Angular analyses and branching fraction measurements of b-hadron FCNC decays

Marcel Materok
on behalf of the LHCb collaboration

Conference on Flavour Physics and CP violation 2021

Shanghai, June 7, 2021
Introduction to Flavour Changing Neutral Currents

Branching fraction measurements:
- Differential branching fraction of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ using 9 fb$^{-1}$ (new on arxiv)
- First observation of $B_s^0 \rightarrow f_2(1525) \mu^+ \mu^-$ using 9 fb$^{-1}$ (new on arxiv)
- Branching fraction measurement of $B(s) \rightarrow \mu^+ \mu^-$ using 9 fb$^{-1}$

Angular Analyses:
- $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ using 4.7 fb$^{-1}$
- $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ using 9 fb$^{-1}$
- $B^0 \rightarrow K^{*0} e^+ e^-$ using 9 fb$^{-1}$
- $B_s^0 \rightarrow \phi \mu^+ \mu^-$ using 8.4 fb$^{-1}$ (shown for the first time)

Summary
\(b \rightarrow s \ell^+ \ell^- \) transitions are Flavour Changing Neutral Currents (FCNC)

- Only allowed at loop-level in SM (penguin and box diagrams)

\[\mathcal{B} \approx 10^{-9} \]

\[\mathcal{B} \approx 10^{-7} \]

\[\mathcal{B} \approx 10^{-5} \]

⇒ Sensitive to New Physics

- \(b \rightarrow s \ell^+ \ell^- \) transitions in tension with SM (flavour anomalies)
Integrate out heavy degrees of freedom in $b \to s\ell^+\ell^-$ decays and replace with effective couplings, denoted as Wilson Coefficients C_i.

Rare $b \to s\ell^+\ell^-$ decays most sensitive to $C_{7,9,10}$.
Observables in $b \rightarrow s \ell^+ \ell^-$ transitions

- Complementary information from different observables
- Flavour anomalies observed coherently for all observables

Branching fractions

- $C_7^{(t)}$, $C_9^{(t)}$, and $C_{10}^{(t)}$
- Interference
- Long-distance contributions from $c\bar{c}$ above open charm threshold

Angular observables

- $J/\psi (1S)$
- $\psi (2S)$
- B_c^-
- K^-
- ϕ, θ, θ_K
- $b \rightarrow t, c, u$
- s
- W, Z^0, γ
- μ/e
- $\ell^+ \ell^-$ final states

- Conceptually “simple”
- Reduced dependence on form factors
- Probes structure of potential NP
- Compare $\mu^+ \mu^-$ and $e^+ e^-$ final states
- Theoretically clean

Marcel Materok
Branching fraction measurements
Typical branching fraction measurement strategy

- Cleanly select signal decay by using kinematic, particle identification and tracking information to reject background candidates
- Perform measurement of differential branching fraction \mathcal{B} according to
 \[\frac{d\mathcal{B}(\text{signal})}{dq^2} = \frac{\mathcal{B}(\text{norm})}{q^2_{\text{max}} - q^2_{\text{min}}} \times \frac{N_{\text{signal}}}{N_{\text{norm}}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{signal}}} \]
- Relative to normalisation mode
 - Cancellation of systematic uncertainties
 - Additionally used as control mode to e.g. correct simulated events
- Determine event yields in maximum likelihood fits to data
- Determination of efficiencies from corrected simulation
Measurement of $\mathcal{B}(B^0_s \rightarrow \phi \mu^+ \mu^-)$

$$\frac{d\mathcal{B}(B^0_s \rightarrow \phi \mu^+ \mu^-)}{dq^2} = \mathcal{B}(B^0_s \rightarrow J/\psi \phi) \times \frac{N_{\text{signal}}}{N_{\text{norm}}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{signal}}}$$

- Updated analysis using full LHCb data set (9 fb$^{-1}$)
- Candidates after full selection
- Accumulation of candidates around known B^0_s mass
- Signal visible as vertical band

Marcel Materok
Measurement of $\mathcal{B}(B^0_s \rightarrow \phi \mu^+ \mu^-)$

$$\frac{d\mathcal{B}(B^0_s \rightarrow \phi \mu^+ \mu^-)}{dq^2} = \frac{\mathcal{B}(B^0_s \rightarrow J/\psi \phi)}{q^2_{\text{max}} - q^2_{\text{min}}} \times \frac{N_{\text{signal}}}{N_{\text{norm}}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{signal}}}$$

- Model signal with Crystal Ball function (param. from J/ψ mode)
- Combinatorial background described by exponential function

$N_{\text{norm}} = 282\,440 \pm 570$

- data
- total
- $B^0_s \rightarrow J/\psi \phi$
- combinatorial

LHCb 9 fb$^{-1}$
Measurement of $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)$

$$\frac{d\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)}{dq^2} = \frac{\mathcal{B}(B_s^0 \to J/\psi \phi)}{q^2_{\text{max}} - q^2_{\text{min}}} \times \frac{N_{\text{signal}}}{N_{\text{norm}}} \times \frac{\epsilon_{\text{norm}}}{\epsilon_{\text{signal}}}$$

$\phi \rightarrow 0\pi$ candidates

$B_{\text{combinatorial}}$:

- Model signal with Crystal Ball function (param. from J/ψ mode)
- Combinatorial background described by exponential function

$N_{\text{signal}} = 2006 \pm 53$

[arxiv:2105:14007] new on arXiv
Result for $\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)$

Branching fraction in good agreement with Run 1 analysis

Tension with SM in q^2 bin $[1.1, 6.0] \text{ GeV}^2/c^4$ at 3.6σ (1.8σ with LCSR alone)

$d\mathcal{B}(B_s^0 \to \phi \mu^+ \mu^-)/dq^2 = (2.88 \pm 0.21) \times 10^{-8}/(\text{ GeV}^2/c^4)$ for $q^2 \in [1.1, 6.0] \text{ GeV}^2/c^4$

Marcel Materok
First observation of $B_s^0 \rightarrow f'_2(1525)\mu^+\mu^-$

- f'_2 meson is a spin-2 K^+K^- resonance
- $f'_2(1525)$ heavier and wider (width ≈ 86 MeV) than ϕ meson
- Tighter selection to combat increase in background
- Fit $m_{B_s^0}$ and $m_{K^+K^-}$ to separate signal from other $B_s^0 \rightarrow K^+K^-\mu^+\mu^-$

![Graph 1](#)

- $B(B_s^0 \rightarrow f'_2(1525)\mu^+\mu^-) = (1.57 \pm 0.19 \pm 0.06 \pm 0.08 \pm 0.06) \times 10^{-7}$
- First observation with 9 σ significance

Marcel Materok
Measurement of $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$

- Long history of searches for $B_{(s)}^{0} \rightarrow \mu^{+}\mu^{-}$

- Updated measurement with full LHCb data set (9 fb$^{-1}$)

Marcel Materok
Branching fraction of $B_{(s)}^0 \to \mu^+ \mu^-$

- Two normalisation channels: $B^+ \to J/\psi K^+, B^0 \to K^+ \pi^-$
- Analysis performed in 5 bins of BDT classifier
- Simultaneous fit to all bins and data sets
- Measured branching fraction for $B_s^0 \to \mu^+ \mu^-$:
 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.09^{+0.46+0.15}_{-0.43-0.11} \times 10^{-9}$ (10σ)
- Measurement consistent with SM [JHEP10(2019)232]:
 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = 3.66 \pm 0.14 \times 10^{-9}$
- Set limits on $B^0 \to \mu^+ \mu^-$ and $B_s^0 \to \mu^+ \mu^-\gamma$:
 - $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.6 \times 10^{-10}$ at 95% CL
 - $\mathcal{B}(B_s^0 \to \mu^+ \mu^-\gamma)_{m_{\mu\mu} > 4.9 \text{ GeV}/c^2} < 2.0 \times 10^{-9}$ at 95% CL
Effective lifetime of $B_s^0 \rightarrow \mu^+\mu^-$

- In SM only heavy mass eigenstate contributes to $B_s^0 \rightarrow \mu^+\mu^-$
- Test for possible NP contribution from light B_s^0 mass eigenstate ($A_{\Delta\Gamma}^{\mu\mu} = -1$)
- Fit dimuon mass distribution to statistically subtract background contribution
- Subsequent fit to $B_s^0 \rightarrow \mu^+\mu^-$ decay time finds: $\tau(B_s^0 \rightarrow \mu^+\mu^-) = 2.07 \pm 0.29 \pm 0.03$ ps
- Consistent with lifetime of heavy (light) mass eigenstate at 1.5 (2.2) σ

[Preprint: LHCb-PAPER-2021-007 (in prep.)]

Marcel Materok
Angular analyses
Decay described by q^2 and three decay angles, $\vec{\Omega} = (\cos \theta_K, \cos \theta_\ell, \phi)$

Differential decay rate given as

$$\frac{d^4\Gamma}{dq^2 d^3\vec{\Omega}} = \sum_i J_i(q^2) f_i(\vec{\Omega})$$

- Angular coefficients J_i and functions f_i identical for different $b \rightarrow s \ell^+ \ell^-$ transitions
- Accessible angular observables $J_i \pm \bar{J}_i$ differ for self-tagging and untagged decays

Parameterise efficiency in decay angles and q^2 using corrected simulation

Simultaneously fit reconstructed B mass and $\vec{\Omega}$ to extract angular observables
- Fitting mass component improves separation of signal and background
Angular analyses of $B_{u/d} \to K^* \mu^+ \mu^-$

- Known decay flavour (self-tagging) as e.g. $K^*^0 \to K^+ \pi^-$
- Access to CP-averaged observables F_L, A_{FB}, S_i
 - Access to clean observables P'_i
- Separate S-wave from P-wave with fit to $m_{K\pi}$
- Exemplary plots from $B^0 \to K^*^0 \mu^+ \mu^-$

LHCb 2016

$4.0 < q^2 < 6.0 \text{ GeV}^2/c^4$

$\cos \theta_{l}$

$\cos \theta_{k}$

ϕ

Marcel Materok
Results in $B_{u/d} \rightarrow K^* \mu^+ \mu^-$ decays

- Results in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ using 4.7 fb$^{-1}$:
 - Simultaneous fit to $\bar{\Omega}$, m_{B^0} and $m_{K^+\pi^-}$
 - Local tension with SM up to 2.9 σ in P_5'
 - Global tension determined by varying $Re(C_9)$: 3.3 σ

- Results in $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ using 9 fb$^{-1}$:
 - Two step approach:
 - S-wave fraction fit in 2 dimensions (m_{B^+} and $m_{K^0_S\pi^+}$)
 - 4-dimensional fit to $\bar{\Omega}$ and m_{B^+}
 - Local tension with SM up to 3.0 σ in $P_2(\sim A_{FB})$
 - Global tension determined by varying $Re(C_9)$: 3.1 σ
Angular analysis of $B^0 \rightarrow K^{*0} e^+ e^-$ at very low q^2

- Probe photon polarisation in very low q^2 region [0.0008, 0.257] GeV2/c4
- S-wave fraction assumed to be negligible
- 4-dimensional fit to $\vec{\Omega}$ and m_{B^0}
- Results consistent with SM
- Strongest constraint on photon polarisation

[JHEP 12 (2020) 081]
Angular analysis of $B^0 \rightarrow K^{*0}e^+e^-$ at very low q^2

- Probe photon polarisation in very low q^2 region [0.0008, 0.257] GeV2/c4
- S-wave fraction assumed to be negligible
- 4-dimensional fit to $\vec{\Omega}$ and m_{B^0}
- Results consistent with SM
- Strongest constraint on photon polarisation

[flavio v2.0.0]

- Constraints at 2σ
- $B(B \rightarrow X_s\gamma)$
- $B^0 \rightarrow K^0_S\pi^0\gamma$
- $B^0 \rightarrow \phi\gamma$
- $B^0 \rightarrow K^{*0}e^+e^-$
- Global

[0.5
−0 0.5
1
2
3
4
5
Candidates / 0.08
LHCb]

[1
−0.5 −0 0.5 1 K
θcos0
10
20
30
40
50
Candidates / 0.1
LHCb]

[0
1 2 3 ∼ 0
0
10
20
30
40
50
π Candidates / 0.05
LHCb]

[−1.
0 −0.5 0 0.5 1.0
Re(C′/C_7)]

[−1.
0 −0.5 0.0 0.5 1.0
Im(C′/C_7)]

[flavio v2.0.0]

[Constraints at 2σ]

[Re(C′/C_7)]

[Im(C′/C_7)]

[JHEP 12 (2020) 081]

Marcel Materok
Updated angular analysis using 8.4 fb\(^{-1}\) of LHCb data, more than 4-fold increase in yields

Latest addition to analyses related to flavour anomalies

Decay of \(B^0_s \to \phi \to K^+ K^- \mu^+ \mu^-\) flavour-symmetric \(\Rightarrow\) untagged decay

Untagged angular decay rate described by \(q^2\) and the angles \(\vec{\Omega}\):

\[
\frac{1}{d(\Gamma + \bar{\Gamma})/dq^2} \left[\frac{d^3\Gamma + \bar{\Gamma}}{d\vec{\Omega}} \right] = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_L) \sin^2 \theta_K (1 + \frac{1}{3} \cos 2\theta_l) + F_L \cos^2 \theta_K (1 - \cos 2\theta_l) \right. \\
+ S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi \\
+ A_5 \sin 2\theta_K \sin \theta_l \cos \phi + \frac{4}{3} A_{FB}^{CP} \sin^2 \theta_K \cos \theta_l \\
+ S_7 \sin 2\theta_K \sin \theta_l \sin \phi + A_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + A_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \\
\left. \right] \]

\(S_i\) CP-averages \quad \(A_i\) CP-asymmetries

Minimal S-wave pollution due to narrow \(K^+ K^-\) window
NEW: Fit strategy for $B_s^0 \rightarrow \phi \mu^+ \mu^-$

[PREPARE-2021-022] (in prep.)

- Simultaneous fit in 4-dimensions to $\tilde{\Omega}$ and $m_{B_s^0}$
- Signal modelled by Crystal Ball function in mass and untagged decay rate in angles
- Combinatorial background described by exponential function in mass and Chebyshev polynomial of order 1 in angles

Marcel Materok
NEW: \(CP \)-averaged angular observables in \(B^0_s \rightarrow \phi \mu^+ \mu^- \)

- Precision for angular observables significantly improved with respect to 3 \(fb^{-1} \) LHCb analysis
- Compatible with SM prediction
- Global compatibility determined by varying \(Re(C_9) \): 1.9 \(\sigma \)
NEW: CP-asymmetries in $B_s^0 \rightarrow \phi \mu^+ \mu^-$

- Precision for angular observables significantly improved with respect to 3 fb$^{-1}$ LHCb analysis
- Overall good compatibility with SM prediction
- T-odd CP asymmetries $A_{8,9}$ close to zero in SM, can be large in presence of NP contribution

Marcel Materok
NEW: Global fits using CP-averaged angular observables

- Global compatibility with SM tested using flavio by scanning over $\Re e(C_9)$
- Fit CP averages $(F_L, S_{3,4,7})$ in narrow bins below $6 \text{GeV}^2/c^4$ in q^2
 and wide bin $(15 < q^2 < 18.9) \text{GeV}^2/c^4$ (not sensitive to potential charm loop effects)

Preferred value for $\Re e(C_9)$ agrees with the SM value at 1.9 σ level
NEW: Global fits using CP-averaged angular observables

- Global compatibility with SM tested using \textit{flavio} by scanning over $\mathcal{R}e(C_9)$
- Fit CP averages (F_L, $S_{3,4,7}$) in narrow bins below $6 \text{ GeV}^2/c^4$ in q^2 and wide bin $(15 < q^2 < 18.9) \text{ GeV}^2/c^4$ (not sensitive to potential charm loop effects)

Preferred value for $\mathcal{R}e(C_9)$ agrees with the SM value at 1.9σ level

Similar trend as found in $B \to K^*\mu^+\mu^-$

Marcel Materok
Discussed current status of LHCb $b \rightarrow s \ell^+ \ell^-$ measurements:

- Fully leptonic $B_{(s)}^0 \rightarrow \mu^+ \mu^-$ decays compatible with SM
- Branching fraction of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ in 3.6 σ tension with SM (new on arxiv!)
- First observation of $B_s^0 \rightarrow f_2'(1520) \mu^+ \mu^-$ with significance of 9 σ (new on arxiv!)
- Angular analyses of $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ and $B^+ \rightarrow K^{*+} \mu^+ \mu^-$ in tension with SM at 3.3 σ and 3.1 σ
- Most stringent constraint on photon polarisation from $B^0 \rightarrow K^{*0} e^+ e^-$ (consistent with SM)

Presented angular analysis of $B_s^0 \rightarrow \phi \mu^+ \mu^-$ with 8.4 fb$^{-1}$ for the first time:

- Most precise measurement of angular observables to date
- CP-averages compatible with SM at 1.9 σ
- CP-asymmetries compatible with zero