Tau physics at B-factories

Debashis Sahoo

(Belle collaboration)

TIFR, Mumbai and Utkal University, Bhubaneswar, India

FPCP 2021 June 09, 2021

- B factories
- Diversity of τ physics
- LFV searches $au o \ell \gamma (\ell = e \text{ or } \mu)$
- LNV and BNV searches $\tau \rightarrow p\ell\ell' \ (\ell^{(\prime)} = \mu, e)$

• Summary

au and e^+e^- colliders

SuperKEKB

- τ lepton: The heaviest lepton known to date: Sensitive to new Physics The only lepton heavy enough to decay hadronically
- Low background, high trigger efficiency, well known missing energy and mass make the e^+e^- colliders suitable for τ physics study

Debashis Sahoo

Intensity frontier

Integrated luminosity of B factories

- The B factories: Belle (BaBar) ran from 1999 to 2010 (2008)
- ullet Belle and BaBar recorded over $1.5~{
 m ab}^{-1}$ data
- Now SuperKEKB and Belle II are on the field!

Debashis Sahoo

Diversity of tau physics

au property measurements

- Mass
- Lifetime
- EDM
- Michel parameters

Precision measurements

- IV_{us} measurement
- 2nd class current search: $\tau^- \to \pi^- \eta \nu_{\tau}$
- Hadronic currents: $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}, \ \tau^- \rightarrow hh\nu_{\tau}...$
- Branching fraction measurements: $\tau^- \to K^0_S \pi^- \nu_{\tau}, \ \tau^- \to \phi K^- \nu_{\tau}...$
- Lepton universality

BSM Searches

• LFV, LNV, BNV: $\tau \to 3\ell$, $\tau \to \ell V^0$... $\tau \to \ell \gamma$ ($\ell = e \text{ or } \mu$) [K. Uno *et al.* arXiv:2103.12994] $\tau \to p\ell\ell'$ ($\ell^{(\prime)} = \mu$, *e*) [D. Sahoo *et al.* PRD 102, 111101 (2020)] World's leading result are expected $\psi = 0$ CDV $\tau = -\frac{1}{2} K^0 - \tau$

• CPV:
$$\tau^- \to K_S^0 \pi^- \nu_{\tau}$$

Debashis Sahoo

τ Lepton Flavor Violation

.

$\tau~{\rm LFV}$

Neutrino Sector: Observation of neutrino oscillation Charge sector: Has not been observed

- In the SM + ν Oscillations, CLFV is highly suppressed Impossible to access in current experiments, $\mathcal{B}(\tau \to \mu \gamma) < O(10^{-40})$
- Many extensions of the SM predict LFV decays
- Extensions of SM predict enhancement up to the sensitivity of current experiments An observation of LFV would be a clear signature of BSM
- Many LFV modes with NP models:

A. Brignole et al., Nucl. Phys. B 701, 3 (2004) C.-X. Yue et al., EPJC 50, 897 (2007)

R. Barbier et al., Phys. Rep. B 420, 1 (2005)

Debashis Sahoo

Model	Reference	$\tau \to \mu \gamma$	$\tau \to \mu \mu \mu$
$SM + \nu$ Oscillations	EPJ C8 (1999) 513	10^{-40}	-
$SM+heavy\;Maj\; u_R$	PRD 66 (2002) 034008	10^{-9}	10^{-10}
Non universal Z'	PLB 547 (2002) 252	10^{-9}	10^{-8}
SUSY SO(10)	PRD 68 (2003) 033012	10^{-8}	10^{-10}
mSUGRA + seesaw	PRD 66 (2002) 115013	10^{-7}	10^{-9}
SUSY Higgs	PLB 566 (2003) 217	10^{-10}	10^{-7}

Experimental results:

 $\begin{array}{ll} \text{BaBar: } \mathcal{B}(\tau \to \mu \gamma) < 4.4 \times 10^{-8} \\ \text{Belle: } \mathcal{B}(\tau \to \mu \gamma) < 4.5 \times 10^{-8} \\ \text{New Belle Result will be discussed!!} \end{array} \begin{array}{ll} \text{PRL 104, 021802 (2010)} \\ \text{Phys. Lett. B 666, 16 (2008)} \\ \text{Phys. Lett. B 666, 16 (2008)} \\ \text{Phys. Lett. B 687, 139 (2010)} \\ \text{BaBar: } \mathcal{B}(\tau \to \mu \mu \mu) < 3.3 \times 10^{-8} \\ \text{LHCb: } \mathcal{B}(\tau \to \mu \mu \mu) < 4.6 \times 10^{-8} \\ \text{CMS: } \mathcal{B}(\tau \to \mu \mu \mu) < 8.0 \times 10^{-8} \\ \text{ATLAS: } \mathcal{B}(\tau \to \mu \mu \mu) < 3.8 \times 10^{-7} \\ \end{array} \begin{array}{ll} \text{Phys. Lett. B 687, 139 (2010)} \\ \text{PRD 81, 111101 (R) (2010)} \\ \text{JHEP 02, 121 (2015)} \\ \text{JHEP 01, 163 (2021)} \\ \text{Eur. Phys. J. C 76, 232 (2016)} \\ \end{array}$

au LFV summary plot: HFLAV

Several LFV modes has been studied!

No result is available from B-factories in $\tau \rightarrow p\ell\ell'$ Needs to be updated!!

Debashis Sahoo

• Observation of CLFV: Clear signal of New Physics

 $W \xrightarrow{\nu_{\ell}} \nu_{\ell} \nu_{\ell} \nu_{\ell} \nu_{\ell}$ $\ell(\mu \text{ or } e)$

90% CL	Belle	BaBar
uminosity	535 fb^{-1}	515 fb^{-1}
$\beta(\tau \to \mu \gamma)$	$4.5 imes 10^{-8}$	$4.4 imes 10^{-8}$
$\beta(\tau \rightarrow e\gamma)$	12.0×10^{-8}	$3.3 imes 10^{-8}$
Ref.	PLB (2008)666	PRL (2010)021802

 $\tau \rightarrow \mu \gamma$

 $\tau \rightarrow e\gamma$

$$\begin{split} m_{\rm EC} &= \sqrt{(E_{\rm beam}^{\rm CM})^2 - (p_{\ell\gamma})^2} \\ \Delta E &= E_{\ell\gamma}^{\rm CM} - E_{\rm beam}^{\rm CM} \\ E_{\rm beam}^{\rm CM} &= \sqrt{s}/2 \end{split}$$

• New result from Belle using full (988 ${
m fb}^{-1}$) data sets

Analysis technique

- Signal side: $N_{\ell} = 1, N_{\gamma} = 1$ $\ell = e \text{ or } \mu$ Tag Side: 1-prong decay (Eg. $\tau \to \ell \nu \nu, \pi \nu, \rho \nu$)
- Signal region: $M_{
 m bc} = \sqrt{(E_{
 m beam}^{
 m CM})^2 - (p_{\ell\gamma})^2}$ $\Delta E/\sqrt{s} = (E_{\ell\gamma}^{\rm CM} - E_{\rm beam}^{\rm CM})/\sqrt{s}$ $E_{\rm hear}^{\rm CM} = \sqrt{s}/2$
- Backgrounds: $\tau \rightarrow \ell \nu \nu + \mathsf{ISR}$ or beam background $ee \rightarrow \ell \ell + ISR$ or beam background
- Signal extraction: UEML fit to the signal region
- Blind Analysis technique

Debashis Sahoo

TAU PHYSICS

S/12

0.02

0.01

-0.01

-0.02 -0.03

Selection Criteria

Many variables are used

- Total Energy, $E_{\rm tot}/\sqrt{s}$
- Missing momenta, p_{miss}
- $cos(\theta_{miss})$

•
$$m_{
u}^2 = (E_{\ell\gamma}^{\mathrm{CM}} - E_{\mathrm{tag}}^{\mathrm{CM}})^2 - |p_{\mathrm{miss}}^{\mathrm{CM}}|^2$$

New variable:

- Energy asymmetry in the signal side
- $\xi_{\tau(\text{tag}),\text{track(tag)}}^{\text{CM}} = \frac{p_{\tau(\text{tag})}^{\text{CM}} \cdot p_{\text{track(tag)}}^{\text{CM}}}{|p_{\tau(\text{tag})}^{\text{CM}} ||p_{\text{track(tag)}}^{\text{CM}}|}$

 $\xi^{\rm CM}_{ au({
m tag}),{
m track}({
m tag})}$

Result

Expected: $\mathcal{B}(\tau \to \mu \gamma) < 4.9 \times 10^{-8}$, $\mathcal{B}(\tau \to e \gamma) < 6.4 \times 10^{-8}$ @ 90% CL

Lepton and Baryon number violation

∃▶ ∢∃▶

Why BNV?

- Necessary to explain the dominance of matter over antimatter in the universe by Sakharov [JETP Lett. 5, 24-27, 1967]
 - 1. Baryon number violation
 - 2. C-symmetry and CP-symmetry violation
 - 3. Interaction out of thermal equilibrium

 In the SM, BNV can happen through nonperturbative effects but with an extremely low probability.

[G. 't Hooft PRL 37, 8 (1976)]

- Such processes are studied in different scenarios of physics BSM such as SUSY, grand unification and models with Black holes
- Search for BNV processes could give the hint of new Physics.
- BNV in charged lepton decays often implies lepton number violation
- Conservation of angular momentum requires: $\Delta(B-L) = 0$ or 2

τ is the only lepton may decay to Baryons

Experimental search:

 $\begin{array}{ll} \mbox{Belle:} & \mathcal{B}(\tau^- \to \Lambda \pi^-) < 0.72 \times 10^{-7} \\ \mbox{Belle:} & \mathcal{B}(\tau^- \to \overline{\Lambda} \pi^-) < 1.4 \times 10^{-7} \end{array}$

 $\begin{array}{l} \mathsf{CLEO:} \ \mathcal{B}(\tau^- \to \bar{p}\gamma) < 3.5 \times 10^{-6} \\ \mathsf{CLEO:} \ \mathcal{B}(\tau^- \to \bar{p}\pi^0) < 1.5 \times 10^{-5} \\ \mathsf{CLEO:} \ \mathcal{B}(\tau^- \to \bar{p}2\pi^0) < 3.3 \times 10^{-5} \\ \mathsf{CLEO:} \ \mathcal{B}(\tau^- \to \bar{p}\eta) < 8.9 \times 10^{-6} \\ \mathsf{CLEO:} \ \mathcal{B}(\tau^- \to \bar{p}\pi^0\eta) < 2.7 \times 10^{-5} \end{array}$

 $\begin{array}{l} \mathsf{LHCb:} \ \mathcal{B}(\tau^- \to p\mu^-\mu^-) < 4.4 \times 10^{-7} \\ \mathsf{LHCb:} \ \mathcal{B}(\tau^- \to \overline{p}\mu^-\mu^+) < 3.3 \times 10^{-7} \\ \text{New Belle results will be discussed!!} \end{array}$

- Phys.Lett.B 632, 51-57 (2006) Phys.Lett.B 632, 51-57 (2006)
- Phys. Rev. D 59, 091303(R) (1999) Phys. Rev. D 59, 091303(R) (1999)

Phys. Lett. B 724 (2013) Phys. Lett. B 724 (2013)

- Decay channels: $\tau^- \rightarrow \bar{p}e^+e^-$, pe^-e^- , $\bar{p}e^+\mu^-$, $\bar{p}e^-\mu^+$, $p\mu^-\mu^-$, and $\bar{p}\mu^-\mu^+$ using 921 fb⁻¹ Belle data sets
- A diagram for τ⁻ → p
 µ⁺µ⁻ possible in a new physics scenario proposed by Fuentes-Martin et al. [JHEP 1501,134 (2015)]]

Analysis approach

Reconstruct
$$\tau \to p\ell\ell' \ (\ell^{(')} = \mu, e)$$

Variables to identify signal:

$$\begin{split} M_{\rm rec} &= \sqrt{E_{\rho\ell\ell'}^2 - \vec{p}_{\rho\ell\ell'}^2},\\ \Delta E &= E_{\rho\ell\ell'}^{\rm CM} - E_{\rm beam}^{\rm CM} \end{split}$$

- Red box denotes the signal region.
- The sideband is the ΔE-M_{rec} region outside the red box
- The ΔE strip, indicated by the region between two green lines excluding the red box is used to calculate the expected background yield in the signal region.

Blind Analysis technique

Selection criteria

Several selection criteria are applied

- 3-1 event topolgy is used to select the *τ*τ events.
- Maximum $p_{\rm T}^{\rm max}$ of charged tracks
- Selection on event shape variable such as thrust
- Selections on $\cos \theta_{\mathrm{tag-miss}}^{\mathrm{CM}}$ and θ_{miss} are applied for all the channels.
- γ conversion veto on $\tau^- \rightarrow \overline{p}e^-e^+$, $\tau^- \rightarrow pe^-e^-$, $\tau^- \rightarrow \overline{p}e^+\mu^-$ and $\tau^- \rightarrow p\mu^-\mu^-$ channels (on oppositely-charged track pairs assuming electron mass hypothesis).

Sideband study

 $M_{e^-e^+}$ and $M_{\bar{p}e^+}$ are obtained assuming electron mass hypothesis.

Results

 Number of observed events in the signal region are consistent with the background prediction.

Limits

All limits are @ 10^{-8} level For $\tau^- \rightarrow p\mu^-\mu^-$ and $\tau^- \rightarrow \overline{p}\mu^-\mu^+$: Improving the world's best measurements by an order of magnitude For other four channels: world's first limit

< □ > < 同 > < 三 > < 三 >

τ physics @ Belle II

Huge amount of data from Belle II will allow to probe several au physics aspects

• CPV:
$$\tau^- \to K_S^0 \pi^- \nu_{\tau}$$

τ LFV prospectus @ Belle II

arXiv:1808.10567

Many experiments contributing

Belle II extrapolation to 50 ab^{-1} assuming zero background

Debashis Sahoo

Summary

- B factory experiments are τ-factory experiment at the same time
- au physics covers from precision test of SM to direct new Physics Searches
- Recent $\tau \to \ell \gamma$ search @ Belle:
 - # of observed events consistent with background prediction
 - Obtained upper limit @ 90% Confidence level $\mathcal{B}(\tau \to \mu \gamma) < 4.2 \times 10^{-8} \to \text{Most stringent Limit}$ $\mathcal{B}(\tau \to e \gamma) < 5.6 \times 10^{-8}$
- $\tau \to p\ell\ell'$ search @ Belle:
 - $\mathcal{B}(\tau^- \to p\mu^-\mu^-) < 4.0 \times 10^{-8} \& \mathcal{B}(\tau^- \to \overline{p}\mu^-\mu^+) < 1.8 \times 10^{-8} @ 90\%$ confidence level Improve by an order of magnitude than that of LHCb
 - For $\tau^- \rightarrow \bar{p}e^+e^-$, pe^-e^- , $\bar{p}e^+\mu^-$ and $\bar{p}e^-\mu^+$ channels Belle set the world's first limit
- Belle II is currently collecting data with final goal of 50 ab^{-1} by 2031.

Debashis Sahoo

THANK YOU FOR YOUR ATTENTION!!

Backup: Cross sections $@ \Upsilon(4S, 5S)$ peak

Process	σ at Υ(4S)	σ at Υ(5S)
$\tau^+\tau^-$	$0.919\pm0.003~\text{nb}$	$0.875\pm0.003~\text{nb}$
Di-muon	$1.005\pm0.001~\text{nb}$	0.951 nb
Bhabha	123.5 ± 0.2 nb	116 nb
e ⁺ e ⁻ e ⁺ e ⁻	40.9 nb	42.0 nb
$e^+e^-\mu^+\mu^-$	18.9 nb	19.4 nb
$e^+e^-u\overline{u}$	11.7 nb	12.0 nb
$e^+e^-s\overline{s}$	0.227 nb	0.233 nb
$e^+e^-c\overline{c}$	0.030 nb	0.0308 nb
$B^0\overline{B}^0$	0.525 nb	0.249 nb
B^+B^-	0.525 nb	0.249 nb
cc	1.3 nb	1.23 nb
uds	2.09 nb	1.98 nb

KKMC generates $e^+e^- \rightarrow \tau^+\tau^-(\gamma)$ events TAUOLA or PYTHIA handles τ decays

Debashis Sahoo

A D M A A P M

 $egin{aligned} \mathcal{B}(au o \mu \gamma) < extsf{4.9} imes 10^{-8} \ \mathcal{B}(au o eta \gamma) < extsf{6.4} imes 10^{-8}$ @ 90% CL

90% CL	Belle	BaBar
$\mathcal{B}(au o \mu \gamma)$	obs: $4.5 imes10^{-8}$, exp: $8.0 imes10^{-8}$	obs: 4.4×10^{-8} , exp: 8.2×10^{-8}
${\cal B}(au o e \gamma)$	obs: $12.0 imes10^{-8}$, exp: $12.0 imes10^{-8}$	obs: $3.3 imes10^{-8}$, exp: $9.8 imes10^{-8}$
Ref.	PLB (2008)666	PRL (2010)021802

Factor 1.5-1.7 improved

au mass measurement @ Belle II

The leading source of systematic uncertainty is the momentum scale factor, which is expected to be reduced in the near future.