14/10/2020

1

TDAQ requests of μRWELL-based IDEA subdetectors

P. Giacomelli, G. Cibinetto INFN Bologna, Ferrara

IDEA detector layout

Preshower and the muon detection system are designed with the μ RWELL technology

IDEA Muon detector dimensions

IDEA's Muon detector would have in total: Barrel 900x2 m² (1800 m² total)

Barrel 120000x2 channels

Endcaps 500x2x2 m² (2000 m² total)

Endcaps 1350000x2 channels

~5M channels in total

R&D finalised to the construction of μ RWELL for IDEA with a basic μ RWELL module of 50x50 cm² with these characteristics:

- Pre-shower
 - Strip pitch 0.4 mm, strip length 50 cm
 - Muon detector
 - Strip pitch 1 mm, strip length 50 cm
 - pitch reduced from 1.5 mm originally proposed, this would be possible only with a reduction of the electronics cost/channel

~7.5M channels in total

We are proposing to equip a few μ RWELL prototypes with the TIGER, a custommade ASIC developed for GEM readout. μ RWELLs have a similar output signal to GEMs, therefore the TIGER should be able to read also a μ RWELL detector. With a custom-made ASIC we could hope to reduce the front-end electronics cost to something like 1 euro/channel (in comparison APV electronics has a typical cost of ~10-15 euro/channel)

Muon detector cost

	Cost [Meuro]	Engineers [years]	Technicians [years]	Operators [years]	
Detectors	4,9	0,4	1,0	0,0	
Installation	0,7	0,6	2,8	2,9	
Electronics	15,4	0,3	1,5	0,0	As
HV/LV Systems	0,7	0,2	1,4	0,0	
Gas System	0,3	0,2	1,3	0,0	
TOTAL	22,0	1,7	7,9	2,9	

sumed 3 euro/channel

Assuming the following manpower costs:

Engineer	80 euro/hour
Technician	40 euro/hour
Operator	30 euro/hour

36 hours/week * 48 week/year = 1728 hours/year

Electronics is by far the dominant cost

	Cost [Ivieuro]
Detectors	4,9
Installation	0,7
Electronics	15,4
HV/LV Systems	0,7
Gas System	0,3
TOTAL	22,0

Assuming 300 MEuro as the cost of a FCC-ee or **CEPC** detector, the Muon detector would be ~7.3% of the total

14/10/2020

microRWELL-based IDEA subdetectors

5

Running conditions

- 91 GeV c.m. energy
- 100 KHz Z decays
 - 3300 Hz Z-> μ+μ⁻ decays

Muon detector

- 3 stations
- Cluster width ~5strips
- 64 channels -> 1 TIGER
- 2 TIGER (128 channels) -> 1 Frontend board (FEB)
- 4 FEBs (512 channels) -> 1 GEMROC
- For each event a GEM ROC sends one packet of data

Muon detector

- Each GEMROC packet contains:
 - 272 bits for IP and UDP protocols
 - 193 bits for header and trailer
 - 64 bits for each hit
- For a track traversing all 3 stations of the muon detector:
 - 1 (track) x 3 (stations) x 2 (XY) x 5 (strips) x 64 bit/strip +193 + 272 = 2385 bits
- Considering a rate of 3.3 KHz of Z-> $\mu^+\mu^-$ events:
 - 2385 x 3300 x 2 (μ tracks)= ~16 Mbits/s = 2 MBytes/s
- From experience with the TIGER chips:
 - Expect an electronic noise of ~5 KHz
 - 1 (strip) x 64 bit/strip + 193 + 272 = 529 bits
 - 529 x 5 KHz = ~2.6 Mbit/s = ~0.3 Mbytes/s
- We estimate the muon detector data size to be **2.5 Mbytes/s**

IDEA Preshower detector dimensions

IDEA's Preshower detector would have in total: Barrel 77x2 m² (154 m² total) Barrel 384000x2 channels Endcaps 37x2x2 m² (148 m² total) Endcaps 370000x2 channels

Running conditions

- 91 GeV c.m. energy
- 100 KHz Z decays
 - Mean charged multiplicity ~20
- 30 KHz γγ -> hadrons
 - Mean charged multiplicity ~10

Preshower detector

- 1 station
- Cluster width ~5strips
- 64 channels -> 1 TIGER
- 2 TIGER (128 channels) -> 1 Frontend board (FEB)
- 4 FEBs (512 channels) -> 1 GEMROC
- For each event a GEM ROC sends one packet of data

Preshower detector

- Each GEMROC packet contains:
 - 272 bits for IP and UDP protocols
 - 193 bits for header and trailer
 - 64 bits for each hit
- For a track traversing the preshower detector:
 - 1 (track) x 2 (XY) x 5 (strips) x 64 bit/strip +193 + 272 = **1105 bits**
- Considering a rate of 100 KHz (Z⁰ events) x 20 charged particles:
 - 1105 x 2 x 10⁶ (events) = ~2 Gbits/s = **250 MBytes/s**
- Considering a rate of 30 KHz (yy events) x 10 charged particles:
 - 1105 x 3 x 10⁵ (events) = ~300 Mbits/s = 40 MBytes/s
- From experience with the TIGER chips:
 - Expect an electronic noise of ~5 KHz
 - 1 (strip) x 64 bit/strip + 193 + 272 = 529 bits
 - 529 x 5 KHz = ~2.6 Mbit/s = ~0.3 Mbytes/s
- We estimate the preshower data size to be **300 Mbytes/s**