

Next generation of muon experiments (at PSI, JPARC, Fermilab)

Content

- Introduction: major current muon based experiments (charged lepton flavour violation searches and g-2/EDM with muons):
 - The physics cases
- The Most Intense DC and Pulsed Muon beams in the World:
 - Present and future prospects
- Overview of current experimental activities based on DC and Pulsed muon beams
 - New detector developments

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

•

The role of the low energy precision physics

• The Standard Model of particle physics: A great triumph of the modern physics but not the ultimate theory

 Low energy precision physics: Rare/forbidden decay searches, symmetry tests, precision measurements very sensitive tool for unveiling new physics and probing very high energy scale

The role of the precision physics at the intensity frontiers

- Two main strategies to unveil new physics
 - Indirect searches
 - Precision tests

Charged lepton flavour violation search: Motivation

Current upper limits on \mathcal{B}_i

					Γ_i
					$\mathcal{B}_i = \frac{1}{\Gamma_{tot}}$
0 10 ⁻⁵⁰	10 -40	10 -30	10-20	10-13 10-10	10 ⁰
<u>SM</u>			Ne	<u>w Physics</u>	

Charged lepton flavour violation search: Motivation

Current upper limits on \mathcal{B}_i

					Γ_i
					$\mathcal{B}_i = \frac{1}{\Gamma_{tot}}$
0 10 ⁻⁵⁰	10-40	10-30	10-20	10-13 10-10	100
<u>SM</u>			<u>Ne</u>	w Physics	

Charged lepton flavour violation search: Motivation

Current upper limits on \mathcal{B}_i

					Γ_i
					$\mathcal{B}_i = \frac{1}{\Gamma_{tot}}$
0 10 ⁻⁵⁰	10-40	10-30	10-20	10-13 10-10	10 ⁰
<u>SM</u>			Ne	w Physics	

Complementary to "Energy Frontier"

cLFV searches with muons: Status and prospects

In the near future impressive sensitivities:

	Current upper limit	Future sensitivity
$\mu \to e\gamma$	4.2 x 10 ⁻¹³	~ 6 x 10 ⁻¹⁴
$\mu \rightarrow eee$	1.0 x 10 ⁻¹²	~1.0 x 10 ⁻¹⁶
$\mu N \to e N'$	7.0 x 10 ⁻¹³	few x 10 ⁻¹⁷

· Strong complementarities among channels: The only way to reveal the mechanism responsible for cLFV

Beam features vs experiment requirements

- Dedicated beam lines for high precision and high sensitive SM test/BSM probe at the world's highest beam intensities
 - $DC {or Pulsed}?$ $I_{beam} ~ 10^{11} \mu/s$ DC beam for coincidence experiments
 • μ→eγ, μ→e e e $\mu \rightarrow e\gamma, \mu \rightarrow e e e$ • μ-e conversion

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C73 (2013) 2365

A. Baldini et al. (MEG Collaboration), Eur. Phys. J. C76 (2016) no. 8, 434

- The MEG experiment aims to search for $\mu^+ \rightarrow e^+ \gamma$ with a sensitivity of ~10⁻¹³ (previous upper limit BR($\mu^+ \rightarrow e^+ \gamma$) $\leq 1.2 \times 10^{-11}$ @90 C.L. by MEGA experiment)
- Five observables (E_g, E_e, t_{eg}, ϑ_{eg} , φ_{eg}) to characterize $\mu \rightarrow e\gamma$ events

How the sensitivity can be pushed down?

More sensitive to the signal...

high resolutions

More effective on rejecting the background...

13

A.M. Baldini et al. (MEGII collab.) Eur. Phys. J. 78 (2018) 380

The MEGII experiment

Where we will be

MEGII: The upgraded LXe calorimeter

- Increased uniformity/resolutions
- Increased pile-up rejection capability
- Increased acceptance and detection efficiency
- Assembly: Completed
- Detector filled with LXe
- Purification: Ongoing
- Monitoring and calibrations with sources: Ongoing

	MEG	MEGII
u [mm]	5	2.4
v [mm]	5	2.2
w [mm]	6	3.1
E [w<2cm]	2.4%	1.1%
E [w>2cm]	1.7%	1.0%
t [ps]	67	60

MEGII: The upgraded LXe calorimeter

Detector commissioning:

Data

MC simulation

MEGII: The new single volume chamber

• Improved hit resolution: $\sigma_r \sim < 120$ um (210 um)			
 High granularity/Increased number of hits per 		MEG	MEGII
track/cluster timing technique	p [keV]	306	80
• Less material (helium: isobutane = 90:10, 1.6×10^{-3}	heta [mrad]	9.4	6.3
$X_{0})$	ϕ [mrad]	8.7	5.0
 High transparency towards the TC 	€ [%]*	40	70
 Status: Construction COMPLETED. Some tests ongoing before delivering it to PSI (middle of May) 	(*) It inc with	udes also the matching the Timing Counter	

MEGII: the pixelized Timing Counter

- Higher granularity: 2 x 256 of BC422 scintillator plates (120 x 40 (or 50) x 5 mm³) readout by AdvanSiD SiPM ASD-NUM3S-P-50-High-Gain
- Improved timing resolution: from 70 ps to 35 ps (multi-hits)
- Less multiple scattering and pile-up
- Assembly: Completed
- Expected detector performances confirmed with data during pre-eng. 2016 and 2017

MEGII: The new electronic - DAQ and Trigger

- DAQ and Trigger
 - ~9000 channels (5 GSPS)
 - Bias voltage, preamplifiers and shaping included for SiPMs
- 256 channels (1 crate) abundant tested during the 2016 pre-engineering run; >1000 channels available for the 2017 pre-engineering run; optimised version for 2018 engineering run.
- Trigger electronics and several trigger algorithms included and successfully delivered for the test beams/engineering runs

Mu3e: The $\mu^+ \rightarrow e^+ e^+ e^-$ search

- The Mu3e experiment aims to search for $\mu^+ \rightarrow e^+ e^-$ with a sensitivity of ~10⁻¹⁵ (Phase I) up to down ~10⁻¹⁶ (Phase II). Previous upper limit BR($\mu^+ \rightarrow e^+ e^-$) $\leq 1 \times 10^{-12}$ @90 C.L. by SINDRUM experiment)
- Observables (E_e, t_e, vertex) to characterize $\mu \rightarrow$ eee events

The Mu3e experiment: Schematic 3D

The Mu3e experiment: R&D completed. Prototyping phase

The pixel tracker: The principle

- Central tracker: Four layers; Re-curl tracker: Two layers
- Minimum material budget: Tracking in the scattering dominated regime

The pixel tracker: The performances

- Momentum resolution: < 0.5 MeV/c over a large phase space
- Geometrical acceptance: ~ 70%
- X/X₀ per layer: ~ 0.011%

The pixel tracker: Overview

- Central tracker: Four layers; Re-curl tracker: Two layers
- Minimum material budget: Tracking in the scattering dominated regime
- Momentum resolution: < 0.5 MeV/c over a large phase space; Geometrical acceptance: ~ 70%; X/X₀ per layer: ~ 0.011%

The pixel tracker: The Mupix prototypes

۰	Based on HV- MAP: Pixel dimension: 80 x 80 μm^2 , Thickness: 50 μm , Time resolution: < 20 ns, Active area chip: 20 x 20 mm², Efficiency: > 99 %, Power consumption : < 350 mW/cm²	Prototype	Active Area [mm ²]
٠	MuPix 7: The first small-scale prototype which includes all Mu3e functionalities		
٠	MuPix 8, the first large area prototype: from O(10) mm ² to 160 mm ² : Ready and extensively tested!	MuPix1	1.77
۰	MuPix 9, small test chip for: Slow Control, voltage regulators and other test circuits. 2019 year test beam campaign	MuPix2	1.77
٠	MuPix 10, towards the final version: O(400) mm ²		
	Mupix 7 telescope MuPix8	MuPix3	9.42
	MuPix4	9.42	
N-well E field Parti	E field Particle	MuPix6	10.55
		MuPix7	10.55

MuPix 8:Results

- Extensive beam test scheduled for the full 2018
- Some preliminary results

MuPix 10:Results

- Active area: 20.48 x 20.00 mm2. The final prototype
- All Mu3e features included
- Mupix 11: Module production

Mupix 10 chip mounted on a test PCB

Mupix 10 hit map at a DESY test beam

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

The timing detectors: Fibers and tiles

- Precise timing measurement: Critical to reduce the accidental BGs
 - Scintillating fibers (SciFi) O(1 ns), full detection efficiency (>99%)
 - Scintillating tiles O(100 ps), full detection efficiency (>99%)

SciFi prototypes: Results

 Confirmed full detection efficiency (> 97 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

SciFi prototypes: Results

- Studied a variety of fibres (SCSF 78 MJ, clear; SCSF 78 MJ, with 20% TiO2; NOL 11, clear; NOL 11, with 20% TiO2; SCSF 81 MJ, with 20% TiO2; BCF12 clear; BCF12, with 100 nm Al deposit)
- Confirmed full detection efficiency (> 96 % @ 0.5 thr in Nphe) and timing performances for multi-layer configurations (square and round fibres) with several prototypes: individual and array readout with standalone and prototyping (STiC) DAQ

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100$ ps
- rate up to 50 KHz per tile/channel

The Tile detector: Overview

Parts

- cylindrical at ~ 6 cm (radius)
- length of 36.4 cm
- 56 x 56 tiles of 6.5 x 6.5 x 5 mm³
- 3 x 3 mm² single SiPM per tile
- Mixed mode ASIC: MuTRiG

Requirements

- high detection efficiency $\varepsilon > 95\%$
- time resolution $\sigma < 100 \text{ ps}$
- rate up to 50 KHz per tile/channel

Tile Prototype: Results

- Mu3e requirements fulfilled: Full detection efficiency (> 99 %) and timing resolution O (60) ps
- 4 x 4 channel BC408
- 7.5 x 8.5 x 5.0 mm³
- Hamamatsu S10362-33-050C (3 x 3 mm²)
- readout with STiC2

Mu3e Phase I sensitivity

Most recent News

- Mu3e Magnet (Cryogenic) delivered at PSI in summer 2020
- CMBL installed in piE5 area
- Beam Line commissioning with all elements just started (few days ago)
- Slice detector commissioning will follow next weeks

μ - N \rightarrow e- N experiments

Signal of mu-e conversion is single mono-energetic electron

$$R_{\mu e} = \frac{\mu^{-} + A(Z,N) \rightarrow e^{-} + A(Z,N)}{\mu^{-} + A(Z,N) \rightarrow \nu_{\mu} + A(Z-1,N)}$$

Background: Any event at the endpoint energy can mimic the signal

More and selected pulsed muons in three steps

Matching Solenoid

Production Target

Radiation Shield

B(low)

 \mathcal{M}

High momentum p

Low momentum

7

 2. Pion/muon collection using gradient magnetic filed

ection agnetic

Pion Capture Solenoid

B(high)

Proton Beam

 3. Beam transport with curved solenoid magnets

μ - N \rightarrow e- N experiments

- Signal of mu-e conversion is single mono-energetic electron
- Stop a lot of muons! O(10¹⁸)
- Backgrounds:
 - Beam related, Muon Decay in orbit, Cosmic rays
- Use timing to reject beam backgrounds (extinction factor 10⁻¹⁰)
 - Pulsed proton beam 1.7 µs between pulses
 - Pions decay with 26 ns lifetime
 - Muons capture on Aluminum target with 864 ns lifetime
- Good energy resolution and Particle ID to defeat muon decay in orbit
- Veto Counters to tag Cosmic Rays

The Mu2e experiment

- Three superconducting solenoids: Production, Transport and Detector solenoids
- Muons stop in thin aluminum foils
- High precision straw tracker for momentum measurement
- Electromagnetic calorimeter for PID
- Scintillators for the Veto

The Mu2e experiment

• Proton absorber:

made of high-density polyethylene
designed in order to reduce proton flux on the tracker and minimize energy loss

• Tracker:

◆ ~20k straw tubes arranged in planes on stations, the tracker has 18 stations
◆ Expected momentum resolution < 200 keV/c

• Targets:

♦ 34 Al foils; Aluminum was selected mainly for the muon lifetime in capture events (864 ns) that matches nicely the need of prompt separation in the Mu2e beam structure.

• Muon beam stop:

made of several cylinders of different materials: stainless steel and polyethylene

The COMET experiment

• Stage phase approach: Phase I and Phase II

The COMET experiment: The detectors

- For Phase-1, centre part of beam is dominated by BG, *i.e.* Cylindrical Drift Chamber and Cylindrical Trigger Hodoscope is employed to search for μe conversion.
- He-iC₄H₁₀ gas-mixture to reduce material budget, Hollow cylinder design to have a BG tolerance

The COMET experiment: The detectors

- * Straw 1st station is under construction, will be completed soon.
- * Five stations will be constructed in total.

- * ECAL prototype successfully completed.
- * Detector assembly will start soon.

The COMET experiment: Status

• Stage phase approach: ultimate sensitivity with phase II [Data taking in: 2021/2022]

g_{μ} -2 Motivation

- Dirac's relativistic theory predicted muon magnetic moment "g" = 2
- Experiment suggested that g-factor differs from the expected value of 2
- Standard Model prediction: a(SM) = a(QED) + a(Had) + a (Weak) + a (NP)
- BNL E821 result: 3.3σ deviation from SM prediction

g_{μ} -2 in numbers and experimental approaches

Anomalous magnetic moment (g-2) $a_{\mu} = (g-2)/2 = 11\ 659\ 208.9\ (6.3) \times 10^{-10}\ (BNL\ E821\ exp)$ 0.5 ppm 11\ 659\ 182.8\ (4.9) $\times 10^{-10}\ (standard\ model)$ $\Delta a_{\mu} = Exp - SM = 26.1\ (8.0) \times 10^{-10}$ 3 σ anomaly

In uniform magnetic field, muon spin rotates ahead of momentum due to g-2 = 0

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^2 - 1} \right) \frac{\vec{\beta} \times \vec{E}}{c} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$
BNL E821 approach

$$\gamma = 30 \ (P = 3 \ GeV/c)$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} + \frac{\vec{E}}{c} \right) \right]$$

Continuation at **FNAL** with **0.1ppm** precision Proposed at **J-PARC** with **0.1ppm** precision

g_{μ} -2 at FNAL: The Experiment is running

- ω_p is the proton Larmor frequency measured in a field B
- ω_{a} is the precession frequency measured with decay positrons
- μ_{μ}/μ_{p} magnetic moment ratio from muonium hyperfine measurement

$$\mathbf{a}_{\mu} = \frac{\omega_{a}/\omega_{p}}{\mu_{\mu}/\mu_{p} - \omega_{a}/\omega_{p}}$$

$g_{\mu}\text{-}2$ at FNAL: The journey started in 2017

- First evidence of precessing muons
- Commissioning Run: 2017

g_{μ} -2 at FNAL: First Result

- First Result: April 2021 [using RUN1 with statistics similar to BNL statistics]
- RUN1-3 (already collected): ~ 8x BNL statistics
- Aiming at ~ 20x BNL statistics

g_{μ} -2 at FNAL: The calorimeters

- SiPM readout designed at CENPA
- one per crystal
- 54 per calo, 1296 channels total
- ~10 ns pulses, operate in B field

- PbF₂ grown by SICCAS
- dense Cherenkov radiator
- 2.5 cm by 2.5 cm by 14 cm
- 6 x 9 array

g_{μ} -2 at FNAL: The calorimeters

g_{μ} -2 at FNAL: The trackers

Three multiplane straw tracker systems will reconstruct the timedependent muon decay position within the ring

extrapolated decay vertices

g_{μ} -2/EDM at J-PARC

- Put E = 0;
- Weak B field focusing: Need low emittance cold muon
- Uniform tracker detector through out stored orbit

$$-rac{q}{m_{\mu}}\left[a_{\mu}ec{B}-\left(a_{\mu}-rac{1}{\gamma^{2}-1}
ight)^{\left(k_{\mu}
ight)}
ight]$$

g_{μ} -2/EDM at J-PARC: Status

- Progress in all aspects. From phase I to phase 2
- New experimental methods and source-limited schedule requires fours years prior data taking

H line > 10^8 surface muon/s

Laser available

Several silica-aerogel samples test at TRIUMF this summer

Positron Detector

- Based on Silicon strip: mip detection (positron particles with momentum above 200 MeV/c)
- Requirements:
 - Time resolution better than 2 us (Anomalous spin precession period in a 3T field is about 2.1 us)
 - Storage data longer than this period as well as the muon lifetime (~6.6 us with muon p = 300 MeV/c)
 - Pile-up mitigation: readout system with a small time walk (< 1ns over a signal range of 0.5-3 MIP charge)
 - Maximum hit rate: 150 KHz/mm2

Silicon strip

- Single-side p-on-n silicon strip sensor with a double-metal structure by Hamamatsu (S13804)
- Thickness: 320 um
- Two columns of 512 strips (pitch: 190 um, length: 48.365 mm)
- Strip size to constrain the hit rate less then 2 MHz (estimated maximum rate in experiment : 1.4 MHz)

Outlooks

- Astonishing sensitivities in muon precision physics at intensity frontiers are foreseen for the incoming future
- Rare/forbidden decay searches and symmetry tests remain among the most exciting places where to search for new physics
- New detector developments are the keys for addressing this very challenging physics program combined with beam developments

Thanks for your attention!

Back-up