Rare Kaon Decay in

KOTO/KLOE-2 experiments

 H. Nanjo(Osaka U.)for KLOE-2 and KOTO collaborations
FPCP2021
Special thanks to Antonio Di Domenico and the KLOE2 collaborators

Neutral Kaon

Neutral Kaon Mixing

$$
i \frac{d}{d t}\binom{\left|K_{0}\right\rangle}{\left|\bar{K}_{0}\right\rangle}=\left(\begin{array}{ll}
H_{11} & H_{12} \\
H_{21} & H_{22}
\end{array}\right)\binom{\left|K_{0}\right\rangle}{\left|\bar{K}_{0}\right\rangle}
$$

Diagonalize

$$
\begin{aligned}
& \left|K_{S}\right\rangle \propto\left(1+\epsilon_{S}\right)\left|K^{0}\right\rangle+\left(1-\epsilon_{S}\right)\left|\bar{K}^{0}\right\rangle \\
& \left|K_{L}\right\rangle \propto\left(1+\epsilon_{L}\right)\left|K^{0}\right\rangle+\left(1-\epsilon_{L}\right)\left|\bar{K}^{0}\right\rangle
\end{aligned}
$$

$$
\neq \mathrm{CP} \text { eigenstate }
$$

$$
\epsilon \equiv \frac{\epsilon_{S}+\epsilon_{L}}{2} \quad \begin{gathered}
\text { off-diagonal } \\
H_{12}-H_{21}
\end{gathered}
$$

$$
C R
$$

$$
\delta \equiv \frac{\epsilon_{S}-\epsilon_{L}}{2} \quad \begin{gathered}
\text { diagonal } \\
H_{11}-H_{22}
\end{gathered} \quad \begin{aligned}
& m\left(K_{0}\right)-m\left(\bar{K}_{0}\right) \\
& \Gamma\left(K_{0}\right)-\Gamma\left(\bar{K}^{0}\right)
\end{aligned} \quad C P T
$$

Recent KLOE/KLOE-2 Results / Status

Neutral Kaon at ϕ-factory

$$
\begin{aligned}
& \left.\left.|i\rangle=\frac{1}{\sqrt{2}}\left[\left[K^{0}(\vec{p})\right\rangle \bar{K}^{0}(-\vec{p})\right\rangle-\left|\bar{K}^{0}(\vec{p})\right\rangle K^{0}(-\vec{p})\right\rangle\right] \\
& \left.\left.=\frac{N}{\sqrt{2}}\left[\left|K_{s}(\vec{p})\right\rangle K_{L}(-\vec{p})\right\rangle-\left|K_{L}(\vec{p})\right\rangle K_{s}(-\vec{p})\right\rangle\right] \\
& N=\sqrt{\left.\left.\left(1+\varepsilon_{s}\right)^{2}\right)\left(1+\varepsilon_{i}\right)^{2}\right)} /\left(1-\varepsilon_{s} \varepsilon_{i}\right) \equiv 1
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{\phi} \sim 3 \mu \mathrm{~b} \\
& \mathscr{B}\left(\phi \rightarrow K_{0} \bar{K}_{0}\right) \sim 34 \%
\end{aligned}
$$

Unique for
Tagged- K_{S}
CPT study
Entangled quantum antisymmetric state

KLOE Detector

KLOE detector

TOF at calorimeter
Tracker and Calorimeter inside magnet

KLOE and KLOE-2 experiment at the Frascati ϕ-factory DAФNE

Branching ratio of $K_{S} \rightarrow \pi \mu \nu$ decay

Analyzed $1.6 \mathrm{fb}^{-1}$ (2004-2005 data) K_{L} tag \rightarrow the other : K_{S}
K_{L} interaction at the calorimeter (K_{L}-crash) $K_{S} \rightarrow \pi \mu \nu$ selection

2 charged particles $\rightarrow 1$ vertex close to IP BDT : kinematics(angle, momentum, $M_{\pi \pi}$) Time of Flight with PID assumption

Branching ratio of $K_{S} \rightarrow \pi \mu \nu$ decay

Data: $\left(K_{L}\right.$ crash $)+\left(K_{S} \rightarrow \pi \mu \nu\right)$

Signal count

Selection efficiency
Control sample from

$$
\left(K_{S} \rightarrow \pi^{+} \pi^{-}\right)+\left(K_{L} \rightarrow \pi \mu \nu\right)
$$

(decay close to IP)

$$
\epsilon=(5.52 \pm 0.17) \%
$$

after correction on the difference between data and control sample

EDT

δt_{μ}

Branching ratio of $K_{S} \rightarrow \pi \mu \nu$ decay

Data sample: $\mathrm{L}=1.6 \mathrm{fb}^{-1}$

KLOE PLB 804 (2020) 135378 First measurement
$\mathrm{BR}\left(\mathrm{K}_{\mathrm{S}} \rightarrow \pi \mu \nu\right)=\left(4.56 \pm 0.11_{\text {stat }} \pm 0.17_{\text {syst }}\right) \times 10^{-4}$

Main systematics TOF selection $\left(\delta_{\pi \pi}\right) \quad: 3.0 \%$ K_{S} decay ID $\quad: 1.7 \%$ MC/Cont.Sample stat. :0.8\% BDT selection $\quad: 0.3 \%$

Expected value assuming kaon-lepton coupling universality:
$\mathrm{BR}\left(\mathrm{K}_{\mathrm{S} \mu 3}\right)=(4.69 \pm 0.05) \times 10^{-4}=\mathcal{B}\left(K_{S} \rightarrow \pi e \nu\right) \times R\left(I_{K}^{\ell}\right) \times\left(1+\delta_{K}^{\pi \mu \nu}\right)$ using $\mathrm{BR}\left(\mathrm{K}_{\mathrm{se3}}\right)$ [KLOE] and $\mathrm{K}_{\mathrm{L} 3}$ phase-space integrals ratio $[\mathrm{KTeV}]$ and long-distance radiative corrections.

Vus determination
$\left|f_{+}(0) v_{u s}\right|_{K S \rightarrow \pi \mu v}=0.2126 \pm 0.0046$
KLOE PLB 804 (2020) 135378
Test of lepton-flavour universality
$\mathrm{R}_{\mu \mathrm{e}}=\left[\left|f_{+}(0) V_{u s}\right|_{K S \rightarrow \pi \mu v}\right] /\left[\left|f_{+}(0) V_{u s}\right|_{K s \rightarrow \text { rev }}\right]=0.975 \pm 0.044$

Charge asymmetry of $K \rightarrow \pi^{ \pm} e^{\mp} \nu$

$$
\begin{aligned}
& \begin{array}{l}
K^{0} \rightarrow \pi^{-} e^{+} \nu \\
\binom{d}{\bar{s}} \longrightarrow\binom{d}{\bar{u}} \Delta \Delta \bar{K}^{0} \rightarrow \pi^{+} e^{-} \bar{\nu} \\
\Delta S=\Delta Q
\end{array} \\
& \begin{array}{ll}
\text { Ratio of } 4 \text { amplitudes } \\
K^{0} \rightarrow \pi^{+} e^{-} \bar{\nu} & \bar{K}^{0} \rightarrow \pi^{-} e^{+} \nu
\end{array} \\
& \begin{array}{l}
3 \text { parameters } \\
y: \Delta S=\Delta Q, \text { CPT violation } \\
x_{+}: \Delta S \neq \Delta Q, \text { CPT conservation } \\
\binom{d}{\bar{s}} \longrightarrow\binom{u}{\bar{d}} \Delta \Delta S \neq \Delta Q \\
x_{-}: \Delta S \neq \Delta Q, \text { CPT violation }
\end{array}
\end{aligned}
$$

Charge asymmetry of $K_{S} \rightarrow \pi e \nu$ and $K_{L} \rightarrow \pi e \nu y$

CRT

$$
\Delta S \neq \Delta Q
$$

$K_{S} \rightarrow \pi e \nu$ charge asymmetry

\# of events after event selection $M^{2}(e)=\left(E_{K_{S}, \text { tag }}-E_{\pi}-p_{\text {miss }}\right)^{2}-p_{e}^{2}$
Fit $M^{2}(e)$ varying MC normalizations
Event selection efficiency

$$
\begin{aligned}
\epsilon^{+} & =(7.39 \pm 0.03) \% \\
\epsilon^{-} & =(7.81 \pm 0.03) \%
\end{aligned}
$$

Correction with control sample from

$$
\left(K_{S} \rightarrow \pi^{0} \pi^{0}\right)+\left(K_{L} \rightarrow \pi e \nu\right)
$$

(decay close to IP)

TOF selection

$\chi^{2} / \mathrm{ndf}=118 / 109$

$K_{S} \rightarrow \pi e \nu$ charge asymmetry

Data sample: $\mathrm{L}=1.6 \mathrm{fb}^{-1}$ KLOE (2018)

$$
A_{S}=(-4.8 \pm 5.6 \pm 2.6) \times 10^{-3}
$$

Combination KLOE(2006)+KLOE (2018)

$$
\frac{A_{S}=(-3.8 \pm 5.0 \pm 2.6) \times 10^{-3}}{\text { JHEP } 09(2018) 21}
$$

with KLOE-2 data: $\delta A_{S}($ stat $) \rightarrow \sim 3 \times 10^{-3}$

-0.02	-0.015	-0.01	-0.005	0	0.005	0.01	0.015	0.0

$$
\mathfrak{R} x_{-}=(-2.0 \pm 1.4) \times 10^{-3}
$$

$\mathfrak{R y}=(1.7 \pm 1.4) \times 10^{-3}$

CPT \& $\Delta S=\Delta Q$ viol. JHEP 09 (2018) 21
CPT viol.
input fromother experiments
$\left(A_{S}+A_{L}\right)=>$ improvement of CPT test (Im δ) using Bell-Steinberger relationship. Measurement of $\operatorname{Br}\left(\mathrm{K}_{\mathrm{Se} 3}\right)$ with x 4 statistics wrt previous KLOE result is in progress.

Direct test of T and CPT in neutral kaon transitions

Observables of the tests (we focus on the asymptotic region):
T-violation
sensitive $\quad R_{2}^{T}(\Delta t) \sim \frac{I\left(\pi^{+} e^{-} \nu, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi^{+} \pi^{-}, \pi^{-} e^{+} \nu ; \Delta t\right)}$

$$
R_{4}^{T}(\Delta t) \sim \frac{I\left(\pi^{-} e^{+} \nu, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi^{+} \pi^{-}, \pi^{+} e^{-} \nu ; \Delta t\right)}
$$

CPT-violation
$R_{2}^{C P T}(\Delta t) \sim \frac{I\left(\pi^{+} e^{-} \bar{\nu}, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi^{+} \pi^{-}, \pi^{+} e^{-} \bar{\nu} ; \Delta t\right)}$
$R_{4}^{C P T}(\Delta t) \sim \frac{I\left(\pi^{-} e^{+} \nu, 3 \pi^{0} ; \Delta t\right)}{I\left(\pi^{+} \pi^{-}, \pi^{-} e^{+} \nu ; \Delta t\right)}$
Double ratios:

$$
\mathrm{DRCP}=\frac{R_{2}^{T}}{R_{4}^{T}}(\Delta t)=\frac{I\left(3 \pi^{0}, e^{-}\right)}{I\left(3 \pi^{0}, e^{+}\right)} \frac{I\left(\pi^{+} \pi^{-}, e^{-}\right)}{I\left(\pi^{+} \pi^{-}, e^{+}\right)}
$$

$$
\frac{R_{2}^{C P T}}{R_{4}^{C P T}}(\Delta t)=\frac{I\left(3 \pi^{0}, e^{-}\right)}{I\left(3 \pi^{0}, e^{+}\right)} \frac{I\left(\pi^{+} \pi^{-}, e^{+}\right)}{I\left(\pi^{+} \pi^{-}, e^{-}\right)}
$$

Recent KOTO Results / Prospects

$K \rightarrow \pi \nu \nu$ in SM

$$
K_{L} \rightarrow \pi^{0} \nu \bar{\nu} \quad K^{+} \rightarrow \pi^{+} \nu \bar{\nu}
$$

Calculated BR (SM)

$(3.4 \pm 0.6) \times 10^{-11}$ $(8.4 \pm 1.0) \times 10^{-11}$ Buras et al JHEP1 1 (2015)33

Mainly Parameter error from CKM matrix elements

Theoretical error

$$
<2 \%
$$

$$
<4 \%
$$

Quarks in loop
top
top > charm

Heavy t,W,Z
Weak coupling
CKM Strong suppression

$$
V_{t s}^{*} V_{t d} \sim 5 \times 10^{-4}
$$

Precise and Suppressed SM process(BG)
\rightarrow BSM Physics search(Signal):)

Rare kaon decay : $K \rightarrow \pi \nu \nu$

$$
K_{L} \rightarrow \pi^{0} \nu \bar{\nu} \quad K^{+} \rightarrow \pi^{+} \nu \bar{\nu}
$$

$$
\left(K_{L} \sim\left(K^{0}-\bar{K}^{0}\right) / \sqrt{2}\right)
$$

Amplitude

Width
$\propto \mathscr{A}_{s \rightarrow d}-\left(\mathscr{A}_{s \rightarrow d}\right)^{*}$ $\propto \mathscr{A}_{s \rightarrow d}$
$\propto\left(\operatorname{Im} \mathscr{A}_{s \rightarrow d}\right)^{2}$ $\propto\left|\mathscr{A}_{s \rightarrow d}\right|^{2}$

CP violating
CP conserving

$\begin{gathered} \mathscr{B}\left(K_{L}\right) \\ 10^{-9}+ \end{gathered}$		Grossman-Nir bound $\mathscr{B}_{K_{L} \rightarrow \pi^{0} \bar{\nu}}<4.4 \mathscr{B}_{K^{+} \rightarrow \pi^{+}+\bar{\nu}}$ \mathscr{B} (indirect) $<6.4 \times 10^{-10}($ from 68% CL meas at NA62)		
10^{-10}				
10^{-11}		SM		

Examples of new physics contributions

Flavor-violating Z' coupling

Dim. $9 \Delta \mathrm{I}=3 / 2$ operator
leptoquark, SUSY, charged Higgs, $\nu_{R} \cdots$
dark sector ...
$K_{L} \rightarrow \pi^{0} X$ due to loophole in $K^{+} \rightarrow \pi^{+} \nu \nu$ experiments(X mass / lifetime)

J-PARC KOTO experiment

lot: KOTO (K0 at Tokai) to search for $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$

KOTO signal detection

$$
K_{L} \rightarrow \pi^{0} \nu \bar{\nu}: \pi^{0}(\rightarrow \gamma \gamma)+\text { nothing }
$$

KOTO data collection

Apr-Jun

Analysis flow of 2016-18 data

Event selection to reduce background
Blind region
Veto detector
γ cluster \rightarrow Shower shape. etc $\pi^{0} \rightarrow$ Kinematics
\# of background $\rightarrow \sim 0$
Signal acceptance ($A_{\text {sig }}$)

Fix event selection

$$
\text { Single Event Sensivitiy }=\frac{1}{A_{\text {sig }} N_{K_{L}}}=\frac{1}{A_{\text {sig }}} \times \frac{A_{K_{L} \rightarrow 2 \pi^{0}} \mathscr{B}_{K_{L} \rightarrow 2 \pi^{0}}}{N_{K_{L} \rightarrow 2 \pi^{0}}}
$$

Unblind $\rightarrow N_{\text {sig }}$

Post-unblind analysis
 Keep the same event selection

Reduction of hadron cluster background

Situation of unblinding fixing event selection

Pre-unblinding
Expected \# of background in the signal region : 0.05 ± 0.02

Final result after unblinding

Post-unblinding analysis
$K^{ \pm}$decay $\quad: 0.87 \pm 0.25$
Halo $K_{L} \rightarrow 2 \gamma: 0.26 \pm 0.07$

Others	$: 0.09$
Total	$: 1.22 \pm 0.26$

\# of observed events is
consistent to \# of backgrounds
No update of the upper limit

	Number of events
$K_{L} \rightarrow 3 \pi^{0}$	0.01 ± 0.01
$K_{L} \rightarrow 2 \gamma$ (beam halo)	$0.26 \pm 0.07^{\mathrm{a}}$
Other K_{L} decays	0.005 ± 0.005
$K^{ \pm}$	$0.87 \pm 0.25^{\mathrm{a}}$
Hadron cluster	0.017 ± 0.002
$\mathrm{CV} \eta$	0.03 ± 0.01
Upstream π^{0}	0.03 ± 0.03
	1.22 ± 0.26

Distribution of backgrounds

Backgrounds found in post-unblinding analysis

1.Charged $\mathrm{K}: \#$ of $\mathrm{BG}=0.87 / 1.22$ (total)

2. Halo $\mathrm{K} \rightarrow 2 \gamma: \#$ of $\mathrm{BG}=0.26 / 1.22$ (total)

Evaluation of $K^{ \pm}$flux

 $K^{ \pm} \rightarrow \pi^{0} \pi^{ \pm}$3 clusters on CSI
π^{0} full reconstruction $\pi^{ \pm}$momentum direction $\mathbf{p}_{T}^{\pi^{0}}+\mathbf{p}_{T}^{\pi^{ \pm}}=0$

Evaluation of halo K_{L} flux

$K_{L} \rightarrow 3 \pi^{0}$ data was used.

Center Of Energy (rCOE)

Reduction of $K^{ \pm}$background

10 Ps:

1.Charged K : \# of $\mathrm{BG}=0.84 / 1.21$ (total)

Plate with $0.5-\mathrm{mm}$ square scintillating fibers to detect and veto $K^{ \pm}$in beam.

Prototype : installed in 2020.
Upgraded and used in 2021
$\rightarrow \times 1 / 20$ (preliminary)

Reduction of halo K_{L} background

2.Halo $\mathrm{K} \rightarrow 2 \gamma: \#$ of $\mathrm{BG}=0.26 / 1.22$ (total)

Shower energy and shape
$\sim \times 1 / 20$ (preliminary)

Prospects

2019-21 data : Comparable or more than 2016-18 data
Suppress background \rightarrow new results
Accelerator upgrade is planned in 2021.

Summary

- KLOE-2
- Data taking was completed.
- First measurement : $\mathscr{B}\left(K_{S} \rightarrow \pi \mu \nu\right)=(4.56 \pm 0.11 \pm 0.17) \times 10^{-4}$
- Charge asymmetry in $K_{S} \rightarrow \pi e \nu$
provides CPT violating parameters with the decay
- First measurements on CPT and T observables with neutral kaon transition are in progress.
- KOTO : $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ analysis of data taken in 2016-18
. 3 events observed in $K_{L} \rightarrow \pi^{0} \nu \bar{\nu}$ search at SES $=7.2 \times 10^{-10}$
- \# of observed events is consistent to expected \# of BG (1.22 ± 0.26)
- Reduction of new backgrounds \rightarrow Future prospects

