Heavy-heavy and heavy-light form factors from lattice QCD

T. Kaneko (KEK, SOKENDAI)

FPCP 2021 @ Shanghai, 10 June 2021

semileptonic decays

good probe of new physics (NP)

form factors (FFs) : non-perturbative QCD effects precision search for NP @ Belle II, LHCb, ...

long-standing problem

tension in CKM matrix elements $|V_{ub}|$ and $|V_{cb}|$

to be revolved for precision new physics search

lattice QCD

1st-principle calculation of form factors

fully realistic simulation for kaon and charm physics

bottom quarks on the lattice

• lattice spacing $a << m_b^{-1}$

 \bigcirc simulate $m_{b,phys}$

- simulation cost $\propto a^{-7}$
 - \Rightarrow difficult to simulate physical $m_{b,phys}$

practical strategies

- relativistic approach: simulate QCD w/ m_b 's $\leq m_{b,phys}$
 - \bigcirc direct simulation of QCD \bigcirc extrapolate to $m_{b, phys}$
- effective field theory (EFT) approach: use EFT action and operators

need matching to QCD

\rightarrow independent calculations w/ different approaches

outline

heavy hadron form factors from lattice QCD

• $b \rightarrow c\ell v$

- $B \rightarrow D^* \ell v$ at non-zero recoils
- $B_s \rightarrow D_s^* \ell v$, $B_c \rightarrow J/\psi \ell v$ decays
- $b \rightarrow u\ell v$
 - current status and on-going calculations for $|V_{ub}|$
- other decays
 - *D* and baryon decays

not comprehensive review (see, Gamiz @ FPCP20) subjectively - selected recent progress

1. $b \rightarrow c\ell v$ decays

hadronic matrix elements

• momentum recoil

$$q^2 = (p - p')^2$$

 $w = vv' \ge 1$ (zero recoil, $\mathbf{p}=\mathbf{p}'=\mathbf{0}$) $v = p/M_B, v'=p'/M_{D^*}$

$$\langle D^*(v',\varepsilon')|V^{\mu}|\bar{B}(v)\rangle = ih_V(w) \,\epsilon^{\mu\nu\alpha\beta} \,\varepsilon_{\nu}^{\prime*} v_{\alpha}^{\prime} v_{\beta}$$

$$\langle D^*(v',\varepsilon')|A^{\mu}|\bar{B}(v)\rangle = h_{A_1}(w) \,(w+1) \,\varepsilon^{\prime*\mu} - \left[h_{A_2}(w) \,v^{\mu} + h_{A_3}(w) \,v^{\prime\mu}\right] \varepsilon^* \cdot v$$

lattice QCD : non-perturbatively calculate form factors from 1st principles

$B \rightarrow D^* \ell v \operatorname{decay}$

- $|V_{cb}|$ tension w/ inclusive decay $B \rightarrow X_c \ell v$
- new physics is unlikely source? *e.g.* Crivellin-Pokorski 1407.1320
- uncertainty of conventional determination not fully understood? \Leftrightarrow lattice calculation was available for only single FF h_{A1} at w=1
- *z*-parameter expansion to parametrize the *w* dependence of FFs
 - Boyd-Grinstein-Lebed (BGL) : model-independent based on analyticity

$$h_{X}(w) = \frac{1}{P(w)\phi(w)} \sum_{n=0}^{N} a_{n} z^{n}, \quad z = \frac{\sqrt{w+1} - \sqrt{2}}{\sqrt{w+1} - \sqrt{2}}$$

 \Leftrightarrow other information deduce from expr't data

- Fermilab/MILC published 1st calculation of all SM FFs at $w \neq 1$ (!)
- JLQCD calculation w/ different set up is on-going

simulation set up

Fermilab/MILC 2105.14019

- c and b quarks in EFT approach
 - Fermilab interpretation of Wilson action
 - directly simulate physical $m_{b,phys}$
 - need matching of action and op.s

JLQCD on-going

- relativistic apporach
 - chiral symmetric action for all quarks
 - no matching, automatic renormalization
 - simulate $m_b \leq 0.7a^{-1}$, extrapolate to $m_{b,\text{phys}}$

independent calc.s w/ very different systematics \Rightarrow firm prediction

parameter region

uncertaties : h_{A1}

Fermilab/MILC

figure of accumulated error

JLQCD figure of individual error

- largest errors : statistical and discretization [but 1% level for h_{A1}] chiral extrapolation \Leftrightarrow small m_q dependence, suppressed log.
- other FFs : larger and more dominant statistical error

FF comparison : h_{A1}

- reasonable consistency in spite of very different systematics
- JLQCD: slightly narrower w, only slightly gentle slope ??

FF comparison

Fermilab/MILC: impact on the SM test

simultaneous fit to lat.+exp. data

 $R(D^{(*)})$ from lattice QCD, and + exp.

- $|\mathbf{V}_{cb}| = 38.57(0.78) \times 10^3$
- consistent w/ previous exclusive calc.
- slight tension in slope b/w lat. & exp.??

- purely theoretical estimate
- *c.f.* w/ exp. 0.2484(13)

$B \rightarrow D^* \ell v \operatorname{decay}$

• $/V_{cb}$ / tension still remains

- more independent lattice studies
- more data from Belle II, LHCb
- strong isospin correction ~ small
- lattice are limited to small w
 - Di Carlo et al., 2105.02497
 - Martinelli et al., 2105.07851 "susceptibilities" in z-parameter expansion
- FFs beyond SM
 - BSM interpretation of "hints"

Di Carlo et al. '21 for $D \rightarrow K \ell v$

 $B_s \rightarrow D_s * \ell v \text{ decay}$

$$\begin{split} F(q^2) &= \frac{1}{P(q^2)} \sum_{n=0}^3 a_n z^n \mathcal{N}_n \qquad z(q^2, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \\ &+ \text{coefficients in } 1/M_{nb'} \ m_{ud'} \ m_{s'} \ a_i \ am_{c'} \ am_b \end{split}$$

•

 $B_s \rightarrow D_s * \ell v \text{ decay}$

HPQCD arXiv:2105.11433

- shape of differential decay rate
 - good agreement w/ LHCb
- $|V_{cb}|$ from simultaneous fit

 $/V_{cb}/ = 43.0(2.1)_{lat}(1.7)_{exp}(0.4)_{EM} \times 10^{-3}$

- consistent w/ incl. & excl. $B \rightarrow D^* \ell v$
- need improvements in th. and exp.t sides

 $B_c \rightarrow J/\psi \ell \nu \text{ decay}$

HPQCD 2007.06957(PRD), 2007.06956(PRL)

- $B_s \rightarrow D_s^* \ell v \text{ w/ } c$ spectator quark
 - new physics in $R(J/\psi)$?
 - "stable" J/ψ , no ud propagator
 - 1 vector, 3 axial vector FFs
- set up similar to $B_s \rightarrow D_s^* \ell v$
 - relativistic HISQ for *b*, *c* quarks
 - + no matching
 - + extrapolation from $am_b \leq 0.8$
 - fit w/ modified z-expansion + coefficients in m_q 's and a

 $B_c \rightarrow J/\psi^* \ell v \text{ decay}$

HPQCD 2007.06957(PRD), 2007.06956(PRL)

- 7% uncertainty in $(d\Gamma/dq^2)/|V_{cb}|^2$ stat 3.6%, $a \neq 0$ 3.6% m_b 2.4%, $m_{ud,s}$ 3.4%
- 1.4% accuracy for $R(J/\psi)$ $R(J/\psi) = 0.2582(38)$ stat 1.1%, $a \neq 0.8\%$ $m_h 0.6\%$
- 1.8 σ consistent w/ LHCb '18 $R(J/\psi) = 0.71(18)_{stat}(17)_{sys}$ $\Rightarrow \Delta R \sim 0.07 / Run 3, 0.02 / Upgrade II$

2. $b \rightarrow u \ell v$ decays

good publihed studies

HPQCD '06

- NRQCD **b**
- $M_{\pi} \gtrsim 400 {\rm MeV}$
- stat. + matching error

RBC/UKQCD '15

- "relativistic heavy quark" b
- $M_{\pi} \gtrsim 270 \mathrm{MeV}$
- stat. + $a \Rightarrow 0$ /chiral extrap.

Fermilab/MILC '15

- "Fermilab interpretation" b
- *M_π*≥ 165MeV, *a*⁻¹≤ 4.5GeV

$B \rightarrow \pi \ell v$ and $B_s \rightarrow K \ell v$ decay on-going study : RBC/UKQCD

 $B \rightarrow \pi \ell \nu$

- a finer lattice
- improved method to extract FFs
- gauge ensemble @ physical M_{π}

- (much) better accuracy
- measured by LHCb! 2012.05143

 $B_{s} \rightarrow K \ell \nu$

- relativistic approach
 - chiral symmetric b
 - no O(a) errors
 - simpler renormalization
- after FPCP 20
 - estimate of systematic uncertainties
- 9% accuracy
 - statistics
 - chiral extrapolation
 - ⇒ Fugaku computer

3. other decays

$|V_{cs}|$ and CKM unitarity in the 2nd row

HPQCD arXiv:2104.09883

• large range of a, physical $M_{\pi'}$ full q^2 range \Rightarrow precise data of f_+ and f_0 (use CLEO, BES, BaBar data with covariance matrix available)

 $|V_{cs}| = 0.994(15) \text{ (FLAG '19)} \Rightarrow 0.966 \text{ (5)}_{lat}(4)_{exp}(4)_{EM+EW} [8]_{ttl}$

 $|V_{cs}|_{Ds \to \ell v} = 0.991(2)_{lat}(13)_{exp'} |V_{cd}|^2 + |V_{cs}|^2 + |V_{cb}|^2 = 0.983(2)_{Vcd}(16)_{Vcs}$

baryon decays

$$\begin{split} b \to u\ell v : \ \Lambda_b \to p\ell v & c \to s\ell v : \ \Lambda_c \to \Lambda\ell v \\ b \to c\ell v : \ \Lambda_b \to \Lambda_c\ell v, \ \Lambda_b \to \Lambda_c^*(2596)\ell v, \ \Lambda_b \to \Lambda_c^*(2625)\ell v \text{ [new]} \\ b \to s\ell\ell : \ \Lambda_b \to \Lambda\ell\ell, \ \Lambda_b \to \Lambda^*(1520)\ell\ell \text{ [new]} \end{split}$$

• only 2 a^{-1} , s \leq 2.5 GeV, 3 M_{π} 's \geq 300 MeV, $M_{\pi,val}L \sim$ 3.1 not large \Rightarrow independent calculation(s) are highly welcome

Summary

heavy-heavy and heavy-light FFs from lattice QCD

- good progress for CKM elements and NP search
 - CKM : $B \to D^*\ell v @ w \neq 1, B_s \to D_s \ell v, B \to \pi \ell v, D \to K \ell v, \dots$
 - NP: $B_c \rightarrow J/\psi \ell v$
- $|V_{cb}|$ and $|V_{ub}|$ tensions still remain
 - more thorough study of exclusive decays
 - lattice study of inclusive decays [Gamibino-Hashimoto '20]
- more independent studies are highly welcome
- studies of BSM FFs