Rare and forbidden decays of heavy flavor mesons at the B-factories and LHC

> Abi Soffer Tel Aviv University

For the ATLAS, BABAR, Belle, CMS, LHCb Collaborations

Recent results covered in this talk

•	LNV:		
	$-D^0 \to h^{\mp} {h'}^{\mp} \ell^{\pm} \ell'^{\pm}$	BABAR	
•	LFV:		PRL 124 (2020) 071802
	$-D^0 \rightarrow h^+ {h'}^- \ell^+ {\ell'}^-$	BABAR	
	$- D^0 \to X^0 e^{\pm} \mu^{\mp}$	BABAR	PRD 101 (2020) 112003
	$-B^+ \rightarrow K^+ \mu^- \tau^+$	LHCb	JHEP 2020 (2020) 129
•	FCNC:		LHCb-CONF-2020-002
	$-B_{(s)} \rightarrow \mu^+ \mu^-$	ATLAS, CMS, LHCb	CMS PAS BPH-20-003 ATLAS-CONF-2020-049
	$-B^0 \rightarrow \text{invisible}(+\gamma)$	Belle	PRD 102 (2020) 012003

Lepton-number-violating decays

• Can be mediated by a Majorana neutrino that mixes with SM neutrino [1]:

- 2nd-order, yet somewhat enhanced if N is on-shell, $m_N < m_{hadron}$
 - N can't be a SM neutrino (even if Majorana), since m_{ν} too small

Lepton-flavor-violating decays

• In principle, possible due to neutrino flavor oscillations

See talk by Avelino Vicente

- But suppressed by slow neutrino oscillations & 2nd-order interaction
- Predicted LFV branching fractions $\ll 10^{-50}$
- \rightarrow Any LFV observation requires BSM mediator that's highly LFV

The BABAR experiment

BABAR data

Resonance	L(fb ⁻¹)	#(10 ⁶)
Υ(4 <i>S</i>)	424	471
Y(3S)	28	121
Υ(2 <i>S</i>)	14	99
Off-resonance	48	

A. Soffer, FPCP 2021

40 fb⁻¹ off-resonance in shown analysis

The BABAR Detector

$D^0 \rightarrow hh' \ell \ell'$ event selection PRL 124 (2020) 071802

- Reconstruct $D^{*+} \rightarrow D^0 \pi^+$ to reduce combinatorial background
- Select $D^0 \rightarrow$
 - LFV:
 - $\pi^{-}\pi^{+}e^{\pm}\mu^{\mp}, \quad K^{-}\pi^{+}e^{\pm}\mu^{\mp}, \quad K^{-}K^{+}e^{\pm}\mu^{\mp}$
 - LNV:
 - $\pi^{-}\pi^{-}e^{+}e^{+}, \quad \pi^{-}\pi^{-}\mu^{+}\mu^{+}, \quad \pi^{-}\pi^{-}e^{+}\mu^{+}$ $K^{-}\pi^{-}e^{+}e^{+}, \quad K^{-}\pi^{-}\mu^{+}\mu^{+}, \quad K^{-}\pi^{-}e^{+}\mu^{+}$ $K^{-}K^{-}e^{+}e^{+}, \quad K^{-}K^{-}\mu^{+}\mu^{+}, \quad K^{-}Ke^{+}\mu^{+}$
- Hadronic-decays background (e.g., Cabibbo-favored $D^0 \to K^- \pi^+ \pi^- \pi^+$) suppressed by requiring $m(K3\pi)$ to be inconsistent with M_{D^0}
- Backgrounds from leptons arising from semileptonic decays or charm decays with missing neutrals is suppressed with Fisher discriminant of 9 kinematic variables.

 $D^0 \rightarrow hh' \ell \ell'$ yields

- Determined for each mode from fit to $\Delta m \equiv m(D^{*+}) - m(D^0) \longrightarrow$
- Signal PDF = $e^{-(m-m_0)^2/[2\sigma_{L,R}^2 + \alpha_{L,R}(m-m_0)^2]}$ (Cruijff function)
- Bgd PDF = $m \cdot \left[1 \left(\frac{m}{m_0}\right)^2\right]^p \cdot \exp\left[c \cdot \left(1 \left(\frac{m}{m_0}\right)^2\right)\right]$ (ARGUS function)
- No significant signal seen
- Signal Br and upper limits determined wrt. normalization mode $D^0 \rightarrow hh' \pi \pi$:

Decay mode	$N_{ m norm}$	Systematic
2 2	(candidates)	(%)
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	260870 ± 520	4.7
$D^0 \to K^- K^+ \pi^+ \pi^-$	8480 ± 110	6.6
$D^0 \to \pi^- \pi^+ \pi^+ \pi^-$	28470 ± 220	6.8

$D^0 \rightarrow hh' \ell \ell' \text{ results}$ PRL 124 (2020) 071802

				E791	, PRL 86 (2001) 3969
Decay mode	$N_{ m sig}$	$\epsilon_{ m sig}$	\mathcal{B}	${\mathcal B}$ 90% U.L.	Previous best limit
$D^0 \rightarrow$	(candidates)	(%)	$(\times 10^{-7})$	$(\times 10^{-7})$	$(\times 10^{-7})$
$\pi^-\pi^-e^+e^+$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1	1120
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2	290
$\pi^-\pi^-e^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6	790
$\pi^-\pi^+e^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1	150
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0	2060
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3	3900
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0	2180
$K^-\pi^+ e^\pm \mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0	5530
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4	1520
$K^-K^-\mu^+\mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0	950
$K^-K^-e^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8	570
$K^- K^+ e^{\pm} \mu^{\mp}$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0	1800

A. Soffer, FPCP 2019

Implications for $V_{\ell N}$

- The authors of ref. [1] provide an expected limit plot for $|V_{N\ell}|^2$
- They comment that this is based on a MC study in an unpublished thesis, using 2.9 fb⁻¹ collected at the $\psi(3770)$, leading to an expected Br limit $Br(D^0 \rightarrow K^-\pi^-e^+e^+) < \sim 10^{-9}$, too low given the cross section of 3.7 nb.
- Later, BESIII obtained a weaker limit [2], $Br(D^0 \rightarrow K^- \pi^- e^+ e^+) < 2.8 \times 10^{-6}$ (cf. BABAR: 5.0×10^{-7})
- So this plot seems O(300) too tight

Fig. 3. Upper limits on $|V_{\rm eN}|^2$ at 90% confidence level as a function of the Majorana neutrino mass from the D⁰ \rightarrow K⁻e⁺e⁺ π^- estimated from the MC study at BESIII.

Implications for $V_{\ell N}$

FIG. 2. Comparison of the obtained upper limits for $|U_e|^2$ (a) and $|U_{\mu}|^2$ (b) with existing experimental results from CHARM, CHARMII, DELPHI, NuTeV, BEBC and NA3.

$D^0 \to X^0 \ell \ell' \text{ results } P$

PRD 101 (2020) 112003

	$N_{ m sig}$	$\epsilon_{ m sig}$	$\mathcal{B}~(imes 10^{-7})$	B 90% U.	L. $(\times 10^{-7})$	
Decay mode	(candidates)	(%)		BABAR	Previous	
$D^0 o \pi^0 e^\pm \mu^\mp$	$-0.3 \pm 2.0 \pm 0.9$	2.15 ± 0.03	$-0.6 \pm 4.8 \pm 2.3$	8.0	860	CLEO,
$D^0 o K^0_{ m S} e^{\pm} \mu^{\mp}$	$0.7\pm1.7\pm0.7$	3.01 ± 0.04	$1.9\pm4.6\pm1.9$	8.6	500	PRL 76 (1996) 3065
$D^0 o \overline{K}^{*0} e^{\pm} \mu^{\mp}$	$0.8\pm1.8\pm0.8$	2.31 ± 0.03	$2.8\pm6.1\pm2.6$	12.4	830	E791.
$D^0 o ho^0 e^\pm \mu^\mp$	$-0.7\pm1.7\pm0.4$	2.10 ± 0.03	$-1.8\pm4.4\pm1.0$	5.0	490	PRL 86 (2001) 3969
$D^0 o \phi e^\pm \mu^\mp$	$0.0\pm1.4\pm0.3$	3.43 ± 0.04	$0.1\pm3.8\pm0.9$	5.1	340	
$D^0 o \omega e^{\pm} \mu^{\mp}$	$0.4\pm2.3\pm0.5$	1.46 ± 0.03	$1.8\pm9.5\pm1.9$	17.1	1200	
$D^0 o \eta e^\pm \mu^\mp$			$6.1\pm9.7\pm2.3$	22.5	1000	
with $\eta \to \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96 ± 0.04	$7.0\pm10.5\pm2.4$	24.0		
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0\pm2.8\pm0.7$	2.46 ± 0.04	$0.4\pm25.8\pm6.0$	42.8		12

Summary of charm LNV/LFV

Heavy Flavor Averaging Group https://hflav.web.cern.ch

Summary of LNV/LFV

Heavy Flavor Averaging Group https://hflav.web.cern.ch

Search for $B^+ \to K^+ \mu^- \tau^+$

LHCb, JHEP 2020 (2020) 129 9 fb⁻¹

- This charge combination is cleaner than $B^+ \to K^+ \mu^+ \tau^-$, which has more background from $B \to \overline{D} X \mu^+ \nu_{\mu}$ due to $\overline{D} \to K^+$
- Produce the B^+ in the decay $B_{s2}^{*0} \to B^+ K^-$
- Obtain the τ^- 4-momentum up to a quadratic ambiguity by using the $K^+\mu^-$ vertex and the known masses.

- Previously used this technique for $B^+ \rightarrow \overline{D}{}^0 X \mu^+ \nu_{\mu}$ [PRD 99 (2019) 092009

Signal & background

- Use the SSK sample to train a BDT to separate signal from background, e.g., $-\overline{B} \rightarrow D(\rightarrow K^+X)Y\mu^-\overline{\nu}_{\mu}$ (SL *b* decays with wrong-sign charm decay) $-B \rightarrow \overline{D}(\rightarrow K^+\mu^-\overline{\nu}_{\mu})Y$ (μ^- from charm decay)
- Although $M_D \sim M_\tau$, there is no SM background that peaks in m_{miss}^2 , e.g., - $B^+ \rightarrow K^+ \mu^- (\bar{\nu}_\mu) D^+$ not possible in the SM
 - $B^+ \rightarrow K^+ \pi^- D^+$ is 2nd order (with π^- misidentified as μ^-)

Signal extraction

Fit m_{miss}^2 distribution to signal peak + polynomial background in 4 BDT bins

Normalization and results

Normalize the yield to $B^+ \rightarrow J/\psi K^+$

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL},$$

 $< 4.5 \times 10^{-5} \text{ at } 95\% \text{ CL}.$

LNV & LFV B decays summary

HFLAV https://hflav.web.cern.ch

Chuck Norris observed LFV. LNV too. Heavy FLavor AV eraging group (HFLAV) - April 2019 Compilation of B^+ Semi-leptonic LFV & LNV Branching Fractions $(\times 10^{-6})$ - UL at 90% CL

RPP#	Mode	PDG2017 Avg.	BABAR	BELLE	LHCb	Our Avg.
552	$\pi^+ e^{\pm} \mu^{\mp}$	< 0.17	< 0.17			< 0.17
553	$\pi^+ e^+ \tau^-$	< 74	< 74			< 74
554	$\pi^+ e^- \tau^+$	< 20	< 20			< 20
555	$\pi^+ e^{\pm} \tau^{\mp}$	< 75	< 75			< 75
556	$\pi^+\mu^+\tau^-$	< 62	< 62			< 62
557	$\pi^+\mu^-\tau^+$	< 45	< 45			< 45
558	$\pi^+ \mu^{\pm} \tau^{\mp}$	< 72	< 72			< 72
559	$K^+e^+\mu^-$	< 0.091	< 0.091			< 0.091
560	$K^+e^-\mu^+$	< 0.13	< 0.13			< 0.13
561	$K^+ e^{\pm} \mu^{\mp}$	< 0.091	< 0.091			< 0.091
562	$K^+e^+\tau^-$	< 43	< 43			< 43
563	$K^+e^-\tau^+$	< 15	< 15			< 15
564	$K^+ e^{\pm} \tau^{\mp}$	< 30	< 30			< 30
565	$K^+\mu^+\tau^-$	< 45	< 45			< 45
566	$K^+\mu^-\tau^+$	< 28	< 28		< 39	< 28
567	$K^+ \mu^{\pm} \tau^{\mp}$	< 48	< 48			< 48
568	$K^{*+}e^+\mu^-$	< 1.3	< 1.3			< 1.3
569	$K^{*+}e^{-}\mu^{+}$	< 0.99	< 0.99			< 0.99
570	$K^{*+}e^{\pm}\mu^{\mp}$	< 1.4	< 1.4			< 1.4
571	$\pi^-e^+e^+$	< 0.023	< 0.023			< 0.023
572	$\pi^-\mu^+\mu^+$	< 0.013	< 0.107		< 0.004 [†]	< 0.004 [†]
573	$\pi^- e^+ \mu^+$	< 0.15	< 0.15			< 0.15
574	$\rho^- e^+ e^+$	< 0.17	< 0.17			< 0.17
575	$\rho^-\mu^+\mu^+$	< 0.42	< 0.42			< 0.42
576	$\rho^- e^+ \mu^+$	< 0.47	< 0.47			< 0.47
577	$K^-e^+e^+$	< 0.03	< 0.03			< 0.03
578	$K^-\mu^+\mu^+$	< 0.041	< 0.067		< 0.041	< 0.041
579	$K^-e^+\mu^+$	< 0.16	< 0.16			< 0.16
580	$K^{*-}e^{+}e^{+}$	< 0.40	< 0.40			< 0.40
581	$K^{*-}\mu^+\mu^+$	< 0.59	< 0.59			< 0.59
582	$K^{*-}e^+\mu^+$	< 0.30	< 0.30			< 0.30
583	$D^-e^+e^+$	< 2.6	< 2.6	< 2.6		< 2.6
584	$D^-e^+\mu^+$	< 1.8	< 2.1	< 1.8		< 1.8
585	$D^-\mu^+\mu^+$	< 0.69	< 1.7	< 1.1	< 0.69	< 0.69
586	$D_s^- \mu^+ \mu^+$	< 0.58			< 0.58	< 0.58
587	$\bar{D}^0\pi^-\mu^+\mu^+$	< 1.5			< 1.5	< 1.5
589	$\Lambda^0 \mu^+$	< 0.06	< 0.06			< 0.06
590	$\Lambda^0 e^+$	< 0.032	< 0.032			< 0.032
591	$\bar{\Lambda}^{0}\mu^{+}$	< 0.06	< 0.06			< 0.06
592	$\bar{\Lambda}^0 e^+$	< 0.08	< 0.08			< 0.08

 $\rightarrow \mu^+ \mu^-$ LHC combination

Same note:

LHCb-CONF-2020-002 CMS PAS BPH-20-003 ATLAS-CONF-2020-049

PRL 118 (2017) 191801,	1 fb^{-1} @ 7/8 TeV + 1.4 fb^{-1} @ 13 Te
JHEP 04 (2020) 188,	25 fb ⁻¹ @ 7/8 TeV + 26.3 fb ⁻¹ @ 13 Te
JHEP 04 (2019) 098,	25 fb ⁻¹ @ 7/8 TeV + 36.0 fb ⁻¹ @ 13 Te

- FCNC decays, both loop- and helicity-suppressed
- Very rare in the SM and hence a good probe of NP
- Uncertainties in the SM BR calculation recently reduced thanks to advances in
 - Lattice QCD [e.g., Flavour Lattice Averaging Group, EPJC 80 (2020) 113]
 - EW effects at NLO [Bobeth, Gorbahn, Stamou, PRD 89 (2014) 034023]
 - QCD effects at NNLO [Hermann, Misiak, Steinhauser, JHEP 12 (2013) 097]
- SM expectations for the BRs:

$$\begin{array}{rcl} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &=& (3.66 \pm 0.14) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &=& (1.03 \pm 0.05) \times 10^{-10} \end{array}$$

Effective lifetime for $B_s \rightarrow \mu^+ \mu^-$

Time-dependent partial width for
$$B_s + \bar{B}_s$$
 (no flavor tag)

$$\tau_{B_s^0 \to \mu^+ \mu^-} \equiv \frac{\int_0^\infty t \langle \Gamma (B_s^0 \to \mu^+ \mu^-) \rangle dt}{\int_0^\infty \langle \Gamma (B_s^0 \to \mu^+ \mu^-) \rangle dt}$$

$$= \frac{\tau_{B_s^0}}{1 - y_s^2} \left[\frac{1 + 2\mathcal{A}_{\Delta\Gamma} y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma} y_s} \right]$$
Width diff. b/w
mass eigenstates
 $y_s \equiv \frac{\Delta\Gamma_s}{2\Gamma_s}, \qquad \mathcal{A}_{\Delta\Gamma} \equiv \frac{R_H^{\mu^+\mu^-} - R_L^{\mu^+\mu^-}}{R_H^{\mu^+\mu^-} + R_L^{\mu^+\mu^-}}$
Heavy- and light-eigenstate contribution
to the decay $\to \mu^+\mu^-$

 $\mu^+\mu^-$ is CP-odd, so $A_{\Delta\Gamma} = 1$ in the SM, expect $\tau_{B_s \to \mu^+\mu^-} = \tau_{B_s^H} = 1.609 \pm 0.010$ ps. This could change in NP. 21

$m_{\mu^+\mu^-} \& t_{\mu^+\mu^-}$ distributions

ATLAS, CMS, LHCb results

• BR measured wrt. that of $B^+ \to J/\psi K^+$ (LHCb used also $B^0 \to K^+ \pi^-$)

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \frac{f_d}{f_s} \frac{\varepsilon_{B^+ \to J/\psi K^+}}{\varepsilon_{B_s^0 \to \mu^+ \mu^-}} \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{B^+ \to J/\psi K^+}} \mathcal{B}(B^+ \to J/\psi K^+)$$

 $\frac{f_s}{f_d} = 0.259 \pm 0.015$ measured by LHCb @ 7 TeV

ATLAS

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.8 \,{}^{+0.8}_{-0.7}\right) \times 10^{-9}, \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(-1.9 \pm 1.6\right) \times 10^{-10}, \end{aligned}$$

CMS

$$\begin{aligned} \mathcal{B}(B_s^0 \to \mu^+ \mu^-) &= \left[2.9 \,{}^{+0.7}_{-0.6}(\text{exp}) \pm 0.2(\text{frag}) \right] \times 10^{-9}, \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(0.8 \,{}^{+1.4}_{-1.3} \right) \times 10^{-10}, \\ \tau_{B_s^0 \to \mu^+ \mu^-} &= 1.70 {}^{+0.60}_{-0.43} \pm 0.09 \,\text{ps} \end{aligned}$$

LHCb

$$egin{aligned} \mathcal{B}(B^0_s o \mu^+ \mu^-) &= \left(3.0 \pm 0.6 \substack{+0.3 \ -0.2}
ight) imes 10^{-9}, \ \mathcal{B}(B^0 o \mu^+ \mu^-) &= \left(1.5 \substack{+1.2 + 0.2 \ -1.0 - 0.1}
ight) imes 10^{-10}, \ au_{B^0_s o \mu^+ \mu^-} &= 2.04 \pm 0.44 \pm 0.05 \, \mathrm{ps} \end{aligned}$$

Combination of profile likelihoods

Search for $B^0 \rightarrow \text{invisible} (+\gamma)$

Belle, PRD 102 (2020) 012003 711 fb⁻¹, 772×10⁶ B \overline{B}

- FCNC, suppressed in the SM:
 - BR($B^0 \to \text{invis.}$) ~ 10^{-16} (for 4ν) [1]
 - $\text{ BR}(B^0 \rightarrow \nu \bar{\nu} \gamma) \sim 10^{-9} \, [2]$

- (The 2 B's are not separated by direction)

• Reject events with additional good tracks, π^0 or K_L

[1] Bhattacharya, Grant, Petrov, PRD 99 (2019) 093010[2] Lu, Zhang, PLB 381 (1996) 348

Signal and background

- Two neural networks used to suppress background
 - (plots for $B^0 \rightarrow \gamma$ + invis. Those for $B^0 \rightarrow$ invis. are similar):

Signal extraction & results

• $B^0 \rightarrow$ invis.: Fit the data distributions in 2 variables (uncorrelated)

• $B^0 \rightarrow \text{invis.} + \gamma$: subtract bgd. estimated from O_{tag} sideband, and count

$$\begin{array}{l} \mathcal{B}\left(B^{0} \rightarrow \text{invisible}\right) < 7.8 \times 10^{-5} \\ \mathcal{B}\left(B^{0} \rightarrow \text{invisible} + \gamma\right) < 1.6 \times 10^{-5} \end{array} 90\% \, \text{CL}$$

Conclusions

- LFV, LNV, and rare decays are an excellent probe for NP
- Continually exploited as experiments collect more data and develop new analysis techniques
- Summary of the recent numbers:

Decay mode	$N_{ m sig}$	$\epsilon_{ m sig}$	B	B 90% U.L
$D^0 \rightarrow$	(candidates)	(%)	$(\times 10^{-7})$	$(\times 10^{-7})$
$\pi^-\pi^-e^+e^+$	$0.22 \pm 3.15 \pm 0.54$	4.38	$0.27 \pm 3.90 \pm 0.67$	9.1
$\pi^-\pi^-\mu^+\mu^+$	$6.69 \pm 4.88 \pm 0.80$	4.91	$7.40 \pm 5.40 \pm 0.91$	15.2
$\pi^-\pi^-e^+\mu^+$	$12.42 \pm 5.30 \pm 1.45$	4.38	$15.4 \pm 6.59 \pm 1.85$	30.6
$\pi^-\pi^+e^\pm\mu^\mp$	$1.37 \pm 6.15 \pm 1.28$	4.79	$1.55 \pm 6.97 \pm 1.45$	17.1
$K^-\pi^-e^+e^+$	$-0.23 \pm 0.97 \pm 1.28$	3.19	$-0.38 \pm 1.60 \pm 2.11$	5.0
$K^-\pi^-\mu^+\mu^+$	$-0.03 \pm 2.10 \pm 0.40$	3.30	$-0.05 \pm 3.34 \pm 0.64$	5.3
$K^-\pi^-e^+\mu^+$	$3.87 \pm 3.96 \pm 2.36$	3.48	$5.84 \pm 5.97 \pm 3.56$	21.0
$K^-\pi^+ e^\pm \mu^\mp$	$2.52 \pm 4.60 \pm 1.35$	3.65	$3.62 \pm 6.61 \pm 1.95$	19.0
$K^-K^-e^+e^+$	$0.30 \pm 1.08 \pm 0.41$	3.25	$0.43 \pm 1.54 \pm 0.58$	3.4
$K^- K^- \mu^+ \mu^+$	$-1.09 \pm 1.29 \pm 0.42$	6.21	$-0.81 \pm 0.96 \pm 0.32$	1.0
$K^-K^-e^+\mu^+$	$1.93 \pm 1.92 \pm 0.83$	4.63	$1.93 \pm 1.93 \pm 0.84$	5.8
$K^-K^+e^\pm\mu^\mp$	$4.09 \pm 3.00 \pm 1.59$	4.83	$3.93 \pm 2.89 \pm 1.45$	10.0

	$N_{ m sig}$	$\epsilon_{ m sig}$	${\cal B}~(imes 10^{-7})$	${\cal B} 90\%$
Decay mode	(candidates)	(%)		BABAR
$D^0 o \pi^0 e^\pm \mu^\mp$	$-0.3\pm2.0\pm0.9$	2.15 ± 0.03	$-0.6\pm4.8\pm2.3$	8.0
$D^0 ightarrow K^0_{ m S} e^{\pm} \mu^{\mp}$	$0.7\pm1.7\pm0.7$	3.01 ± 0.04	$1.9\pm4.6\pm1.9$	8.6
$D^0 o \overline{K}^{*0} e^{\pm} \mu^{\mp}$	$0.8\pm1.8\pm0.8$	2.31 ± 0.03	$2.8\pm6.1\pm2.6$	12.4
$D^0 o ho^0 e^\pm \mu^\mp$	$-0.7\pm1.7\pm0.4$	2.10 ± 0.03	$-1.8\pm4.4\pm1.0$	5.0
$D^0 o \phi e^\pm \mu^\mp$	$0.0\pm1.4\pm0.3$	3.43 ± 0.04	$0.1\pm3.8\pm0.9$	5.1
$D^0 o \omega e^{\pm} \mu^{\mp}$	$0.4\pm2.3\pm0.5$	1.46 ± 0.03	$1.8\pm9.5\pm1.9$	17.1
$D^0 o \eta e^{\pm} \mu^{\mp}$			$6.1\pm9.7\pm2.3$	22.5
with $\eta \to \gamma \gamma$	$1.6\pm2.3\pm0.5$	2.96 ± 0.04	$7.0\pm10.5\pm2.4$	24.0
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0\pm2.8\pm0.7$	2.46 ± 0.04	$0.4\pm25.8\pm6.0$	42.8
with $\eta \to \pi^+ \pi^- \pi^0$	$0.0\pm2.8\pm0.7$	2.46 ± 0.04	$0.4 \pm 25.8 \pm 6.0$	42.8

$$\mathcal{B}(B^+ \to K^+ \mu^- \tau^+) < 3.9 \times 10^{-5} \text{ at } 90\% \text{ CL}, < 4.5 \times 10^{-5} \text{ at } 95\% \text{ CL}.$$

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (2.69 \substack{+0.37 \\ -0.35}) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (0.6 \pm 0.7) \times 10^{-10} < 1.9 \times 10^{-10} \\ \mathcal{R} &= 0.021 \substack{+0.030 \\ -0.025} < 0.069 \ (95\%) \end{aligned}$$

$$au_{B_s^0 o \mu^+ \mu^-} = 1.91^{+0.37}_{-0.35} \,\mathrm{ps}$$

$$\mathcal{B}(B^{0} \to \text{invisible}) < 7.8 \times 10^{-5}$$
$$\mathcal{B}(B^{0} \to \text{invisible} + \gamma) < 1.6 \times 10^{-5}$$
(90%)

28