{+} e^{-}\right]$	140 MeV	$3.29(35) \times 10^{-8}$	3.39×10^{-8}	$2.91(23) \times 10^{-8}[3]$
$\operatorname{Br}\left[K \rightarrow \mu \nu_{\mu} e^{+} e^{-}\right]$	140 MeV	$11.08(39) \times 10^{-8}$	8.51×10^{-8}	$7.93(33) \times 10^{-8}[3]$
$\operatorname{Br}\left[K \rightarrow e \nu_{e} \mu^{+} \mu^{-}\right]$	-	$0.94(8) \times 10^{-8}$	1.12×10^{-8}	$1.72(45) \times 10^{-8}[4]$
$\operatorname{Br}\left[K \rightarrow \mu \nu_{\mu} \mu^{+} \mu^{-}\right]$	-	$1.52(7) \times 10^{-8}$	1.35×10^{-8}	-

Outline

- Introduction
- $K \rightarrow \pi \pi$ and CP violation
- $K \rightarrow \ell \nu, K \rightarrow \pi \ell \nu$ and $\left|V_{u s}\right|$
- Rare kaon decays

$$
\begin{aligned}
& -K \rightarrow \pi \nu \bar{\nu} \\
& -K \rightarrow \pi \ell^{+} \ell^{-} \\
& -K \rightarrow \mu^{+} \mu^{-} \\
& -K \rightarrow \ell \nu \ell^{\prime+} \ell^{\prime-}
\end{aligned}
$$

- Conclusion and outlook

Conclusion and outlook

- Accuracy of lattice QCD calculation is improving steadily.
- More hadronic processes are becoming accessible to lattice QCD calculations.
- Many lattice calculations are currently performed with physical parameters (pion/kaon masses).
- QED corrections in lattice QCD calculations are becoming important.

Thank You!

