Next generation (tong-baseline) neutrino experiments

M.G. Catanesi

INFN Bari Italy

Neutrinos Span Multiple Fields!

- Overwhelming number of sources, wide range of energies
- Need wide spectrum of experiments and technologies!

- Particle Physics
- Astrophysics
- Particle Physics ➢ Cosmology
- AstroPhysics
 High energy Astro- particle physics
- Cosmology
 Nuclear physics
- High energy Astro-
- Parti This talk will be
 Nuc focused on the expected contributions from the next generation of long baseline experiment (Dune & HyperK)

1

Solar

Breakthrough Prize 2016

T2K & K2K KamLAND Daya Bay SNO

D

 \bigcirc

Δm^2_{32}	Δm^2_{21}	Δm^2_{31}	Δm^2_{21}	Δm^2_{32}
$\theta_{23} \ \theta_{13}$	θ_{12}	θ_{13}	θ_{12}	θ_{23}

.... "For the fundamental contributions to the discovery of neutrino Oscillation"

Atmospheric Sector & CPV:

t of

Atmospheric Sector & CPV: Open Questions

NO

Neutrino mass ordering

Atmospheric Sector & CPV: Open

• Is ($P_{\alpha\beta} = \sin^2 2\theta \, \sin^2 \left(\frac{\Delta m^2 L}{4E}\right)$

PDG2021

Every

	Parameter	best-fit	3σ
~4%	$\Delta m_{21}^2 \ [10^{-5} \text{ eV}^2]$	7.37	6.93 - 7.96
~3%	$\Delta m^2_{31(23)} \ [10^{-3} \text{ eV}^2]$	2.56(2.54)	2.45 - 2.69 (2.42 - 2.66)
~11%	$\sin^2 \theta_{12}$	0.297	0.250 - 0.354
~15%	$\sin^2 \theta_{23}, \Delta m_{31(32)}^2 > 0$	0.425	0.381 - 0.615
	$\sin^2 \theta_{23}, \Delta m_{32(31)}^2 < 0$	0.589	0.384 - 0.636
~7%	$\sin^2 \theta_{13}, \Delta m_{31(32)}^2 > 0$	0.0215	0.0190 - 0.0240
	$\sin^2 \theta_{13}, \Delta m^2_{32(31)} < 0$	0.0216	0.0190 - 0.0242
~31%	δ/π	1.38(1.31)	2σ : (1.0 - 1.9)
			$(2\sigma: (0.92-1.88))$

Most of the parameters measured with <10% precision

 θ_{23} is known with 15% precision

- v_e appearance (θ_{13} , MH, CPV)
- v_{μ} disappearance (θ_{23})
- Distortion to the neutrino spectrum (Δm_{23}^2)

Current long-baseline experiments (T2K & Nova)

Reach of Current Experiments (T2K & NOVA)

What do we know?

Atmospheric Sector

Picture is looking consistent across experiments

Preference for Normal Ordering and non-maximal mixing

CPV: joint fits underway (T2K+NOvA and T2K+SK)

to understand interesting differences in δCP

<u>T2K+NOvA can reach around 2-3 σ for CPV and MH</u>

(depends on parameter choices

Looking Ahead (T2K)

Reach of Current Experiments (T2K & NOvA)

 χ^2 to exclude sin $_{\text{CP}}\text{=}0$

15

10

3σ C.I

99% C.I

90% C.L

eff. stat. improvements (no sys. errors)

w/ eff. stat. improvements & 2016 sys. errors

w/ eff. stat. & sys. improvements

T₂K

arXiv:1609.04111

Long-Baseline Facilities Across the Globe

Dune & Hyper-K in a nutshell

· DUNE

D

- Mass ~ 70 KTons
- L = 1300 Km
- E (peak) = 2-3 GeV/c (on-axis)
- Beam (Intensity) = 1,2 MW > 2,4 MW
- New Near Detector Suite
- Technology (FD) = Liquid Argon
- New Technology at this mass scale
- Beam physics (Oscillation): >> <u>MH sensitivity</u>
- No-beam physics: possibility to measure v_e from supernovae (different technology)

· Hyper-K

- Mass ~ 190 Ktons
- L = 300 Km
- E (peak) = 0,6 GeV/c (off-axis)
- Beam (Intensity) = 1,3 M₩
- Upgraded T2K Near Detector Suite (+IWCD)
- Technology (FD) = Water-Cherenkov
- Technology already used in large detectors (SK)
- Beam physics (Oscillation): >> <u>CP sensitivity</u>
- No-beam physics: >> proton decay and solar/atm. sensitivity (larger mass)

The Dean Undersound Neutrino

The Deep Underground Neutrino Experiment (DUNE)

• DUNE's neutrino source: LBNF beam, from US Fermi National Lab (FNAL)

DUNE: Near Detector (ND)

DUNE ND complex

Multiple complementary systems:

- ND-LAr: modular, pixelated LArTPC Primary target, similar to FD
- TMS → ND-GAr: measures muons not captured by LArTPC → high-pressure GArTPC, surrounded by ECAL and magnet Muon spectrometer; nuclear interaction model constraints
- **SAND**: tracker surrounded by ECAL and magnet

On-axis beam spectrum/time-stability monitor

ND-LAr/TMS are movable on/off-axis (PRISM)

- Located 574 m from neutrino beam target
- Primary purpose: characterization of neutrin beam and constraining of cross-section uncertainties for long-baseline neutrino oscillation measurements

Sanford Underground Research Facility

Fermilab

DUNE FD HD LATTPC Module

- HD FD uses modular drift cells (scalability)
- Electric field: 500 V/cm, 3.6 m drift
- Suspended Anode and Cathode Plane Assemblies (APAs and CPAs)
- APA:
 - Wrapped induction wires, reducing number of readout channels, cabling complexity
 - Single plane of collection wires

• **Photodetectors** also employed, providing timing and possibility of off-beam triggering

COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK

Sigper-Kamiokande Experiment

- Hyper-K detector with 8.4 times larger fiducial mass (190 kiloton) than Super-K with doublesensitivity PMTs
- J-PARC neutrino beam will be upgraded from 0.5 to 1.3MW (x2.5 higher than current T2K beam power)
- New (IWCD) and upgraded ND280) near detectors to control systematic error.

19 countries, 93 institutes,~440 people as of November2020, growing

• Scalable to larger mass \Rightarrow rare process (proton decay search and neutrino observation)

Kamiokande (1983-1996)

• Atmospheric and solar neutrino "anomaly"

Supernova 1987A

Birth of neutrino astrophysics

Super-Kamiokande (1996 - ongoing)

- Proton decay: world best-limit
- Neutrino oscillation (atm/solar/LBL)
 > All mixing angles and Δm²s

Discovery of neutrino oscillations

The Hyper-Kamiokande FD

Detector R&D for Hyper-Kamiokande

Multi-PMT module:

(ref. KM3NeT) High resolution Cherenkov ring imaging essential for IWCD Consider to use for part of HK

20-inch MCP PMT: Test in dark room

Prototype at TRIUMF

Electronics at INFN

The Hyper-K Construction

✓ On-axis detector: measure beam direction, monitor event rate.

- ✓ Off-axis magnetized tracker: charge separation (wrong-sign background), recoil system
- ✓ Off-axis spanning water Cherenkov detector: intrinsic backgrounds, electron.
- \checkmark (anti)neutrino cross-sections, neutrino energy vs. observables, H_2O target.

Hyper-K Bearn Oscillation Analysis

Based on T2K oscillation method.

Hyper-K & DUNE Sensitivites : MH

D

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ -	→ 3.8 σ
ordering	0.60	4.9 σ —	→ 6.2 σ
θ_{23}	0.45	2.2 σ -	→ 6.2 σ
octant	0.55	1.6 σ —	→ 3.6 σ

10 years with 1.3MW, normal mass ordering is assumed

z Hyper-KeSensitivites

Combination of long-baseline and atmospheric neutrino observations

Hyper-K & DUNE are Observatories

11

 $p \rightarrow e^{+} \pi^{0}$

 π^0

 e^+

ı De

- * Nucleon decay searches
- Supernovae physics

SN explosion mechanism SN monitor Nucleosynthesis

Supernova Relic Neutrino SN mechanism

Star formation

Burning pr Property o phy

itanc

 $\mathbf{p} \left\{ \begin{array}{c} u \\ u \\ u \\ d \end{array} \right\} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{e}{\xrightarrow{}} \stackrel{e}{\xrightarrow{}} \stackrel{e}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{e}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{e}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} } \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} } \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{} } \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}{\xrightarrow{}} \stackrel{g}$

Supernova Relic Neutrinos SN mechanism

Star formation history

Hyper-K. Supernova and Relic Neutrinos

Supernova neutrino observation:

- 54-90k events for SN at 10 kpc (most sensitive to anti-v_e)
- Precise Neutrino Time profile
- Precise spectrum measurement
- Investigation of the SN mechanism (SASI/ Rotation/Convection)

Supernova Relic Neutrino (SRN)

- Diffused neutrinos coming from all past supernovae.
- Not discovered but promising extra-galactic v.
- SRN can be observed by HK in 10y with ~70±17 events. It is > 4σ for SRN signal.

Dune: Supernova Neutrinos

• Dominant interaction on argon:

 $\nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}$

short electron track

nearby de-excitation gammas, Compton scattering

• Unique sensitivity to electron neutrinos from a supernova!

- In case of a **galactic supernova**, DUNE expects to observe up to thousands of neutrino interactions over the duration of the burst
- <u>arXiv:2008.06647</u>

Channel	Liver-	GKVM	Garching
	more		
$\nu_e + {}^{40} \operatorname{Ar} \rightarrow e^- + {}^{40} \operatorname{K}^*$	2744	3412	918
$\overline{\nu}_e + {}^{40}\operatorname{Ar} \to e^+ + {}^{40}\operatorname{Cl}^*$	224	155	23
$\nu_X + e^- \to \nu_X + e^-$	341	206	142
Total	3309	3773	1083

Beyond Next Generation

- More like **observatories**, very broad physics programs
- Precision tests of 3-flavor mixing, new physics, and much more than just oscillation experiments
- Exact goals will depend on where we will be with next generation!

29

