

Experimental Searches for Lepton Flavor Violation (of muon)

SHINJI OGAWA (UNIV. OF TOKYO -> KYUSHU UNIV.) @ FPCP 2021, 2021/JUN/7

Charged lepton flavor violation

<u>Standard Model.</u>

- Flavor violation can happen in quark sector.
- Charged Lepton Flavor Violation (CLFV) is prohibited.
- Standard model with v oscillation.
 - CLFV can happen, but with tiny branching ratio.
 - too small to be detected
 - e.g.: Br(μ→eγ)~10⁻⁵⁵

Beyond Standard Model.

- CLFV is predicted at a detectable branching ratio in some BSM models (SUSY-GUT, SUSY-Seesaw, etc...)
- e.g.: $Br(\mu \rightarrow e\gamma) = 10^{-12} 10^{-14}$
- 4 Theory review by A.VICENTE (on Wed).
- Correlation with muon g-2 anomaly.

Observation of CLFV would be a clear evidence of new physics!

 μ

 $\tilde{\mu_R} = \tilde{e_R} \, \mathcal{A}^{\mathcal{A}}$

e

 $\tilde{\chi^0}$

Experimental searches of CLFV

- Many CLFV modes have been actively searched.
 - muon LFV
 - $\mu \rightarrow e\gamma$, $\mu \rightarrow eee$, $\mu N \rightarrow eN$
 - tau LFV
 - $\tau \rightarrow |\gamma, \tau \rightarrow |||$, etc. ...
 - Others
 - LFV decays of K_L , π^0 , Z, H etc.

Several experiments are in preparation to search for muon LFV.

aiming to start data-taking in the next a few years.

	current limit	future prospect
$\mu ightarrow$ e γ	4.2 x 10 ⁻¹³ by MEG	~6 x 10 ⁻¹⁴ by MEG II
$\mu \rightarrow$ eee	1.0 x 10 ⁻¹² by SINDRUM	O(10 ⁻¹⁵) by Mu3e phase-I
$\mu N \! \rightarrow e N$	7.0 x 10 ⁻¹³ by SINDRUM II	down to O(10 ⁻¹⁷) by DeeMe, COMET, Mu2e

τLFV talk by *N.TASNEEM, D.SAHOO (Wed)* Higgs LFV talk by *M.TESTA (Tue)*

MEG II experiment

- Dominant background in $\mu \rightarrow e\gamma$ search: accidental coincidence.
- Intense DC muon beam & good detector resolutions are the keys.

MEG experiment

- MEG experiment was carried out in 2009-2013.
 - World's most intense DC beam at PSI (Switzerland).
 - Positron spectrometer
 - Gradient magnetic field + segmented low-mass drift chamber + scintillation timing counter. Sensitivity in MEG
 - LXe γ-ray detector
- \rightarrow MEG result with full data set: Br($\mu \rightarrow e\gamma$) < 4.2 x 10⁻¹³ at 90% C.L. (Eur. Phys. J. C 76(8), 434, 2016)

MEG 2009

Obtained 90% UL

An upgraded experiment called MEG II is under commissioning to improve the sensitivity of MEG by another one order of magnitude.

Better detector resolutions.

x2 for all detector resolutions

More muon statistics.

 x2.3 muon beam rate (3 × 10⁷ → 7 × 10⁷ µ/s)
 x2.3 positron efficiency (30% -> 70%)

A new detector for background tagging.

 \rightarrow Sensitivity : ~6 × 10⁻¹⁴

Positron spectrometer

8

- Cylindrical wire chamber for positron momentum measurement
 - Low mass detector to avoid multiple scattering.
 - Gas: He(90%)+iC₄H₁₀(10%)
 - Wire: 20 μm W(Au) for anode, 40 or 50 μm Al(Ag) for cathode.
 - Z measurement by stereo configuration (stereo angle: 6-8.5°)
- Comparing to MEG drift chamber,
 - Better transparency to timing counter -> Better efficiency.
 - Increased number of hits per track -> Better momentum resolution.
- Under commissioning.
 - Long term stability to be checked in 2021.

Positron spectrometer

LXe γ-ray detector

Under commissioning

- Position, energy, and timing measurement of 53MeV γ.
- LXe scintillation light read out by photo-sensors.
- 216 PMTs on the γ -entrance face are replaced with 4092 MPPCs.
 - Better granularity & uniformity
 - \rightarrow Better position & energy resolution.
- Utilize VUV-sensitive MPPC newly developed by HPK.
 - Unexpected radiation damage found.
 - confirmed to be recovered by annealing.

Hamamatsu S10943-4372 PDE (λ = 175nm) > 15%

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

Radiative decay counter

- A radiative decay counter (RDC) is newly added in MEG II.
 - To tag BG γ -rays from radiative muon decay (RMD, $\mu \rightarrow e \nu \bar{\nu} \gamma$), by detecting the low energy positron from it.

- Plastic scintillator bar for timing measurement, and LYSO crystals for energy measurement.
- RMD events (coincident e & γ in RDC & LXe) are successfully identified.

Readout electronics

12

- A dedicated readout electronics (called WaveDAQ) is developed.
- An integrated DAQ system for MEG II.
 - TRG generation based on online reconstruction of e & γ.
 - Waveform digitization by DRS4 chips.
 - Amplifier & HV supply for SiPM.
 - Total number of channel: ~9000.

Full system installed this March. Under commissioning.

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

MEG II Prospect

- MEG II experiment: Under commissioning.
- Engineering run from this summer followed by the physics run.
- Expected sensitivity of MEG II : $\sim 6 \times 10^{-14}$ (3 years DAQ)
 - Sensitivity based on the measured detector resolutions under estimation.

Detector performance

<u>Deteetor p</u>		
PDF parameters	MEG	MEG II
$E_{\rm e^+}$ (keV)	380	130
θ_{e^+} (mrad)	9.4	5.3
ϕ_{e^+} (mrad)	8.7	3.7
z_{e^+}/y_{e^+} (mm) core	2.4/1.2	1.6/0.7
$E_{\gamma}(\%) \ (w > 2 \ \text{cm})/(w < 2 \ \text{cm})$	2.4/1.7	1.1/1.0
$u_{\gamma}, v_{\gamma}, w_{\gamma} \text{ (mm)}$	5/5/6	2.6/2.2/5
$t_{e^+\gamma}$ (ps)	122	84
Efficiency (%)		
Trigger	≈ 99	≈ 99
Photon	63	69
e^+ (tracking × matching)	30	70

Mu3e experiment

Figures, plots from A.Papa(TIPP 2021) N.Berger (Snowmass CLFV 2020) TDR of Mu3e Phase-I (arXiv: 2009.11690)

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

Signal and background in μ \rightarrow eee search 15

Mu3e detector (for phase-I)

Ultra-thin tracking detector for Mu3e

- > 95% efficiency

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

Status of Mu3e experiment

17

- Detector R&D finished.
 Under prototyping.
- Mu3e magnet installed.
- Phase-I: aiming for O(10⁻¹⁵) sensitivity at existing πE5 beamline (10⁸ μ/s).
- Phase-II:
 - aiming for O(10⁻¹⁶) sensitivity

at a new high-intensity muon beamline (HiMB).

Mupix10: O(400) mm² prototype of HV-MAP

COMET/Mu2e experiment

Figures, plots from H.Nishiguchi (ICHEP 2020) M.Yucel (ICEHP2020) L.Morescalchi (ICHEP2020) Fermilab news (20/Nov/11) TDR of COMET phase-I (arXiv: 1812.09018) TDR of Mu2e (arXiv: 1501.05241)

Signal and background in $\mu N \rightarrow eN$ search 19

- Searches for coherent neutrino less conversion of muons.
 - $R_{\mu e} := \frac{\Gamma(\mu N \to eN)}{\Gamma(\mu N \to \text{all captures})}$
- Signal: emission of a mono-energetic single electron
- One background from decay in orbit (DIO) of muons.
- -> Precise momentum measurement of the emitted positrons.

Signal and background in $\mu N \rightarrow eN$ search 20

- Another background from beam related prompt background.
- Delayed DAQ window allows us a BG free measurement.
 - Pulsed muon beam. \rightarrow performed at FNAL/J-PARC.
 - Lifetime of muonic atom of Al : ~0.9ns.
- Extinction (:= out of time proton/proton in main bunch) has to be ~10⁻¹⁰ to reach O(10⁻¹⁷) sensitivity.

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

Mu2e experiment

Status of Mu2e experiment

- Transport solenoid delivered.
- Detectors in construction.
- Construction is expected to finish in 2023.
- Physics data-taking from 2024.
- Aiming to improve the current limit on conversion rate by 10^4 @ $R_{\mu e} = 3 \times 10^{-17}$.

COMET experiment

COMET experiment (phase-I)

24

A staged approach is adopted.

Status of COMET experiment

25

- Beam line under construction.
- expected to be ready in 2023.
- Detector for phase-I:
 - CyDet: under commissioning. σ_x ~165μm confirmed.
 - StrECAL:

under construction. Completed in 2022.

- Beam commissioning will be followed by the engineering and physics run of Phase-I.
- The sensitivity will be
 - 7 × 10⁻¹⁵ (90% C.L.) for phase-I
 - O(10⁻¹⁷) for phase-II

26

Summary

- CLFV is an interesting probe for the new physics.
- Several experiments which searches for µLFV are in preparation or under commissioning.
- They aims to start physics data-taking in the next a few years.

Thank you for your Attention!

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

backup

EXPERIMENTAL SEARCHES OR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021

Charged lepton flavor violation

- Standard Model.
 - Flavor violation can happen in quark & neutrino sector.
 - Charged Lepton Flavor Violation (CLFV) prohibited.
- Beyond Standard Model.
 - CLFV is predicted at a detectable branching ratio in some BSM models (SUSY-GUT, SUSY-Seesaw, etc...)
- Experimental search of $\mu \rightarrow e\gamma$
 - Expected to be $Br(\mu \rightarrow e\gamma) = 10^{-12} 10^{-14}$ in BSM.
 - Best limit before MEG: 1.2 x 10⁻¹¹ @90%C.L. give by MEGA (1999)

MEG searches for $\mu \rightarrow e\gamma$ down to O(10⁻¹⁴)

SEARCH FOR LEPTON FLAVOR VIOLATING ወደረጃ ምዕኖ የአባሪት የ FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

 \tilde{v}^0

μ

CLFV

30

Source of accidental background in $\mu \rightarrow e\gamma$ 32

EXPERIMENTAL SEARCHES

FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

MEG II status

MEG II CDCH

Broken wires

- **Sign of corrosion** on each broken wire at the breaking point seen with optical microscope
- Confirmed by internal and out-sourced analysis with electron microscope
- Traces of Cl seen

- The chamber has been extra-stretched by 0.4 mm to induce the breaking of weak cathodes (6.0 mm, 75% of the elastic limit)
- Then it will be shortened again to the final length (5.6 mm, 70% of the elastic limit)
- In total 56 cathode wires have been removed:
 - 53 40 um inter-layer cathodes and
 - 3 50 um inter-anode cathodes

Corona discharge in drift chamber

Cause of PDE degradation

Observed degradation may be related to a special detection mechanism of VUV photon in our MPPC.

- Visible photon directly reaches the sensitive region.
- Attenuation length of VUV light in silicon is only 5 nm, and VUV photons cannot directly reach the sensitive region.
- \rightarrow Convert in shallow region, and drift to the sensitive region.

One hypothesis: Surface damage by VUV irradiation.

VUV irradiation

- \rightarrow Accumulation of stationary charges near the sensor surface
- ightarrow Distortion of the electric field
- \rightarrow Degradation of PDE only for VUV light.

Recovery of damage by annealing

Annealing is known to be useful for radiation damage of MPPCs.
By keeping MPPC at higher temperature, accumulated charges can be de-trapped by thermal excitation.

 \rightarrow Tested also for our MPPC. (for small number of MPPCs in the detector)

Recovery of the damage
by the annealing is confirmed.
MPPCs are heated to ~ 70°C
by a Joule heat for 1-2 days.

PDE(after annealing) / PDE(before annealing) vs. annealing strength (duration & temperature)

Mu3e background

а

The pixel tracker: The principle

- Central tracker: Four layers; Re-curl tracker: Two layers
- · Minimum material budget: Tracking in the scattering dominated regime

Tracker Requirements

- Electron momentum resolution: < 180 keV/c at 105 MeV/c
- Efficiency for acceptance and reconstruction of 105 MeV/c electron tracks: >20%
- Outgassing rate :< 6 sccm (standard cubic cm per minute)
- Hit rate: > 5MHz/channel, 500 ns after proton bunch hits production target
- Access : < once per year
- **Operation time:** > 10 yrs

Beam direction

Solution

Straw drift tubes measure track curvature through a 1 T magnetic field.

- High segmentation to minimize occupancy
- Very thin wall to minimize multiple scattering
- No support structure in tracking region
- High radiation survival (structure & electronics)

EXPERIMENTAL SEARCHES FOR LEPTON FLAVOR VIOLATION (OF MUON), S.OGAWA (FPCP 2021)

Technical Specifications

- Fast signal for Pileup and Timing:
 - τ of emission < 40 ns
 - Fast Digitization (WD) to disentangle signals in pileup
- Crystals with high Light Yield for timing/energy: - resolution
 LY(photosensors) > 20 pe/MeV
- 2 photo-sensors/preamps/crystal for redundancy: - reduce MTTF requirement - 1 million hours/SIPM
- Radiation Hardness (5 years of running with a safety factor 3):
 - Crystals should survive a TID of 90 krad and a fluence of 3x10¹² n/cm²
 - Photo-sensors should survive 45 krad and a fluence of 1.2x10¹² n_1MeV/cm²
- The 1 T magnetic field + the very small available space suggests the use of SiPMs

- \rightarrow It is radiation hard
- It has a fast emission time
- \rightarrow Emits at 310 nm

Undoped CsI + UV-extended SiPMs

- → 30 % PDE @ 310 nm
- \rightarrow New silicon resin window
- \rightarrow TSV readout, Gain = 10⁶

- Determine the primary trigger and precise T0 value within the 1ns precision
- 64 or 48 plastic scintillators/acrylic Čerenkov radiators cylindrically aligned both upstream/downstream
- A Čerenkov layer reject all low- β particles (<0.65)
- Use the magnetic field tolerable fine-mesh PMTs
- 4-fold coincidence strongly suppresses the accidental pileups
- Final detector design is almost fixed
 Y. Fujii, J-PARC Symposium '19 @Tsukuba

