

Measurement of direct CP violation in the decay $B^+ \rightarrow K^+ \pi^0$ at LHCb

Will Parker

University of Maryland on behalf of the LHCb collaboration Conference on Flavor Physics and CP Violation June 9th, 2021

Phys. Rev. Lett. **126**, 091802

Motivation

- Family of $B \rightarrow K\pi$ decays dominated by hadronic loop amplitudes, but diagrams contribute differently to decays
- Amplitudes expected to obey isospin relations, but measurements of CP asymmetries find $A_{CP}(B^+ \rightarrow K^+\pi^0) - A_{CP}(B^0 \rightarrow K^+\pi^-) =$ $0.122 \pm 0.022 (\text{HFLAV 2018})$
- More precise to incorporate all four CP asymmetries and branching fractions (<u>Phys.Lett.B 627 (2005) 82</u>)
- Tension in fit to Kπ measurements can be resolved by enhancement of color-suppressed trees or NP in penguins (JHEP 01 (2018) 074, Phys.Lett.B 785 (2018) 525)

(d) $B \to K \pi^0$ electroweak penguin diagrams

$$A_{CP}(K^{+}\pi^{-}) + A_{CP}(K^{0}\pi^{+})\frac{B(K^{0}\pi^{+})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = A_{CP}(K^{+}\pi^{0})\frac{2B(K^{+}\pi^{0})}{B(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + A_{CP}(K^{0}\pi^{0})\frac{2B(K^{0}\pi^{0})}{B(K^{+}\pi^{-})}$$

(c) $B \to K\pi^0$ color-suppressed tree diagrams

Experimental Status

3

 \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \rightarrow K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$-0.14 \pm 0.13 \pm 0.06$ [2]	
$B^+ \rightarrow K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0 \rightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.0824 \pm 0.0033 \pm 0.0033$ [7]
$B^+\!\to K^+\pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	

Sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.150 +/- 0.032

- $B^+ \rightarrow K^+ \pi^0$ is first analysis of a one-track *B* decay at a hadron collider
 - Experimentally challenging no secondary vertex
 - Secondary vertex a requirement for all Run I software triggers, dedicated trigger line developed for Run II
- Proof of concept for other modes of similar topology such as $B^0 \rightarrow K^0 \pi^0$

The LHCb Detector

- Forward spectrometer covering $10 < \theta < 300 \text{ mrad}$
- $b\overline{b}$ production peaked forward/backward
 - 25% in ~4% solid angle

JINST 3 (2008) S08005, Int.J.Mod.Phys. A30 (2015) 1530022

 K^+

- Major challenge to suppress background in absence of displaced secondary vertex
- Dedicated trigger
 - Tight kinematic cuts
 - π^0 from photons merged into single calorimeter cluster
 - Higher energy, lower combinatorial background
 - K^+ impact parameter and distance of closest approach

IP

 π^0

Primary

vertex

B⁺ momentum

trajectory

DOCA

Offline Selection

- $S/B \sim 3.3 \times 10^{-4}$
- Train Boosted Decision Trees (BDTs) to reject background efficiently
- Signal Sample: Simulated events
- **Background Sample:** Train separately on upper and lower data sidebands

- Three categories of information
 - Track topology
 - Kinematics (restricted)
 - Track isolation (next slide)

Track Isolation

- Events with additional energetic tracks pointing back to B⁺ likely to be partially reconstructed
- Consider cone of ΔR around B^+ trajectory

• Define cone p_T asymmetry

 $A(p_T) \equiv \frac{p_T(B) - p_T(\text{cone})}{p_T(B) + p_T(\text{cone})}$

• Track multiplicity corrected by comparing $B^0 \rightarrow K^+\pi^-$ data and simulation

- Cut on BDT output to maximize sensitivity
- Fix some shape parameters to simulated/physical values
- Separate matter and antimatter decays and fit yields to determine asymmetry
- Note: also split data by magnet polarity to correct for detector effects

Phys. Rev. Lett. **126**, 091802

 $A_{\rm raw} = 0.005 \pm 0.022 \ ({\rm MU})$, $0.019 \pm 0.021 \ ({\rm MD})$

$$A_{CP}(B^+ \to K^+ \pi^0) = A_{raw}(B^+ \to K^+ \pi^0) - A_{prod.}^B - A_{det.}^K$$

- Raw asymmetry includes B^{\pm} production and K^{\pm} detection asymmetry
- Same order of magnitude as physical CP asymmetry
- Can measure the same combination of effects in decay $B^+ \to (J/\psi \to \mu^+\mu^-)K^+$
 - π^0 and J/ψ own antiparticles no asymmetry
 - Match K^+ selection to signal trigger, particle identification, kinematic cuts
 - Weight $p/p_T(B^+/K^+)$ distributions to signal kinematics

Prod./Det. Asymmetry Correction

- Charged tracks and reconstructible J/ψ mass make selection clean (99%)
- Follow same procedure as signal to extract raw asymmetry
- CP asymmetry in $B^+ \rightarrow J/\psi K^+$ known precisely $(0.002 \pm 0.003, PDG)$
- Remainder attributed to same combination of *B* production and *K* detection as in $B^+ \rightarrow K^+ \pi^0$ measurement

03/24/2021

Systematic Uncertainties

Phys. Rev. Lett. **126**, 091802

12

Table 1: Systematic uncertainties on $A_{CP}(B^+ \rightarrow K^+ \pi^0)$.Fit ComponentSystematicValueCombinatorial bkg.Shape0.0013Partial Reco. bkg.Shape0.0013Peaking Partial
Reco. bkg.Shape0.0012
0.0013
Resolution

- Assess systematics on fit variations
 - Signal and background shapes
 - Parameters fixed to simulation/physical values
- Small statistical uncertainty in determining production/detection asymmetry
- Effect of weighting used to estimate any residual kinematic differences in $B^+ \rightarrow K^+\pi^0$ and $B^+ \rightarrow J/\psi K^+$ asymmetries

Statistical	0.015	
Sum in qu	0.0061	
	Multiple candidates	0.0013
Production/detection asymmetry	stat. weights	$0.0021 \\ 0.0005$
Signal modeling	Shape	0.0043
$B^+ \to \pi^+ \pi^0$	Yield CP Asymmetry	$0.0013 \\ 0.0015$
Peaking Partial Reco. bkg.	Shape Offset Resolution	$0.0012 \\ 0.0013 \\ 0.0014$
0		

06/09/2021

Results

 \mathcal{A}^{CP} measurements for the $B \to K\pi$ decay modes

	BaBar	Belle	LHCb
$B^0 \to K^0 \pi^0$	$+0.13 \pm 0.13 \pm 0.03 \ [1]$	$-0.14 \pm 0.13 \pm 0.06$ [2]	JHEP 03(2021)075
$B^+ \rightarrow K^0 \pi^+$	$-0.029 \pm 0.039 \pm 0.010$ [3]	$-0.011 \pm 0.021 \pm 0.006$ [4]	$-0.022 \pm 0.025 \pm 0.010$ [5]
$B^0 \rightarrow K^+ \pi^-$	$-0.107 \pm 0.016^{+0.006}_{-0.004}$ [6]	$-0.069 \pm 0.014 \pm 0.007$ [4]	$-0.0824 \pm 0.0033 \pm 0.0033$ [7]
$B^+ \rightarrow K^+ \pi^0$	$+0.030 \pm 0.039 \pm 0.010$ [8]	$+0.043 \pm 0.024 \pm 0.002$ [4]	$+0.025 \pm 0.015 \pm 0.006 \pm 0.003$

Previous sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.150 +/- 0.032

Phys. Rev. Lett. **126**, 091802

- $A_{CP}(B^+ \rightarrow K^+\pi^0) = 0.025 \pm 0.015(\text{stat.}) \pm 0.006(\text{syst.}) \pm 0.003(\text{ext.})$
- $A_{CP}(B^+ \to K^+\pi^0) A_{CP}(B^0 \to K^+\pi^-) = 0.115 \pm 0.014,$ non-zero at 8.2 σ (previously 0.124 ± 0.021, 5.9 σ)
- Updated sum rule prediction for $A_{CP}(K^0\pi^0)$: -0.138 ± 0.025 , non-zero at 5.5σ (previously -0.150 ± 0.032 , 4.7σ)

- Upgrade underway to collect 50fb⁻¹
- Assume simple scaling with luminosity: ± 0.005(stat.)
- Dominant systematic uncertainties can be reduced with tighter event selection and additional control data
- Similar trigger in place for $B^0 \rightarrow K^0 \pi^0$ events
- Stay tuned!

Prospects

30 MHz collision rate

L0 hardware trigger: high E⊤ signatures based on CALO, MUON

1.1 MHz readout

HLT

<u>HLT1</u>: partial event reco, displaced track/vertices, dimuons

Buffer events to disk, online calibration/alignment

HLT2: full offline-like event selection

12.5 kHz (0.6 GB/s) to storage

LHCb upgrade trigger **30 MHz collision rate** HLT HLT1: full event reconstruction, inclusive and exclusive kinematic/geometric selections Buffer events to disk, online calibration/alignment HLT2: offline precision PID and track quality. Output full event information for inclusive triggers, trigger candidates, and related **PVs for exclusive triggers**

100 kHz (2-5 GB/s) to storage

Thank You

Consistency Checks

STATE SECTION SECTION

- Consistent between years and magnet polarities
- Additional checks: Binning by kaon p_T and magnet polarity, allowing shape parameters to vary between charges and magnet polarities
- Raw asymmetry consistent in all cases

Vertex Isolation

- Events with other tracks pointing back to *B* candidate are unlikely to be $B^+ \rightarrow K^+ \pi^0$ decays
- Combine each track individually with K^+ : multiplicity of good vertices, χ^2 of vertices formed

Phys. Rev. Lett. **126**, 091802

Final Event Selection

- Find 2D cut on BDT outputs that maximizes $\epsilon_{MC}/\sqrt{S+B}$
- S/B improved by factor of ~300
- Two more background categories:
- $B^+ \rightarrow \pi^+ \pi^0$ where π^+ is misidentified as K⁺
- Peaking partial reco. e.g. $B^{+/0} \rightarrow (K^{*+/0} \rightarrow K^{+}\pi^{0/-})\pi^{0},$ $B \rightarrow K^{+}(\rho^{-} \rightarrow \pi^{-}\pi^{0})$
 - K^{*}/ρ polarization in B rest frame results in doublepeaked mass structure

π^0 Reconstruction $\pi^0 \text{ from } B^0 \rightarrow \pi^+ \pi^- \pi^0$

- Neutral pions identified by decay to two photons
- Below $p_T = 3$ GeV photons can be resolved in two separate clusters, at higher energies clusters merge
- Cluster separated into two subclusters centered on highest energy deposits according to expected transverse profile
- Photon separation and invariant mass required to be consistent with π^0
- Merged π^0 :
 - + Higher p_T
 - + Reduced combinatorial
 - Wider mass resolution
- For $B^+ \to K^+ \pi^0$, keep only **merged** π^0 to preserve trigger bandwidth

