Rare Kaon Decay in KOTO/KLOE-2 experiments H. Nanjo(Osaka U.) for KLOE-2 and KOTO collaborations

FPCP2021

Special thanks to Antonio Di Domenico and the KLOE2 collaborators

Neutral Kaon

$$K_S \sim \left(\left| K^0 \right\rangle + \left| \overline{K^0} \right\rangle \right) / \sqrt{2}$$
$$K_L \sim \left(\left| K^0 \right\rangle - \left| \overline{K^0} \right\rangle \right) / \sqrt{2}$$

Quantum Superposition ~CP eigenstate

 $m(K) :\sim 0.5 \text{ GeV}$ $\tau(K_S) : 90 \text{ ps} (c\tau \sim 3 \text{ cm})$ $\tau(K_L) : 51 \text{ ns} (c\tau \sim 15 \text{ m})$

Neutral Kaon Mixing

$$i\frac{d}{dt} \begin{pmatrix} |K_{0}\rangle \\ |\overline{K}_{0}\rangle \end{pmatrix} = \begin{pmatrix} H_{11} & H_{12} \\ H_{21} & H_{22} \end{pmatrix} \begin{pmatrix} |K_{0}\rangle \\ |\overline{K}_{0}\rangle \end{pmatrix}$$
Diagonalize

$$|K_{S}\rangle \propto (1 + \epsilon) |K^{0}\rangle + (1 - \epsilon) |\overline{K}^{0}\rangle$$

$$\neq CP \text{ eigenstate}$$

$\epsilon \equiv \frac{\epsilon_S + \epsilon_L}{2}$	off-diagonal $H_{12} - H_{21}$		ĊR
$\delta \equiv \frac{\epsilon_S - \epsilon_L}{2}$	diagonal $H_{11} - H_{22}$	$m(K_0) - m(\overline{K}_0)$ $\Gamma(K_0) - \Gamma(\overline{K}^0)$	CPT

Recent KLOE/KLOE-2 Results / Status

Result Neutral the val $\epsilon_{\pi\mu\nu} = 0.0552 \pm 0.0018, R_e$ \pm 0025, and the $\mathcal{B}(K_S \to \pi^+\pi^+) = 0.69196 \pm 0.00051$ measured by KLOE [14], we derive the bras fraction $\sigma_{\mathcal{B}(K_S \to \pi \mu \nu)} = (4 \beta_6 \pm 0.11_{\text{stat}} \pm 0.17_{\text{syst}}) \times 10^{-4} = (4.56 \pm 0.20) \times 10^{-4}.$ 290 K_{S,L} e^+ This is the fast measurement of this decay $\overline{\mathbf{po}}$ de. In comparison, assuming universe of the kaon lepton coupling, the expected (alue) 15 is $\mathbf{34}^{\prime}$ $\mathcal{B}(K_S \to \pi \mu \nu) = \mathcal{B}(K_S \to \pi e \nu) \times R(I_K^\ell) \times (1 + \delta_K^{\pi \mu \nu}) = (4.69 \pm 0.06) \times 10^{-4}$ as derived from the value of the branching fraction $\mathcal{B}(K_S \to \pi e\nu) = (7.046 \pm 0.091)$ measured by KLOE [13], the ratio $R(I_K^{\ell}) = 0.6622 \pm 0.0018$ of the phase space int for the semileptonic decays $K_L \to \pi \mu \nu$ and $K_L \to \pi e \nu$ measured by KTeV [16], as contributions of lpng-distance radiative corrections [17] to the semileptonic kaon d $|i\rangle = \frac{1}{\sqrt{2}} \Big[|K^{0}(\vec{p})\rangle |\overline{K}^{0}(-\vec{p})\rangle - |\overline{K}^{0}(\vec{p})\rangle |K^{0}(-\vec{p})\rangle \Big]_{297} \overset{\circ}{8} \overset{\circ}{\text{Conclusion}}$ $i \rangle = \frac{N}{\sqrt{2}} \frac{|K_{S}(\vec{p})\rangle|K_{L}(-\vec{p})\rangle - |K_{L}(\vec{p})\rangle|K_{L}(\vec{p})\rangle}{|K_{L}(-\vec{p})\rangle - |K_{L}(\vec{p})\rangle$ $N = \sqrt{\left[1 + \left|\boldsymbol{\mathcal{E}}_{S}\right|^{-}\right]} \left[1 + \left|\boldsymbol{\mathcal{E}}_{L}\right|^{2}\right] \left[\begin{array}{c} \text{branching} \boldsymbol{\mathcal{E}}_{S} \boldsymbol{\mathcal{E}}_{L} \text{ to be constrained}} \right] \mathcal{B}(K_{S} \to \pi \mu \nu) = (4.56 \pm 0.11_{\text{stat}} \pm 0.17_{\text{syst}}) \times 10^{-4} \text{ to be constrained} \right] \mathcal{B}(K_{S} \to \pi \mu \nu) = (4.56 \pm 0.11_{\text{stat}} \pm 0.17_{\text{syst}}) \times 10^{-4} \text{ to be constrained}$

308 Acknowledgements

E

ass to either track

or the baha

³⁰² decays. The $K_S \to \pi \mu \nu$ decays are selected by a boosted decision tree built with kind ³⁰³ variables and a measurement of time-of-flight. The efficiencies for detecting the K_S -**Test of lepton-flavour universality**⁶⁴ decays are derived from $K_L \to \pi \mu \nu$ data control samples. A fit to the m_{μ}^2 distri ³⁰⁵ finds 7223±180 signal events. Normalising to $K_S \to \pi^+\pi^-$ decay events, the result is $R_{\mu e} = [|f_+(0)V_{us}|_{KS \to \pi \mu \nu}]/[|f_+(0)V_{us}]_{KS \to \pi \mu \nu$

308 Acknowledgements

$$K^{0} \rightarrow \pi^{-}e^{+}\nu$$

$$\begin{pmatrix} d \\ \overline{s} \end{pmatrix} \rightarrow \begin{pmatrix} d \\ \overline{u} \end{pmatrix}$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$K^{0} \rightarrow \pi^{+}e^{+}\nu$$

$$\begin{pmatrix} d \\ \overline{s} \end{pmatrix} \rightarrow \begin{pmatrix} d \\ \overline{u} \end{pmatrix}$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$(f^{0} \rightarrow \pi^{+}e^{-}\overline{\nu})$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$(f^{0} \rightarrow \pi^{+}e^{-}\overline{\nu})$$

$$K^{0} \rightarrow \pi^{+}e^{-}\overline{\nu}$$

$$K^{0} \rightarrow \pi^{$$

308 Acknowledgements

$$K_{S} \rightarrow \pi e \nu \sum_{m} \frac{1}{2} \frac{1}{2}$$

Measurement of Br(K_{Se3}) with x4 statistics wrt previous KLOE result is in progress.

 $\begin{array}{lll} \textbf{Observables of the tests (we focus on the asymptotic negion be branching fraction for the decay <math>K_S \rightarrow \pi\mu\nu$ is presented bases the focus on the asymptotic negion be branching fraction for the decay $K_S \rightarrow \pi\mu\nu$ is presented bases the focus of the focus of

Recent KOTO Results / Prospects

→BSM Physics search(Signal)

Examples of new physics contributions

Flavor-violating Z' coupling

Dim.9 $\Delta I=3/2$ operator

leptoquark, SUSY, charged Higgs, ν_R ... dark sector ...

 $K_L \to \pi^0 X$ due to loophole in $K^+ \to \pi^+ \nu \nu$ experiments(X mass / lifetime)

J-PARC KOTO experiment VKOTO (K0 at Tokai) to search for $K_L \rightarrow \pi^0 \nu \bar{\nu}$

<image>

KOTO signal detection

KOTO data collection

Analysis flow of 2016-18 data

Situation of unblinding fixing event selection

Pre-unblinding Expected # of background in the signal region : 0.05 ± 0.02

Final result after unblinding

Phys.Rev.Lett.126(121801)(2021)

3 events observed SES= $(7.20 \pm 0.05_{stat.} \pm 0.66_{svst.}) \times 10^{-10}$

Post-unblinding analysis		
K^{\pm} decay	$: 0.87 \pm 0.25$	
Halo $K_L \rightarrow 2\gamma$	$: 0.26 \pm 0.07$	
Others	: 0.09	
Total	$: 1.22 \pm 0.26$	

of observed events is
 consistent to # of backgrounds
No update of the upper limit

Number of events

$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
$L_L \rightarrow 2\gamma$ (beam halo)	$0.26\pm0.07^{\rm a}$
Other K_L decays	0.005 ± 0.005
K^{\pm}	$0.87\pm0.25^{\rm a}$
Hadron cluster	0.017 ± 0.002
$\mathrm{CV} \ \eta$	0.03 ± 0.01
Upstream π^0	0.03 ± 0.03
	1.22 ± 0.26

Backgrounds found in post-unblinding analysis

1.Charged K : # of BG = 0.87 / 1.22(total)

2.Halo K \rightarrow 2 γ : # of BG = 0.26 / 1.22(total)

Evaluation of K^{\pm} flux

$$K^{\pm} \rightarrow \pi^0 \pi^{\pm}$$

3 clusters on CSI

 π^0 full reconstruction π^{\pm} momentum direction $\mathbf{p}_T^{\pi^0} + \mathbf{p}_T^{\pi^\pm} = 0$

Full
$$\mathbf{p}^{\pi}$$
 reconstruction
 K^{\pm} mass from $\mathbf{p}^{\pi^{0}}$ and $\mathbf{p}^{\pi^{\pm}}$

 π^{\pm}

K^{\pm} contributions \rightarrow Flux

🗕 Data

Evaluation of halo K_L flux

 $K_L \rightarrow 3\pi^0$ data was used.

Center Of Energy (rCOE)

Reduction of K^{\pm} background

1.Charged K : # of BG = 0.84 / 1.21(total)

Reduction of halo K_L background

2.Halo K \rightarrow 2 γ : # of BG = 0.26 / 1.22(total)

Prospects

2019-21 data : Comparable or more than 2016-18 data Suppress background \rightarrow new results Accelerator upgrade is planned in 2021. \rightarrow Continue to take data for better sensitivity

Summary

• KLOE-2

- Data taking was completed.
- First measurement : $\mathcal{B}(K_S \to \pi \mu \nu) = (4.56 \pm 0.11 \pm 0.17) \times 10^{-4}$
- Charge asymmetry in $K_S \rightarrow \pi e \nu$ provides CPT violating parameters with the decay
- First measurements on CPT and T observables with neutral kaon transition are in progress.
- KOTO : $K_L \to \pi^0 \nu \overline{\nu}$ analysis of data taken in 2016-18
 - 3 events observed in $K_L \to \pi^0 \nu \overline{\nu}$ search at SES=7.2 × 10⁻¹⁰
 - # of observed events is consistent to expected # of BG (1.22 \pm 0.26)
 - Reduction of new backgrounds \rightarrow Future prospects