Rare and forbidden decays of heavy flavor mesons at the B-factories and LHC

Abi Soffer
Tel Aviv University

For the ATLAS, BABAR, Belle, CMS, LHCb

Collaborations

Recent results covered in this talk

- LNV:
$-D^{0} \rightarrow h^{\mp} h^{\prime \mp} \ell^{ \pm} \ell^{\prime \pm} \quad$ BABAR
- LFV:
$-D^{0} \rightarrow h^{+} h^{\prime-} \ell^{+} \ell^{\prime^{-}} \quad$ BABAR
$-D^{0} \rightarrow X^{0} e^{ \pm} \mu^{\mp} \quad$ BABAR
$-B^{+} \rightarrow K^{+} \mu^{-} \tau^{+} \quad$ LHCb
PRD 101 (2020) 112003
JHEP 2020 (2020) 129
- FCNC:
$-B_{(s)} \rightarrow \mu^{+} \mu^{-} \quad$ ATLAS, CMS, LHCb
LHCb-CONF-2020-002
CMS PAS BPH-20-003
ATLAS-CONF-2020-049
$-B^{0} \rightarrow$ invisible $(+\gamma) \quad$ Belle

Lepton-number-violating decays

- Can be mediated by a Majorana neutrino that mixes with SM neutrino [1]:

$$
\mathcal{L}=-\frac{\mathrm{g}}{\sqrt{2}} W_{\mu}^{+} \sum_{\mathrm{l}=\mathrm{e}}^{\tau} V_{\mathrm{lN}}^{*} \overline{N^{\mathrm{c}}} \gamma^{\mu} P_{\mathrm{L}} \mathrm{l}+\text { h.c. }_{\text {Mixing-matrix element }}
$$

- $\quad 2^{\text {nd }}$-order, yet somewhat enhanced if N is on-shell, $m_{N}<m_{\text {hadron }}$
- N can't be a SM neutrino (even if Majorana), since m_{v} too small

Lepton-flavor-violating decays

- In principle, possible due to neutrino flavor oscillations

See talk by Avelino Vicente

- But suppressed by slow neutrino oscillations \& $2^{\text {nd }}$-order interaction
- Predicted LFV branching fractions $\ll 10^{-50}$
- \rightarrow Any LFV observation requires BSM mediator that's highly LFV

The BABAR experiment

BABAR data

Resonance	$\mathrm{L}\left(\mathrm{fb}^{-1}\right)$	$\#\left(10^{6}\right)$
$\Upsilon(4 S)$	424	471
$\Upsilon(3 S)$	28	121
$\Upsilon(2 S)$	14	99
Off-resonance	48	

$40 \mathrm{fb}^{-1}$ off-resonance in shown analysis

The BABAR Detector

$D^{0} \rightarrow h h^{\prime} \ell \ell^{\prime}$ event selection

- Reconstruct $D^{*+} \rightarrow D^{0} \pi^{+}$to reduce combinatorial background
- Select $D^{0} \rightarrow$
- LFV:

$$
\pi^{-} \pi^{+} e^{ \pm} \mu^{\mp}, \quad K^{-} \pi^{+} e^{ \pm} \mu^{\mp}, \quad K^{-} K^{+} e^{ \pm} \mu^{\mp}
$$

- LNV:

$$
\begin{array}{ccc}
\pi^{-} \pi^{-} e^{+} e^{+}, & \pi^{-} \pi^{-} \mu^{+} \mu^{+}, & \pi^{-} \pi^{-} e^{+} \mu^{+} \\
K^{-} \pi^{-} e^{+} e^{+}, & K^{-} \pi^{-} \mu^{+} \mu^{+}, & K^{-} \pi^{-} e^{+} \mu^{+} \\
K^{-} K^{-} e^{+} e^{+}, & K^{-} K^{-} \mu^{+} \mu^{+}, & K^{-} K e^{+} \mu^{+}
\end{array}
$$

- Hadronic-decays background (e.g., Cabibbo-favored $D^{0} \rightarrow K^{-} \pi^{+} \pi^{-} \pi^{+}$) suppressed by requiring $m(K 3 \pi)$ to be inconsistent with $M_{D^{0}}$
- Backgrounds from leptons arising from semileptonic decays or charm decays with missing neutrals is suppressed with Fisher discriminant of 9 kinematic variables.

$D^{0} \rightarrow h h^{\prime} \ell \ell^{\prime}$ yields

- Determined for each mode from fit to $\Delta m \equiv m\left(D^{*+}\right)-m\left(D^{0}\right)$
- Signal PDF $=e^{-\left(m-m_{0}\right)^{2} /\left[2 \sigma_{L, R}^{2}+\alpha_{L, R}\left(m-m_{0}\right)^{2}\right]}$ (Cruijff function)
- Bgd PDF $=m \cdot\left[1-\left(\frac{m}{m_{0}}\right)^{2}\right]^{p} \cdot \exp \left[c \cdot\left(1-\left(\frac{m}{m_{0}}\right)^{2}\right)\right]$ (ARGUS function)
- No significant signal seen
- Signal Br and upper limits determined wrt. normalization mode $\mathrm{D}^{0} \rightarrow h h^{\prime} \pi \pi$:

Decay mode	$N_{\text {norm }}$ (candidates)	Systematic $(\%)$
$D^{0} \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$	260870 ± 520	4.7
$D^{0} \rightarrow K^{-} K^{+} \pi^{+} \pi^{-}$	8480 ± 110	6.6
$D^{0} \rightarrow \pi^{-} \pi^{+} \pi^{+} \pi^{-}$	28470 ± 220	6.8

$D^{0} \rightarrow h h^{\prime} \ell \ell^{\prime}$ results

E791, PRL 86 (2001) 3969

Decay mode $D^{0} \rightarrow$	$\begin{gathered} N_{\text {sig }} \\ \text { (candidates) } \\ \hline \end{gathered}$	$\begin{aligned} & \epsilon_{\mathrm{sig}} \\ & (\%) \end{aligned}$	$\begin{gathered} \mathcal{B} \\ \left(\times 10^{-7}\right) \\ \hline \end{gathered}$	$\begin{aligned} & \mathcal{B} 90 \% \text { U.L. } \\ & \left(\times 10^{-7}\right) \\ & \hline \end{aligned}$	Previous best $\left(\times 10^{-7}\right)$
$\overline{\pi^{-}} \pi^{-} e^{+} e^{+}$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^{-} \pi^{-} \mu^{+} \mu^{+}$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^{-} \pi^{-} e^{+} \mu^{+}$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6	790
$\pi^{-} \pi^{+} e^{ \pm} \mu^{\mp}$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1	150
$K^{-} \pi^{-} e^{+} e^{+}$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0	2060
$K^{-} \pi^{-} \mu^{+} \mu^{+}$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
$K^{-} \pi^{-} e^{+} \mu^{+}$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
$K^{-} \pi^{+} e^{ \pm} \mu^{\mp}$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^{-} K^{-} e^{+} e^{+}$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
$K^{-} K^{-} \mu^{+} \mu^{+}$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0	950
$K^{-} K^{-} e^{+} \mu^{+}$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8	570
$K^{-} K^{+} e^{ \pm} \mu^{\mp}$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

Implications for $V_{\ell N}$

- The authors of ref. [1] provide an expected limit plot for $\left|V_{N \ell}\right|^{2}$
- They comment that this is based on a MC study in an unpublished thesis, using $2.9 \mathrm{fb}^{-1}$ collected at the $\psi(3770)$, leading to an expected Br limit $\operatorname{Br}\left(D^{0} \rightarrow K^{-} \pi^{-} e^{+} e^{+}\right)<\sim 10^{-9}$, too low given the cross section of 3.7 nb .
- Later, BESIII obtained a weaker limit [2], $\operatorname{Br}\left(D^{0} \rightarrow K^{-} \pi^{-} e^{+} e^{+}\right)<2.8 \times 10^{-6}$ (cf. BABAR: 5.0×10^{-7})
- So this plot seems $O(300)$ too tight

Fig. 3. Upper limits on $\left|V_{\mathrm{eN}}\right|^{2}$ at 90% confidence level as a function of the Majorana neutrino mass from the $\mathrm{D}^{0} \rightarrow \mathrm{~K}^{-} \mathrm{e}^{+} \mathrm{e}^{+} \pi^{-}$estimated from the MC study at BESIII.

Implications for $V_{\ell N}$

$D^{0} \rightarrow X^{0} \ell \ell^{\prime}$ results

	$N_{\text {sig }}$ (candidates)	$\epsilon_{\text {sig }}$ $(\%)$	$\mathcal{B}\left(\times 10^{-7}\right)$	$\mathcal{B} 90 \%$ U.L. $\left(\times 10^{-7}\right)$	
Decay mode	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6 \pm 4.8 \pm 2.3$	8.0	860
$D^{0} \rightarrow \pi^{0} e^{ \pm} \mu^{\mp}$	$0.7 \pm 1.7 \pm 0.7$	3.01 ± 0.04	$1.9 \pm 4.6 \pm 1.9$	8.6	500
$D^{0} \rightarrow K_{\mathrm{S}}^{0} e^{ \pm} \mu^{\mp}$	$0.8 \pm 1.8 \pm 0.8$	2.31 ± 0.03	$2.8 \pm 6.1 \pm 2.6$	12.4	830
$D^{0} \rightarrow \bar{K}^{* 0} e^{ \pm} \mu^{\mp}$	$-0.7 \pm 1.7 \pm 0.4$	2.10 ± 0.03	$-1.8 \pm 4.4 \pm 1.0$	5.0	490
$D^{0} \rightarrow \rho^{0} e^{ \pm} \mu^{\mp}$	$0.0 \pm 1.4 \pm 0.3$	3.43 ± 0.04	$0.1 \pm 3.8 \pm 0.9$	5.1	340
$D^{0} \rightarrow \phi e^{ \pm} \mu^{\mp}$	$0.4 \pm 2.3 \pm 0.5$	1.46 ± 0.03	$1.8 \pm 9.5 \pm 1.9$	17.1	1200
$D^{0} \rightarrow \omega e^{ \pm} \mu^{\mp}$			$6.1 \pm 9.7 \pm 2.3$	22.5	1000
$D^{0} \rightarrow \eta e^{ \pm} \mu^{\mp}$					
with $\eta \rightarrow \gamma \gamma$	$1.6 \pm 2.3 \pm 0.5$	2.96 ± 0.04	$7.0 \pm 10.5 \pm 2.4$	24.0	
with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$0.0 \pm 2.8 \pm 0.7$	2.46 ± 0.04	$0.4 \pm 25.8 \pm 6.0$	42.8	

CLEO,
PRL 76 (1996) 3065.
E791,
PRL 86 (2001) 3969

Summary of charm LNV/LFV

Heavy Flavor Averaging Group https://hflav.web.cern.ch

Summary of LNV/LFV

Heavy Flavor Averaging Group https://hflav.web.cern.ch

Search for $B^{+} \rightarrow K^{+} \mu^{-} \tau^{+}$

$$
\text { LHCb, JHEP } 2020(2020) 129 \quad 9 \mathrm{fb}^{-1}
$$

- This charge combination is cleaner than $B^{+} \rightarrow K^{+} \mu^{+} \tau^{-}$, which has more background from $B \rightarrow \bar{D} X \mu^{+} v_{\mu}$ due to $\bar{D} \rightarrow K^{+}$
- Produce the B^{+}in the decay $B_{s 2}^{* 0} \rightarrow B^{+} K^{-}$
- Obtain the τ^{-}4-momentum up to a quadratic ambiguity by using the $K^{+} \mu^{-}$vertex and the known masses.

- Previously used this technique for $B^{+} \rightarrow \bar{D}^{0} X \mu^{+} v_{\mu}$ [PRD 99 (2019) 092009

Signal \& background

Signal-like

- Use the SSK sample to train a BDT to separate signal from background, e.g.,
- $\bar{B} \rightarrow D\left(\rightarrow K^{+} X\right) Y \mu^{-} \bar{v}_{\mu} \quad$ (SL b decays with wrong-sign charm decay)
- $B \rightarrow \bar{D}\left(\rightarrow K^{+} \mu^{-} \bar{v}_{\mu}\right) Y \quad\left(\mu^{-}\right.$from charm decay)
- Although $M_{D} \sim M_{\tau}$, there is no SM background that peaks in $m_{\text {miss }}^{2}$, e.g.,
- $B^{+} \rightarrow K^{+} \mu^{-}\left(\bar{v}_{\mu}\right) D^{+}$not possible in the SM
- $B^{+} \rightarrow K^{+} \pi^{-} D^{+}$is $2^{\text {nd }} \operatorname{order}$ (with π^{-}misidentified as μ^{-})

Signal extraction

Fit $m_{\text {miss }}^{2}$ distribution to signal peak + polynomial background in 4 BDT bins

No significant signal

Normalization and results

Normalize the yield to $B^{+} \rightarrow J / \psi K^{+}$

$$
\begin{aligned}
\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{-} \tau^{+}\right) & <3.9 \times 10^{-5} \text { at } 90 \% \mathrm{CL} \\
& <4.5 \times 10^{-5} \text { at } 95 \% \mathrm{CL}
\end{aligned}
$$

Heavy FLavor AVeraging group (HFLAV) - April 2019

LNV \& LFV B decays summary

HFLAV https://hflav.web.cern.ch

Chuck Narris observed LFV. LNV too.

RPP\#	Mode	PDG2017 Avg.	BABAR	BELLE	LHCb	Our Avg.
552	$\pi^{+} e^{ \pm} \mu^{\mp}$	<0.17	<0.17			<0.17
553	$\pi^{+} e^{+} \tau^{-}$	< 74	< 74			< 74
554	$\pi^{+} e^{-} \tau^{+}$	<20	<20			<20
555	$\pi^{+} e^{ \pm} \tau^{\mp}$	<75	<75			< 75
556	$\pi^{+} \mu^{+} \tau^{-}$	<62	<62			<62
557	$\pi^{+} \mu^{-} \tau^{+}$	<45	<45			<45
558	$\pi^{+} \mu^{ \pm} \tau^{\mp}$	<72	<72			<72
559	$K^{+} e^{+} \mu^{-}$	<0.091	<0.091			<0.091
560	$K^{+} e^{-} \mu^{+}$	<0.13	<0.13			<0.13
561	$K^{+} e^{ \pm} \mu^{\mp}$	<0.091	<0.091			<0.091
562	$K^{+} e^{+} \tau^{-}$	< 43	< 43			< 43
563	$K^{+} e^{-} \tau^{+}$	<15	<15			<15
564	$K^{+} e^{ \pm} \tau^{\mp}$	< 30	< 30			<30
565	$K^{+} \mu^{+} \tau^{-}$	< 45	< 45			< 45
566	$K^{+} \mu^{-} \tau^{+}$	<28	<28		<39	<28
567	$K^{+} \mu^{ \pm} \tau^{\mp}$	< 48	< 48			< 48
568	$K^{*+} e^{+} \mu^{-}$	<1.3	<1.3			<1.3
569	$K^{*+} e^{-} \mu^{+}$	<0.99	<0.99			<0.99
570	$K^{*+} e^{ \pm} \mu^{\mp}$	<1.4	<1.4			<1.4
571	$\pi^{-} e^{+} e^{+}$	<0.023	<0.023			<0.023
572	$\pi^{-} \mu^{+} \mu^{+}$	<0.013	<0.107		$<0.004^{\dagger}$	$<0.004^{\dagger}$
573	$\pi^{-} e^{+} \mu^{+}$	< 0.15	<0.15			< 0.15
574	$\rho^{-} e^{+} e^{+}$	<0.17	<0.17			<0.17
575	$\rho^{-} \mu^{+} \mu^{+}$	<0.42	<0.42			<0.42
576	$\rho^{-} e^{+} \mu^{+}$	<0.47	<0.47			<0.47
577	$K^{-} e^{+} e^{+}$	<0.03	<0.03			<0.03
578	$K^{-} \mu^{+} \mu^{+}$	<0.041	<0.067		<0.041	<0.041
579	$K^{-} e^{+} \mu^{+}$	< 0.16	<0.16			< 0.16
580	$K^{*-} e^{+} e^{+}$	<0.40	<0.40			< 0.40
581	$K^{*-} \mu^{+} \mu^{+}$	< 0.59	< 0.59			< 0.59
582	$K^{*-} e^{+} \mu^{+}$	<0.30	<0.30			<0.30
583	$D^{-} e^{+} e^{+}$	<2.6	<2.6	<2.6		<2.6
584	$D^{-} e^{+} \mu^{+}$	< 1.8	<2.1	< 1.8		< 1.8
585	$D^{-} \mu^{+} \mu^{+}$	<0.69	<1.7	<1.1	< 0.69	<0.69
586	$D_{s}^{-} \mu^{+} \mu^{+}$	< 0.58			< 0.58	<0.58
587	$\bar{D}^{0} \pi^{-} \mu^{+} \mu^{+}$	<1.5			<1.5	<1.5
589	$\Lambda^{0} \mu^{+}$	<0.06	<0.06			<0.06
590	$\Lambda^{0} e^{+}$	< 0.032	<0.032			<0.032
591	$\bar{\Lambda}^{0} \mu^{+}$	<0.06	<0.06			<0.06
592	$\bar{\Lambda}^{0} e^{+}$	<0.08	<0.08			<0.08

$B_{(s)}^{0} \rightarrow \mu^{+} \mu^{-}$LHC combination

Same note:	LHCb-CONF-2020-002		PRL 118 (2017) 191801, $1 \mathrm{fb}^{-1} @ 7 / 8 \mathrm{TeV}+1.4 \mathrm{fb}^{-1} @ 13 \mathrm{TeV}$
	CMS PAS BPH-20-003	\longleftarrow	JHEP 04 (2020) 188, $25 \mathrm{fb}^{-1} @ 7 / 8 \mathrm{TeV}+26.3 \mathrm{fb}^{-1} @ 13 \mathrm{TeV}$
	ATLAS-CONF-2020-049		JHEP 04 (2019) 098, $25 \mathrm{fb}^{-1} @ 7 / 8 \mathrm{TeV}+36.0 \mathrm{fb}^{-1} @ 13 \mathrm{TeV}$

- FCNC decays, both loop- and helicity-suppressed
- Very rare in the SM and hence a good probe of NP
- Uncertainties in the SM BR calculation recently reduced thanks to advances in
- Lattice QCD [e.g., Flavour Lattice Averaging Group, EPJC 80 (2020) 113]
- EW effects at NLO [Bobeth, Gorbahn, Stamou, PRD 89 (2014) 034023]
- QCD effects at NNLO [Hermann, Misiak, Steinhauser, JHEP 12 (2013) 097]
- SM expectations for the BRs:

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) & =(3.66 \pm 0.14) \times 10^{-9} \\
\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) & =(1.03 \pm 0.05) \times 10^{-10}
\end{aligned}
$$

Effective lifetime for $B_{S} \rightarrow \mu^{+} \mu^{-}$

Time-dependent partial width for $B_{S}+\bar{B}_{S}$ (no flavor tag)
Width diff. b/w

$$
\begin{aligned}
& \text { mass eigenstates } \\
& \text { Average width of } \\
& \text { mass eigenstates. }
\end{aligned}
$$

$$
1 / \tau_{B_{s}}
$$

Heavy- and light-eigenstate contribution to the decay $\rightarrow \mu^{+} \mu^{-}$

$$
\mu^{+} \mu^{-} \text {is CP-odd, so } A_{\Delta \Gamma}=1 \text { in the SM, }
$$

$$
\text { expect } \tau_{B_{S} \rightarrow \mu^{+} \mu^{-}}=\tau_{B_{S}^{H}}=1.609 \pm 0.010 \mathrm{ps.} \text { This could change in NP. }
$$

$$
\begin{aligned}
& \tau_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}} \equiv \frac{\int_{0}^{\infty} t\left\langle\Gamma\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)\right\rangle d t}{\int_{0}^{\infty}\left\langle\Gamma\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)\right\rangle d t} \\
& =\frac{\tau_{B_{s}^{0}}}{1-y_{s}^{2}}\left[\frac{1+2 \mathcal{A}_{\Delta \Gamma} y_{s}+y_{s}^{2}}{1+\mathcal{A}_{\Delta \Gamma} y_{s}}\right] \\
& \mathcal{A}_{\Delta \Gamma} \equiv \frac{R_{H}^{\mu^{+} \mu^{-}}-R_{L}^{\mu^{+} \mu^{-}}}{R_{H}^{\mu_{H} \mu^{-}}+R_{L}^{\mu^{+} \mu^{-}}}
\end{aligned}
$$

$m_{\mu^{+} \mu^{-}} \& t_{\mu^{+} \mu^{-}}$distributions

ATLAS, CMS, LHCb results

- BR measured wrt. that of $B^{+} \rightarrow J / \psi K^{+}\left(\mathrm{LHCb}\right.$ used also $\left.B^{0} \rightarrow K^{+} \pi^{-}\right)$

$$
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\frac{f_{d}}{f_{s}} \frac{\varepsilon_{B^{+} \rightarrow J / \psi K^{+}}}{\varepsilon_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}} \frac{N_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}}{N_{B^{+} \rightarrow J / \psi K^{+}}} \mathcal{B}\left(B^{+} \rightarrow J / \psi K^{+}\right)
$$

$\frac{f_{s}}{f_{d}}=0.259 \pm 0.015$ measured by LHCb @ 7 TeV
ATLAS

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.8_{-0.7}^{+0.8}\right) \times 10^{-9}, \\
& \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=(-1.9 \pm 1.6) \times 10^{-10}, \\
& \\
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left[2.9_{-0.6}^{+0.7}(\exp) \pm 0.2(\mathrm{frag})\right] \times 10^{-9}, \\
& \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(0.8_{-1.3}^{+1.4}\right) \times 10^{-10}, \\
& \tau_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}=1.70_{-0.43}^{+0.60} \pm 0.09 \mathrm{ps}
\end{aligned}
$$

LHCb

$$
\begin{aligned}
& \mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(3.0 \pm 0.6_{-0.2}^{+0.3}\right) \times 10^{-9}, \\
& \mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(1.5_{-1.0-0.1}^{+1.2+0.2}\right) \times 10^{-10}, \\
& \tau_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}=2.04 \pm 0.44 \pm 0.05 \mathrm{ps}
\end{aligned}
$$

Combination of profile likelihoods

$$
\begin{aligned}
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right) & =\left(2.69_{-0.35}^{+0.37}\right) \times 10^{-9} \\
\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right) & =(0.6 \pm 0.7) \times 10^{-10}<1.9 \times 10^{-10}(95 \%) \\
\mathcal{R} & =0.021_{-0.025}^{+0.030}<0.069(95 \%)
\end{aligned}
$$

$$
\tau_{B_{s}^{0} \rightarrow \mu^{+} \mu^{-}}=1.91_{-0.35}^{+0.37} \mathrm{ps}
$$

Search for $B^{0} \rightarrow$ invisible $(+\gamma)$

$$
\begin{array}{l|l}
\hline \text { Belle, PRD } 102(2020) 012003 & 711 \mathrm{fb}^{-1}, 772 \times 10^{6} \mathrm{~B} \overline{\mathrm{~B}}
\end{array}
$$

- FCNC, suppressed in the SM:
$-\operatorname{BR}\left(B^{0} \rightarrow\right.$ invis. $) \sim 10^{-16}($ for $4 v)$ [1]
$-\operatorname{BR}\left(B^{0} \rightarrow v \bar{v} \gamma\right) \sim 10^{-9}[2]$

- Fully reconstruct the other (tag) B in $\mathrm{O}\left(10^{3}\right)$ hadronic modes
- (The 2 B 's are not separated by direction)
- Reject events with additional good tracks, π^{0} or K_{L}

Signal and background

- Two neural networks used to suppress background
- (plots for $B^{0} \rightarrow \gamma+$ invis. Those for $B^{0} \rightarrow$ invis. are similar):

Evaluates tag-B quality $\quad \mathrm{O}_{\text {tag }}$

Evaluates event shape $\mathrm{O}_{\text {shape }}$

Signal extraction \& results

- $B^{0} \rightarrow$ invis.: Fit the data distributions in 2 variables (uncorrelated)

Cosine of angle b / w thrust axes of tag-B and remaining particles

$$
e^{+} e^{-} \rightarrow q \bar{q}
$$

Additional neutral energy in the EM calorimeter

- $B^{0} \rightarrow$ invis. $+\gamma$: subtract bgd. estimated from $\mathrm{O}_{\mathrm{tag}}$ sideband, and count

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow \text { invisible }\right)<7.8 \times 10^{-5} \\
& \mathcal{B}\left(B^{0} \rightarrow \text { invisible }+\gamma\right)<1.6 \times 10^{-5}
\end{aligned} \quad 90 \% \mathrm{CL}
$$

Conclusions

- LFV, LNV, and rare decays are an excellent probe for NP
- Continually exploited as experiments collect more data and develop new analysis techniques
- Summary of the recent numbers:

Decay mode $D^{0} \rightarrow$	$N_{\text {sig }}$ (candidates)	$\epsilon_{\text {sig }}$ $(\%)$	\mathcal{B} $\left(\times 10^{-7}\right)$	$\mathcal{B} 90 \%$ U.L. $\left(\times 10^{-7}\right)$
$\pi^{-} \pi^{-} e^{+} e^{+}$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1
$\pi^{-} \pi^{-} \mu^{+} \mu^{+}$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2
$\pi^{-} \pi^{-} e^{+} \mu^{+}$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6
$\pi^{-} \pi^{+} e^{ \pm} \mu^{\mp}$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1
$K^{-} \pi^{-} e^{+} e^{+}$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0
$K^{-} \pi^{-} \mu^{+} \mu^{+}$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3
$K^{-} \pi^{-} e^{+} \mu^{+}$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0
$K^{-} \pi^{+} e^{ \pm} \mu^{\mp}$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0
$K^{-} K^{-} e^{+} e^{+}$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4
$K^{-} K^{-} \mu^{+} \mu^{+}$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0
$K^{-} K^{-} e^{+} \mu^{+}$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8
$K^{-} K^{+} e^{ \pm} \mu^{\mp}$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0

$$
\begin{gathered}
\mathcal{B}\left(B^{+} \rightarrow K^{+} \mu^{-} \tau^{+}\right)<3.9 \times 10^{-5} \text { at } 90 \% \mathrm{CL} \\
\\
<4.5 \times 10^{-5} \text { at } 95 \% \mathrm{CL} \\
\mathcal{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)=\left(2.69_{-0.35}^{+0.37}\right) \times 10^{-9} \\
\mathcal{B}\left(B^{0} \rightarrow \mu^{+} \mu^{-}\right)=(0.6 \pm 0.7) \times 10^{-10}<1.9 \times 10^{-10}(95 \%) \\
\mathcal{R}=0.021_{-0.025}^{+0.030}<0.069(95 \%) \\
\tau_{B_{s}^{0} \rightarrow \mu^{+}} \mu^{-}=1.91_{-0.35}^{+0.37} \mathrm{PS}
\end{gathered}
$$

Decay mode	$N_{\text {sig }}$ (candidates)	$\epsilon_{\text {sig }}$ $(\%)$	$\mathcal{B}\left(\times 10^{-7}\right)$	$\mathcal{B} 90 \% 1$ $B A B A R$
$D^{0} \rightarrow \pi^{0} e^{ \pm} \mu^{\mp}$	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6 \pm 4.8 \pm 2.3$	8.0
$D^{0} \rightarrow K_{\mathrm{S}}^{0} e^{ \pm} \mu^{\mp}$	$0.7 \pm 1.7 \pm 0.7$	3.01 ± 0.04	$1.9 \pm 4.6 \pm 1.9$	8.6
$D^{0} \rightarrow \bar{K}^{* 0} e^{ \pm} \mu^{\mp}$	$0.8 \pm 1.8 \pm 0.8$	2.31 ± 0.03	$2.8 \pm 6.1 \pm 2.6$	12.4
$D^{0} \rightarrow \rho^{0} e^{ \pm} \mu^{\mp}$	$-0.7 \pm 1.7 \pm 0.4$	2.10 ± 0.03	$-1.8 \pm 4.4 \pm 1.0$	5.0
$D^{0} \rightarrow \phi e^{ \pm} \mu^{\mp}$	$0.0 \pm 1.4 \pm 0.3$	3.43 ± 0.04	$0.1 \pm 3.8 \pm 0.9$	5.1
$D^{0} \rightarrow \omega e^{ \pm} \mu^{\mp}$	$0.4 \pm 2.3 \pm 0.5$	1.46 ± 0.03	$1.8 \pm 9.5 \pm 1.9$	17.1
$D^{0} \rightarrow \eta e^{ \pm} \mu^{\mp}$			$6.1 \pm 9.7 \pm 2.3$	22.5
\quad with $\eta \rightarrow \gamma \gamma$	$1.6 \pm 2.3 \pm 0.5$	2.96 ± 0.04	$7.0 \pm 10.5 \pm 2.4$	24.0
\quad with $\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$0.0 \pm 2.8 \pm 0.7$	2.46 ± 0.04	$0.4 \pm 25.8 \pm 6.0$	42.8

$$
\begin{gathered}
\mathcal{B}\left(B^{0} \rightarrow \text { invisible }\right)<7.8 \times 10^{-5} \\
\mathcal{B}\left(B^{0} \rightarrow \text { invisible }+\gamma\right)<1.6 \times 10^{-5} \\
(90 \%)
\end{gathered}
$$

