CEPC Detector, Physics, Software: R&D, Collaboration and Future

João Guimarães da Costa (for the Physics and Detector Working Group)

International Advisory Meeting Committee Beijing, October 29, 2020

Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

Physics progress

Re-evaluation of physics requirements

ds	Detector subsystem	Performance requirement
$I)$ $\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$ar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$^{\prime*},ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

under discussion \rightarrow started at the workshop last year

Physics requirements

Jan 16-17, 2020: Mini-workshop: Software and Physics Requirements for e+e- Colliders • <u>http://iasprogram.ust.hk/hep/2020/workshop_experiment.php</u>

	Jan 16 (Thu) Jan 17 (Fri)		Jan 16 (Thu)
Time	Event	Time	Event
Session 1 Chairs: Paolo GIACOMELL	I and Joao GUIMARAES DA COSTA	Session 3 Chairs: Paolo GIACOMEL	LI and Joao GUIMARAES DA COSTA
09:00 - 10:00	Physics at a Circular Collider (sqrt(s) = 91-365 GeV) [Slides] Jiayin GU Johannes Gutenberg University Mainz	09:00 - 09:10	Introduction: Towards a Common Software for Future HEP Projects [Slides] Paolo GIACOMELLI National Institute for Nuclear Physics (INFN, Bologna)
10:00 - 10:30	Discussion	09:10 - 10:00	The Turnkey Software Stack: Where Are We and Where We Want to Go? [Slides Gerri GANIS CERN
10:30 - 11:00 11:00 - 11:45	Group Photo and Coffee Break (Venue: Open Area, 1/F) Theoretical Tools [Slides] Alessandro VICINI University of Milan	10:00 - 10:30	EDM4hep: A Common Event Data Model [Slides] Frank GAEDE DESY
11:45 - 12:30	ILC Detector Requirements [Slides] Jim BRAU	10:30 - 11:00 11:00 - 11:50	Coffee Break (Venue: Open Area, 1/F) DD4hep and Shareable Detector Geometry Description [Slides]
12:30 - 14:00	Lunch (Self-arranged)		Andre SAILER CERN
Session 2 Chairs: Paolo GIACOMELL	I and Joao GUIMARAES DA COSTA	11:50 - 12:30	CEPC Software Prototype [Slides] Jiaheng ZOU Institute of High Energy Physics, Chinese Academy of Sciences
14:00 - 14:45	CLIC Detector Requirements [Slides] Andre SAILER CERN	12:30 - 14:15	Lunch (Self-arranged)
14:45 - 15:25	Tracking Requirements [Slides]	Session 4 Chairs: Paolo GIACOMEL	LI and Joao GUIMARAES DA COSTA
14.40 - 10.20	Zhijun LIANG Institute of High Energy Physics, Chinese Academy of Sciences	14:15 - 14:50	CEPC Simulation [Slides] Tao LIN Institute of High Energy Physics, Chinese Academy of Sciences
15:25 - 16:05	Calorimeter Requirements [Slides] Yong LIU Institute of High Energy Physics, Chinese Academy of Sciences	14:50 - 15:20	A Worldwide Software Collaboration? [Slides] David LANGE Princeton University
16:05 - 16:25	Coffee Break (Venue: Open Area, 1/F)	15:20 - 15:50	Coffee Break (Venue: Open Area, 1/F)
16:25 - 16:55	Future Activities at FCC [Slides] Paolo GIACOMELLI National Institute for Nuclear Physics (INFN, Bologna)	15:50 - 16:45	Future Software Implementations [Slides] Gerri GANIS, Xingtao HUANG and All
16:55 - 17:40	Future Activities and Discussion [Slides] Moderators: Paolo GIACOMELLI, Joao GUIMARAES DA COSTA and Manqi RUAN	16:45 - 17:15	Wrap Up and Next Goals [Slides] Paolo GIACOMELLI and All

Physics requirements

- - https://indico.ihep.ac.cn/event/11444/session/10/contribution/199/material/slides/0.pdf

Followed up at CEPC Workshop with a dedicated talk and discussion at Performance Session

	Franco Bedeschi	
Mary and Contraction		
and the second se	GangLi	lia lavezzi
	Riccardo Farinelli	Marco Maggiora

Work still to continue

Physics requirements: Higgs Factory

- Jets (Hadronic system), Tracks, Isolated Lepton/Tau, Flavor Tagging
 - Hadronic system
 - The majority of Higgs events has jet final states; many important EW measurements relies on multi-jet processes.
 - BMR < 4%: to separate qqH signal from qqX background with recoil mass
 - Benchmarked with signal strength measurements at qqH, $H \rightarrow invisible$, $H \rightarrow tautau$, and vvH, $H \rightarrow bb$ (hadronic)
 - To investigate innovative color singlet identification algorithm (optimize jet clustering-matching or beyond)
 - Benchmarked with WW/ZZ separation with full hadronic final state
 - Benchmarked with signal strength measurements of H→hadronic final states (bb, cc, gg, WW/ZZ \rightarrow 4 jet) at qqH processes
 - Relative track momentum resolution $\sim 0.1\%$:
 - Benchmarked with H→mumu signal strength, and Higgs mass measurement via Higgs recoil analysis with IIH channel.
 - Isolated Leptons and taus;
 - Many benchmarks: Isolated leptons eff*purity > 99% (eff > 0.995%, mis-id < 1%);
 - Benchmarked with H→tautau: Isolated Tau finding eff*purity > 70%.
 - VTX: efficiently separate the b, c, and light jets.
 - eff*purity of c-tagging at $H \rightarrow jj$ events. Aim for eff*purity >> 10% (i.e. 25%?) •
 - Benchmarked with $H \rightarrow cc \& H \rightarrow gg$ measurements;

Physics requirements: Z Factory

- Z factory has extremely rich physics program, where a better detector is always better. More benchmark studies are needed, to quantify the Z factory potential & requirements.
- Detector acceptance: |cos(theta)| < 0.99, ... or better
- Tracks
 - Momentum threshold: $\sim o(100)$ MeV to find pions generated in D* decay (D* \rightarrow D + pi)
 - Momentum resolution < 0.1%: Benchmarks? Narrow resonance generated at IP?
- Photons
 - Photons: ~o(100) MeV to find photons decay from low energy pi-0
 - Energy resolution < 5%/sqrt(E):
 - π^0 reco. Eff*purity ~50% at Z \rightarrow qq events
 - Benchmarks: $Bs \rightarrow 2\pi^0$, what else?
- Separation: to count number of π^0 in the Z $\rightarrow \tau\tau$ event
 - Separate photons from π^0 decay, with the energy of π^0 up to 30 GeV
 - Benchmark with tau decay Branching ratio measurements

Vertex —>

- Understand the correlation between
 - VTX intrinsic performance
 - 2nd/3rd vertex reconstruction performance: efficiency/purity, and position resolution as a function of the vertex charge multiplicity & polar angle
 - Flavor tagging performance
- Detailed performance study is needed!
- Distinguish different vertexes
 - $b \rightarrow B^{*}(PV) \rightarrow B \rightarrow D^{*}(2^{nd} V) \rightarrow D(3^{rd} V) \rightarrow ...$
 - b→т+Х, тт+Х
- Reconstruct accurately the decay vertex, such that the tau mass can be reconstructed in $b \rightarrow sTT$ event

Physics at near the top threshold

Physics potential for top threshold r

chaired by Yaquan FANG Yaquan (高能所)

from Tuesday, December 17, 2019 at 21:00 to Wedn

Vidyo In	fo Room Na Link	ame	videocepc http://vidyo.ihep.ac.cn/flex.h
	PIN		1234
Tuesday Decen	nher 17 2019		
Tuesuay, Decen	1001 17, 2019		
21:00 - 21:20 int Sp Ma	troduction 20' eaker: Prof. Yaqua aterial: Slides	an FANG Yaqu	an (高能所)
21:20 - 21:40 to Sp Ma	p measurement eaker: Jin Wang (aterial: Slides	t at LHC 20 IHEP)	,
21:40 - 22:00 to Sp Ma	p mass measur eaker: Prof. Zhijur aterial: Slides	ement 20' n Liang (IHEP))
22:00 - 22:20 to Sp Ma	p coupling mea eaker: Dr. Zhen Li aterial: Slides	surement e iu (University	et al. 20' of Maryland)
22:20 - 22:40 to Sp Ma	p EFT 20' eaker: Cen Zhang aterial: Slides		

Scan top threshold for top mass/width measurement Run at higher energy ~360 GeV for Higgs and new Physics

Led by Yaquan Fang

ın at e+e- collider								
esday, Decen	nber 18, 2019	9 at 00:15 (Asia/Shanghai)						
html?roomdirect.l	html&key=v5kJie	ddnOG5xmy1Ipns1iccuxo						
	22:20 - 22:40	top EFT 20' Speaker: Cen Zhang Material: Slides 🔂						
	22:40 - 23:00	Higgs measurement with top run 20' Speaker: Kaili Zhang (IHEP) Material: Slides						
	23:00 - 23:20	Higgs EFT at top run 20' Speaker: Dr. Jiayin Gu (JGU Mainz) Material: Slides						
	23:20 - 23:40	2HDM related new physics at 360 GeV 20' Speaker: Prof. Shufang Su (University of Arizona) Material: Slides						
	23:40 - 00:00	GM model at 360 GeV run 20' Speaker: Dr. Yongcheng Wu (Carleton University) Material: Slides						

Physics at near the top threshold

- independent way with luminosity around 200-400 fb⁻¹ with optimized setup: ~ 1 year of running (~480 fb⁻¹/year)
- Considering the run for top coupling measurement at CEPC, 360 GeV should be enough
 - Need to investigate the feasibility of running with a lower energy
 - The expected precision for the coupling is much better than LHC
 - 2 ab⁻¹ luminosity corresponds to 4-5 years with optimized setup
- 360 GeV run is helpful for the Higgs width measurement
 - The results are not much different from the running at 365 GeV
- Some thoughts on new physics with 360 GeV have been addressed
- 2HDM, Georgi-Machacek (GM) models, H—>sh (2HDM+S)

Led by Yaquan Fang

The target accuracy of e⁺e⁻ for top mass measurement is O(10) MeV and in a model

Top mass measurements

- More aggressively, 4 energy points can be scanned to fit the mass
 - A pre-scan (e.g. 30% of data) can help determine the central point
 - Need to study which scanning points are the most sensitive

Typically: 10 points (1 GeV step) are scanned with a global fit to measure top mass

Additional sensitivity on Higgs measurements

No significant difference between 360 GeV and 365 GeV

GeV, ab⁻¹	360GeV, 2ab ⁻¹						
Н	ZH	<u>w</u> H					
0%	1%	۱					
7%	0.63%	0.76%					
3%	6.2%	11%					
3%	2.4%	3.2%					
0%	2.0%	3.1%					
1%	12%	13%					
8%	1.5%	3%					
4%	8%	11%					
2%	29%	40%					
2%	١	١					
5%	25%	١					
9%							
	1.4%						

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	24	0	365				
Luminosity (ab ⁻¹)	5	i	1.	5			
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\sqrt{\nu}$			
$\rm H \rightarrow any$	± 0.5		± 0.9				
${\rm H} \rightarrow {\rm b}\bar{\rm b}$	± 0.3	± 3.1	± 0.5	$\pm 0.$			
$H \to c \bar c$	± 2.2		± 6.5	± 1			
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4			
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3			
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 1			
$H\to\tau\tau$	± 0.9		± 1.8	±			
$H\to\gamma\gamma$	± 9.0		± 18	± 2			
${\rm H} \rightarrow \mu^+ \mu^-$	± 19		± 40				
$\mathrm{H} \rightarrow \mathrm{invisible}$	< 0.3		< 0.6				

combined width: 1.3%

Flavor Physics

Particle	@ Tera-Z	
b hadrons		
B^+	2×10^{10}	3
B^0	2×10^{10}	3
B_s	$7 imes 10^9$	3
b baryons	3×10^9	
Λ_h	$3 imes 10^9$	vs Be
		vs LHC

Some progress since CDR — 2 sessions at workshop — 9 talks

Belle II

@ LHCb

- 3×10^{13} $\times 10^{10}$ $(50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ $imes 10^{10}$ 3×10^{13} $(50 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(4S))$ 8×10^{12} $\times 10^8$ $(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$ 1×10^{13}
- lle II: b baryons, Λ_b , 100x B_s 1×10^{13} b: low $bkg \rightarrow neutrals$ (γ, π_0, \ldots)
- Unique sensitivity to processes unavailable at LHCb or Belle II: flavor-violating Z decays*, lepton universality in Z decays*, rare $b \rightarrow s \tau \tau decays$, rare $b \rightarrow s v v decays$, $B_c decays^*$, semi-tauonic $b \rightarrow c\tau v$ decays, τ decays, FCNC single top.

Detector prototypes progress

CEPC Detector Concepts studied

Particle Flow Approach

High magnetic field concept (3 Tesla)

Full silicon tracker concept

Final two detectors WILL be a mix and match of different options

2 interaction points

Low magnetic field concept (2 Tesla)

IDEA Concept also proposed for FCC-ee

CEPC Detector Concepts studied

Particle Flow Approach

High magnetic field concept (3 Tesla)

Full silicon tracker concept

Final two detectors WILL be a mix and match of different options

2 interaction points

Low magnetic field concept (2 Tesla)

IDEA Concept also proposed for FCC-ee

Crystal Calorimeter based detector (2-3 Tesla)

News reported at this conference

Detector R&D Major R&D Breakdown

1. Vertex

- **1.1. Pixel Vertex Prototype**
- 1.2. ARCADIA/LFoundry CMOS

2. Tracker

- 2.1. TPC
- 2.2. Silicon Tracker
- 2.3. Drift Chamber
- 3. Calorimeter
- **3.1.ECAL** Calorimeter
- 3.1.1. Crystal Calorimeter
- 3.1.2. Scintillator-Tungsten
- **3.2. HCAL PFA Calorimeter**
- 3.2.1. DHCAL
- 3.2.2. Sci AHCAL
- **3.3. DR Calorimeter**

17 documents

4. Muon Detectors

- 4.1. Muon Scintillator Detector
- 4.2. Muon and pre-shower MuRWell Detectors

5. Solenoid

- 5.1. LTS Solenoid
- 5.2. HTS Solenoid

6. MDI

- 6.1. LumiCal Prototype
- 6.2. Mechanics

7. TDAQ

8. Software and Computing

Projects overview Total subtasks: 95

PBS	Task Name	Page	Subtasks	Context	Team	Document Responsible
	CEPC Detector R&D Project					
1	Vertex					
1.1	Vertex Prototype	5	9	CEPC	China+ international collaborators	Zhijun, Ouyang
1.2	ARCADIA CMOS MAPS	6	6	Generic	INFN, Italy	Manuel Rolo
2	Tracker					
2.1	TPC Module and Prototype	6	12	CEPC	IHEP, Tsinghua	Huirong
2.2	Silicon Tracker Prototype	6	8	Generic	China, UK, Italy	Harald Fox, Meng Wang
2.3	Drift Chamber Activities	4	3	FCC-ee/CEPC	INFN, Novosibirsk	Franco Grancagnolo
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	5	6	CEPC	IHEP, Princeton + others	Yong Liu
3.1.2	PFA Sci-ECAL Prototype	3	3	CEPC	USTC, IHEP	Jianbei Liu
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	4	5	CEPC	SJTU, IPNL, Weizmann, IIT, USTC	Haijun Yang, Imad Laktineh, Shikma Bressler
3.2.2	PFA Sci-AHCAL Prototype	4	4	CEPC	USTC, IHEP, SJTU	Jianbei Liu
3.3	Dual-readout Calorimeter	5	5	FCC-ee/CEPC	INFN, Sussex, Zagreb, South Korea	Roberto Ferrari
4	Muon Detector					
4.1	Scintillator-based Muon Detector	4	5	CEPC	Fudan, SJTU	Xiaolong Wang, Liang Li
4.2	Muon and pre-shower µRWELL-	5	4	FCC-ee/CEPC	INFN, LNF	Paolo Giacomelli
5	Solenoid					
5.1	LTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
5.2	HTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
6	MDI					
6.1	LumiCal Prototype	4	2	ILC/CEPC	AC, IHEP	Suen Hou
6.2	Interaction Region Mechanics	3	4	CEPC	IHEP	Hongbo Zhu
8	Software and Computing	7	11	CEPC	IHEP, SDU	Li Weidong, Ruan Manqi, Sun Shengseng, Li Gang

17 documents, total: 80 pages

Projects overview: Schedule

PBS	Task Name	Finish	202	0	2021		202	2	2023	3	202	4	2025		2026	5	2027	,	2028		202
			H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1	H2	H1
	CEPC Detector R&D Project	26/12/31															1 CEP	C Det	tector	R&D	Pro
1	Vertex	23/12/29	-								1 Ve	rtex									
1.1	Vertex Prototype	23/12/29									Ver	tex Pi	rototy	ре							
1.2	ARCADIA CMOS MAPS	23/12/29									AR	CADIA	смо	S MA	PS						
2	Tracker	24/12/31	I-										1 Tra	cker							
2.1	TPC Module and Prototype	23/12/29									TPO	C Mod	ule an	d Pro	ototyp	be					
2.2	Silicon Tracker Prototype	23/10/31									Silico	on Tra	cker P	rotot	ype						
2.3	Drift Chamber Activities	24/12/31											Drif	t Cha	mber	Activ	ities				
3	Calorimetry	24/12/31	I-										- Calo	orime	try						
3.1	ECAL Calorimeter	24/12/31	l-										1 ECA	L Cal	orime	eter					
3.1.1	Crystal Calorimeter	21/12/31					Cry	stal Ca	alorim	neter											
3.1.2	PFA Sci-ECAL Prototype	24/12/31											PFA	Sci-E	CAL P	rotot	уре				
3.2	HCAL Calorimeter	22/12/30	6-						1 HC	AL Cal	orim	eter									
3.2.1	PFA Digital Hadronic Calorimeter	21/12/31					PF/	A Digit	al Ha	droni	c Calo	orime	ter								
3.2.2	PFA Sci-AHCAL Prototype	22/12/30							PFA	Sci-A	HCA	L Prot	otype								
3.3	Dual-readout Calorimeter	24/12/31											Dua	l-read	dout	Calori	metei	r			
4	Muon Detector	24/12/31	l-										-ı Mu	on De	etecto	or					
4.1	Scintillator-based Muon Detector Prototype	23/12/29									Sci	ntillat	or-bas	ed M	uon l	Detec	tor Pr	ototy	ре		
4.2	Muon and pre-shower µRWELL-based detector	rs24/12/31											Mud	on an	d pre	-show	/er µR	WELI	L-base	ed de	tect
5	Solenoid	26/12/31	l-														1 Sole	enoid			
5.1	LTS solenoid magnet	25/12/31													LTS	solen	oid m	agne	t		
5.2	HTS solenoid magnet	26/12/31															HTS	soler	noid n	nagne	et
6	MDI	22/12/30	r						1 MD												
6.1	LumiCal Prototype	20/12/31			Lum	iCal P	Proto	type													
6.2	Interaction Region Mechanics	22/12/30							Inte	ractio	on Re	gion l	Mecha	nics							
8	Software and Computing	20/12/31	ľ		1 Soft	ware	e and	Comp	outing	5											

CEPC CMOS Pixel Sensor Development

	JadePix1	JadePix2	MIC4
Architecture	Roll. Shutter + Analog output	Roll. Shutter + In pixel discri.	Data-driven r.o. + In pixel discri.
Pitch (µm ²)	33 × 33 /16 × 16	22 × 22	25 × 25
Power con. (mW/cm ²)			150
Integration time (µs)*		40-50	~3
Prototype size (mm ²)	3.9 × 7.9 (36 individual r.o)	3 × 3.3	3.1 × 4.6
Main goals	Sensor optimization	Small binary pixel	Small pixel + Fast readout+ nearly full functional
* Assuming a matrix of	of 512 × 1024 pixels		Image: state of the state
JadePix1 (IHEP)	JadePix2 (IHEF	P) MIC4 (CCNU	& IHEP) JadePix3 (IHEF
			Full size to be

TaichuPix-1 tested TaichuPix-2 produced Pitch: 24 × 25 μ m²

Power: 130 mW/cm²

 64×192 pixel array with the same dimension as TaichuPix-1

- 32 double column modified FE-I3 readout, 32 modified ALPIDE readou
- 6 variations of pixel analog design, each with 16 columns

New features added to TaichuPix-2

- Two LDOs for power supplies
- 8b10b encoder added for Triggerless output and balanced data stream
- X-chip buses added for multiple chip interconnections
- Test status: functional verification completed (I/O, bandgap, PPL ...), more detailed tests on-going

IHEP, SDU, NWPU, IFAE & CCNU

prototype e built

All required functionality already included

Pixel Vertex Detector Prototype

Layout optimization finalized

Engineering design on-going

Beampipe design

2.1 Be pipe

Based on the current domestic manufacturing capability, it is possible to manufacture the thin-wall beryllium pipe with wall thickness of **0.15mm and inner**

Difficulties of manufacturing: To meets the requirements of length(150mm), strength, stiffness and ultra-high vacuum.

	The critical pressure contrast of Be pipe with different wall thicknes						
	Version	Name	Wall thickness (mm)	Inside radius (mm)	External radius (mm)	Critical pressure (MPa)	Gap(co
	Previous	Inner Be pipe	0.5	14	14.5	3.3053	
design	design	Outer Be pipe	0.35	15	15.35	0.9388	0.5n
New desig	New	Inner Be pipe	0.2	10	10.2	0.5941	(Between : outer Be
	design	Outer Be pipe	0.15	10.7	10.85	0.2064	

Temperature distribution in Z model

Ruiqiang Zhang, et al

mm inner and Be pipe)

2.2 Structure for detectors installation and cooling ---Vertex

Temperature distribution in High Luminosity Z model

Silicon vertex supporting structure

2.2 Structure for detectors installation and cooling ---Vertex

Air cooling channel + water cooling interlayer + embedded oil cooling pipe, very complex struct

2.2 Structure for detectors installation and cooling ---Vertex_

The heat of vertex is removed by air cooling and remote cooling.

MDI: CEPC beam background estimations Higgs Run

Backgrounds on first layer of VTX

Background Type	Hit Density(<i>cm</i> ⁻² · <i>BX</i> ⁻¹)	TID(krad · yr ⁻¹)
Pair production	1.91	526.11
Synchrotron Radiation	0.026	15.65
Radiative Bhabha	0.34	592.66
Beam Gas	0.9607	1235.9
Beam Thermal Photon	0.02	22.31
Total	3.2567	2392.63

Safety factor 10

- Work for the Z run on-going ullet
- Validating beam background simulations with real data: Belle II, BES III \bullet
 - Many results from Belle II presented at workshop

Silicon Tracker design

• LDT or TkLayout to validate basic tracking performance

Silicon tracker demonstrator with international partners

DEMONSTRATOR (SHORT STAVE)

Multiple modules on light composite support

- Alternate tile pattern for hermeticity
- Aggregation of data/optical conversion at the end-of-stave; serial powering

Readout unit based on 4 chips

- Shared services among 4 sensors by common power connections and configuration lines
- Benefits of in-chip regulators to reduce connections

Ivan Peric, KIT

- China
 - Institute of High Energy Physics, CAS
 - Shangdong University
 - Tsinghua University
 - University of Science and Technology of China
 - Northwestern Polytechnical University
 - T.D. Lee Institute Shanghai Jiao Tong University
 - Harbin Institute of Technology
 - University of South China
- Italy
 - INFN Sezione di Milano, Università di Milano e Università dell'Insubria
 - INFN Sezione di Pisa e Università di Pisa
 - INFN Sezione di Torino e Università di Torino

- Germany
 - Karlsruhe Institute of Technology

• UK

- University of Bristol
- STFC Daresbury Laboratory
- University of Edinburgh
- Lancaster University
- University of Liverpool
- Queen Mary University of London
- University of Oxford
- University of Sheffield
- University of Warwick

Time Projection Chamber at CEPC

TPC technology R&D

- TPC track technology is as one the baseline option:
 in CEPC CDR
 - **TPC** limitation items under the high luminosity
 - □ Ions back flow in chamber (MOST1 funding)
 - Calibration and alignment using UV lasers(NSFC funding)
 - Low power consumption FEE ASIC chip(MOST1)
- Pixel readout R&D as one possible option for circular collider

e high luminosity <mark>OST1 funding</mark>) ng UV

TPC Prototype

Readout electronics and DAQ

Scintillator ECAL Prototype **Scintillator-Tungsten Sandwich ECAL**

Cosmic ray

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Design optimization finalized

40 layers of 20 mm steel + 3 mm scintillator + 2 mm PCB Cell size: $4 \text{ cm} \times 4 \text{ cm}^2$ Transverse size: 72 × 72 cm²

based on simulation studies

Optimized tile geometry production method

Injection molding technique to produce titles in large quantities

Automatic wrapping and batch testing

New Ideas: Crystal Calorimeters

Concern: Electromagnetic resolution of PFA calorimeter not optimal

Physics motivations:

- Electrons' Bremsstrahlung: energy recovery
- Improve angular resolution, and gamma counting
- Recoil photons: new physics and neutrino counting

- **Topical Workshop on CEPC Calorimetry at IHEP** March 2019
- Follow up: Online mini-workshop on a detector concept with a crystal ECAL, July 2020

New Ideas: Crystal Calorimeters

Two new segmented ECAL designs based on crystals

- Longitudinal segmentation
- Fine transverse segmentation
 - 1×1cm or 2×2cm cells
- Single-ended readout with SiPM
- Potentials with PFA

Crystals: LYSO:Ce, PbWO, BGO?

SiPM: HPK, NLD? **Being incorporated into CEPC Software**

Yong Liu

- Super cell: 40×40cm cube
- Crossed arrangement in adjacent layers
- Significant reduction of #channels
- Timing at two sides: positioning along bar

Cost is an issue

Dual Readout Crystal Calorimeter

Drawing from the pioneering work of RD52, but upgrading for new developments in inexpensive, high-QE, tailored-

Τ2

6X.

Τ1

wavelength sipmms See: https://arxiv.org/abs/2008.00338 Also see Snowmass LOI: SNOWMASS21-IF6-008.pdf

- **Timing layer**
- σ, ~ 20 ps
- LYSO:Ce crystals (~1X₀) 0
- 3x3x54 mm³ active cell 0
- **3x3 mm² SiPMs (15-20 um**) 0

ECAL layer

- σ_F/E ~ 3%/√E
- PbWO crystals 0
- Front segment (~6 X_0 ,~0.2 λ ,~50 mm) 0
- **Rear segment** (~16X₀,~0.7 λ ,~140 mm) 0
- 10x10 mm² crystal 0
- 5x5 mm² SiPMs (10-15 um) 0
- 3 SiPMs (one on entrance, two on exit)
- Thin solenoid between ECAL and HCAL

IDEA HCAL

CMS ECAL crystals are 22x22x230 mm

Chris Tully, Sarah Eno, et al

Dual Readout Crystal Calorimeter

Photon and Neutral Hadron Energy Resolutions

TDAQ

Working on expanding the Trigger and DAQ requirements for the CEPC from the CDR into a better understanding of the overall situation

Triggerless running has impact on detector design, power consumption and cooling

TDAQ and Online						
Conveners: Prof. Zhen An LIU (IHEP), David Newbold (UKRI), Chris Bee (CERN)						
Location:	Grand	Ballroom C (Online Meeting Room: https://weidijia.zoom.com.cn/j/66965146553)				
10:30 Introduction		tion of the TDAQ requirements 10'				
9	Speaker:	Prof. Zhen An LIU (IHEP)				
1	Material:	Slides 🔛				
10:40 F	10:40 Requirements from the LumiCal, Suen Hou 10'					
9	Speaker:	Suen Hou (IPAS)				
1	Material:	Slides 📆				
10:50 F	Requiren	nents from the Vertex Dedector 10'				
9	Speaker:	Mr. Wei WEI (IHEP)				
1	Material:	Slides 📩				
11:00 Requirements from the TPC 10'		nents from the TPC 10'				
9	Speaker:	Dr. Huirong Qi (IHEP)				
1	Material:	Slides 🔁				
11:10 F	Requiren	nents from the ECAL & HCAL 10'				
9	Speaker:	Dr. Yong Liu (IHEP)				
1	Material:	Slides 📩				
11:20	:20 Pixel readout technologies and the challenges for the future 20'					
9	Speaker:	Garcia-Sciveres Maurice (LBNL)				
ſ	Material:	Slides 🛃				

Series of discussions culminated in the workshop, to continue to followup, led by Zhen An Liu

TDAQ and Online						
Conveners: Prof. Zhen An LIU (IHEP), David Newbold (UKRI), Chris Bee (CERN)						
Location: Grand Ballroom C (Online Meeting Room: https://weidijia.zoom.com.cn/j/66965146553)						
14:00 Requirements from the Drift Chamber 10'						
	Speaker:	Francesco Grancagnolo (INFN-Lecce)				
	Material:	Slides 🛃				
14:10 Requirements from DR Calorimeter 10'		nents from DR Calorimeter 10'				
	Speaker:	Roberto Ferrari (INFN)				
	Material:	Slides 📩				
14:20 Requirements from the Muon Detector 10'		nents from the Muon Detector 10'				
	Speaker:	Paolo Giacomelli (INFN-Bo)				
	Material:	Slides 🛃				
14:30 Requirements from the Silicon Tracker 10'		nents from the Silicon Tracker 10'				
	Speaker:	Jens Dopke (STFC Rutherford Appleton Laboratory)				
	Material:	Slides				
14:40	14:40 LHCb software-only trigger 15'					
	Speaker:	Dorothea vom Bruch (LPNHE)				
14:55	ATLAS HI	LT tracking optimisation 15'				
	Speaker:	Mark Sutton (Sussex)				
	Material:	Slides 📩				
15:10	High-Pre	cision Timing Distribution Systems for LHC experiments 15'				
	Speaker:	Eduardo Mendes (CERN)				
	Material:	Slides 🛃				

Software and Reconstruction algorithms

Last year reported that we had started developing a new CEPC software platform (moving away from iLCSoft)

Workshop in Bologna (June 12-13) (FCC, CEPC, ILC, CLIC) kicked-off collaboration: https://agenda.infn.it/event/19047/

Consensus:

- Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments - Maximize the sharing of software components between experiments

CEPCSW is now fully integrated with Key4hep, and supports application development

See Xingtao Huang's talk during workshop for details

CEPCSW and Core Software

Architecture of CEPCSW ٠.

- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

Core software

- Gaudi framework: defines interfaces to all software components and controls their execution.
- EDM4hep: generic event data model for • **HEP collider experiments**
- FWCore :manage event objects defined by EDM4hep.
- GeomSvc :a DD4hep-based geometry service to provide a unified way to access detector geometry data.
- Both FWCore and EDM4hep are Key4hep packages.

CEPCSW Progress and Plans

- Further progress made since last CEPC workshop
 - Detector simulation framework was developed and used for the study of CEPC_v4 detector and reference detector
 - ECAL fast simulation with the frozen shower method was developed to speed up the simulation of \bullet electromagnetic shower
 - Finished porting of digitization and reconstruction algorithms for trackers and ECAL from Marlin to CEPCSW
 - k4Pandora package was developed to integrate Pandora with CEPCSW and became part of Key4hep software stack
- CEPCSW is managed with Github, deployed with CVMFS, and available for all CEPC Sites
- Plan
 - Adding more components from Key4hep when they are available ullet
 - Non-uniform magnetic field and pile-up of beam backgrounds
 - Development of simulation and reconstruction algorithms for the reference detector (SiTrk+DC, Crystal bar ECal)
 - Add algorithms for building reconstructed particles \bullet

37

Detector International Collaboration

Speakers at CEPC Workshop -

** Sessions **	Talks **	Shanghai K
Silicon	12 12	nghai Strasbourg
Gaseous	11	Birmingham
Calorimeter	UST 10	Santa
MDI Insut	pria10	Cruz Wor
TDAQ/online	13	hua N
Offline/Software	9	IHEP x2 Sex
Performance	9t 8	IPAS
	73	BNL

Collaborations

Main Detector and Physics Workshops in 2020

- Jan 18, 2020: Physics Potential Study for Future e+e- Higgs Factories.
 - http://iasprogram.ust.hk/hep/2020/meeting_20200118.php
- - <u>http://iasprogram.ust.hk/hep/2020/workshop_experiment.php</u>
- <u>http://iasprogram.ust.hk/hep/2020/workshop_accelerator.php</u>
- May 28-29, 2020: CEPC MDI Workshop
 - https://indico.ihep.ac.cn/event/11801/
- <u>https://indico.ihep.ac.cn/event/11938/other-view?view=standard</u>
- Aug 28-29, 2020: Workshop on Detector & Accelerator Mechanics
- https://indico.ihep.ac.cn/event/12324/

 Jan 16-17, 2020: Mini-workshop: Software and Physics Requirements for e+e- Colliders Jan 16-17, 2020: Mini-Workshop: Machine Detector Interface for Future Colliders:

July 22-23, 2020: Online mini-workshop on a detector concept with a crystal ECAL

Snowmass — Letters of Intent

https://indico.ihep.ac.cn/event/12410/

Detector 14 Lol

Detect	or R&D	VIENC VIENC VIENCE Ma Marri Dura (TUED)				
Convene 45-00	ers: Joao G	uimaraes Costa, WANG Jianchun, Mr. Manqi kuan (IHEP)				
15:00	CEPC Det	ectors Overview LoI 1				
	CEPC Detector Overview LOI SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf					
	Speakers:	Joao Guimaraes Costa, Mr. Mangi Ruan (IHEP), WANG Jianchun				
	Material:	Paper 🕑 Slides 🔁				
15:02	IDEA Con	cept 1'				
	Speaker:	Franco Bedeschi (INFN-Pisa)				
	Material:	Paper 🕑				
15:03	Dual Readout Calorimeter 1'					
	Speaker:	Roberto Ferrari (INFN)				
	Material:	Paper 🚱				
15-04	Duith Char					
13.0%	Speaker:	mber 1 [°] Franca Grancagoolo				
	Material:	Paner				
	The carrier.	Paper B				
15:06	mu-RWEI	L (muons, preshower) 1'				
	Speaker:	Paolo Giacomelli (INFN-Bo)				
	Material:	Paper 🕑				
15:08	Time Det	ector LoI 1'				
	Speaker:	Prof. Zhijun Liang (IHEP)				
	Material:	Slides 🛃				
15:09	Key4hep	1'				
	Speakers:	Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University),				
		Wenxing Fang (Beihang University)				
	Material:	Slides 🛃				
15:10	PFA Calor	rimeter 1'				
	Speakers:	Haljun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science and				
	Mataziali	Technology of China), Dr. Yong Liu (Institute of High Energy Physics)				
	Material:	Slides 🔁				
15:11	High Gra	nularity Crystal Calorimeter 1'				
	Speaker:	Dr. Yong Liu (Institute of High Energy Physics)				
	Material:	Paper 🕑 Slides 🔁				
15:12	Muon Sci	ntillator Detector 1'				
	Speaker:	Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)				
	Material:	document 🔁				
15:13	Vertex Lo	JI 1'				
	Speaker:	Prof. Zhijun Liang (IHEP)				
	Material:	Slides 🛃				
15:15	MDI LoI	, ·				
	Speaker:	Dr. Hongbo ZHU (IHEP)				
	Material:	Slides 🔁				
15-16	TRC Lot					
15.10	Speaker:	Dr. Huirong Oi (Institute of High Energy Physics, CAS)				
	Material:	Slidec 👘				
15:17	Solenoid	R&D LoI 1'				
	Speaker:	Dr. Felpeng NING (IHEP)				
	material:	Slides 🛃				

Physics 17 Lol

Open Physics Questions			
Convener: Mr. Manqi Ruan (IHEP) 16:00 FE01-Higgs boson CP properties at CEPC 3'			
	Speakers: Meng Xiao, Xin Shi Material: Slides 7		
16.02			
10:03	EF01-Measurement of branching fractions of Higgs hadronic decays 3' Speaker: Yanping Huang Material: Sudor -		
40.00	Sides A		
10:00	EF02-Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC Detector Simulation 3'		
	Speaker: Shu Li Material: Slides 5		
16:09	EF03-Feasibility study of CP-violating Phase φs measurement via Bs \rightarrow J/ $\Psi \varphi$ channel		
	at CEPC 3' Speaker: Mingrui Zhao		
	Material: Slides 📩		
16:12	EF03-Probing top quark FCNC couplings tqγ, tqZ at future e+e- collider 3'		
	Material: Slides 2		
16:15	EF03-Searching for Bs \rightarrow ϕ vv and other b \rightarrow svv processes at CEPC 3'		
	Speaker: Lingfeng Li Material: Slides T		
16:18	EF04-Measurement of the leptonic effective weak mixing angle at CEPC 3'		
	Speaker: Siqi Yang Material: Slides 🖷		
16-21			
10.21	EF04-Probing new physics with the measurements of $e+e- \rightarrow W+W-$ at CEPC with optimal observables 3'		
	Speaker: Jiayin Gu Material: Slides T		
16:24	FE05-Exlusive Z decays 3'		
	Speaker: Qin Qin Material: Slides : T		
16:27	EF05-NNLO electroweak correction to Higgs and Z associated production at future		
	Higgs factory 3'		
	Material: Slides 🗄 🔂		
16:30	EF08-SUSY global fits with future colliders using GAMBIT 3'		
	Speaker: Peter Athron Material: Slides 🔂		
16:33	EF08-Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC 3'		
	Speaker: Tianjun Li Material: Slides		
16:36	EEOO-Search for Asymmetric Dark Matter model at CEDC by displaced lenter into 21		
10.00	Speaker: Mengchao Zhang		
16:39	EF09-Search for t + j + MET signals from dark matter models at future e+e- collider $3'$		
	Speaker: Peiwen Wu Material: Slides 1		
16:42	EF0910-Dark Matter via Higgs portal at CEPC 3'		
	Speaker: Xin Shi Material: Slides 🔂		
16:45	EF0910-Lepton portal dark matter, gravitational waves and collider phenomenology		
	Speaker: Ke-Pan Xie		
	Slides T		
16:48	RF1-Exploring new physics with Bc →τ v_τ 3' Speaker: Taifan Zheng		
	Material: Slides 🛃		

CEPC Physics and Detector Meetings

https://indico.ihep.ac.cn/category/214/

Physics and Detector Meetings

Physics and Simulations
Vertex
Tracker
Calo&Muon
MDI
General
100 TeV Simulation
Pure Silicon Detector
Offline Software
Mechanics

Regular International Participation to the Plenary Meetings **CEPC** Day meeting every month

416 events	
12 events	
128 events	
160 events	-
52 events	
138 events	•
12 events	•
8 events	
1 event 🔘	
3 events	-

Octobe	2020			
	21 Oct CEPC Physics and Detector Plenary Meeting			
	14 Oct CEPC Physics and Detector Plenary Meeting			
Septem	per 2020			
	30 Sep CEPC Physics and Detector Plenary Meeting			
	16 Sep CEPC Physics and Detector Plenary Meeting			
August	.020			
	at Aug. CERC Rhypion and Dotactor Snowmann Lattors of Intent			
	19 Aug CEPC Physics and Detector Showmass Letters of Intent			
	0			
July 202	0			
	22 Jul CEPC Physics and Detector Plenary Meeting			
	15 Jul CEPC Physics and Detector Plenary Meeting			
	01 Jul CEPC Physics and Detector Plenary Meeting			
June 20	June 2020			
	10 Jun CEPC Physics and Detector Plenary Meeting			
	03 Jun CEPC Physics and Detector Plenary Meeting			
May 20'	0			
1010 202	0			
	27 May CEPC Physics and Detector Plenary Meeting			
	20 May CEPC Physics and Detector Plenary Meeting			
	06 May CEPC Physics and Detector Plenary Meeting			
April 20	.0			
	29 Apr CEPC Physics and Detector Plenary Meeting			
	15 Apr CEPC Physics and Detector Plenary Meeting			
March 2	020			
	25 Mar CEPC Physics and Detector Plenary Meeting			
Laurian	2020			

08 Jan CEPC Physics and Detector Plenary Meeting

50

Particle Flow Calorimeter Collaborations

CEPC HCAL:

- Imad Laktineh, IPNL, University of Lyon, France (SDHCAL based on GRPC)
- Shikma Bressler, Weizmann Institute of Science, Israel (SDHCAL based on RPWELL)
- Enrique Kajomovitz, Israel Institute of Technology, Israel (SDHCAL based on RPWELL)
- Hans-Christian Schultz-Coulon and Wei Shen, University of Heidelberg, Germany (Scintillator+Steel HCAL)

CEPC ECAL:

- Vincent Boudry, Jean-Claude Brient, LLR, France (Silicon+W ECAL) Tohru Takeshita, Shinshu University, Japan (Scintillator+SiPM ECAL) Wataru Ootani, University of Tokyo, Japan (Scintilator+W ECAL) Christoph Tully, Princeton University, USA (Crystal ECAL) Sarah Eno, University of Maryland, USA (Crystal ECAL)

- France (Readout electronics)

Christophe de la taille, CNRS/IN2P3 Micro-Electronics Design Lab, Ecole Polytechnique Palaiseau,

51

Silicon Vertex Detector

- CMOS pixel sensor development:
 - Marc Winter, Christine Hu-Guo, IPHC Strasburg, France
 - Sebastian Grinstein, Raimon Casanova, IFAE, Barcelona, Spain
 - ALICE, indirectly through CCNU
- SOI pixel sensor development
 - KEK, Japan

Vertex Detector Prototype (MOST2):

- CMOS Pixel Sensor development
 - Barcelona, IFAE
- Mechanics and services
 - Liverpool, Oxford, RAL, QMU (UK)
 - Univ. Massachusetts (USA)

asburg, France IFAE, Barcelona, Spain

Trackers

- Time Projection Chamber
 - Paul Colas, Aleksan Roy, Stephan Anne., CEA-Saclay IRFU group, France (FCPPL)
 - Keisuke Fujii's group, KEK, Japan
 - Joined LC-TPC in Dec 2016
 - DESY test beam in 2018

- Full Silicon Tracker Design
 - Weiming Yao, Berkeley (USA)
 - Sergei Chekanov, Argonne (USA)
- Tracker Demonstrator
 - Harald Fox (Lancaster), Yanyan Gao (Edinburgh), ulletRoy Lemmon (Daresbury), Tim Jones (Liverpool)
 - Ivan Peric (KIT)
 - **Based on ALICE and ATLAS technology**

China

- Institute of High Energy Physics, CAS
- Shangdong University
- Tsinghua University
- University of Science and Technology of China
- Northwestern Polytechnical University
- T.D. Lee Institute Shanghai Jiao Tong University
- Harbin Institute of Technology
- University of South China
- Italy
 - INFN Sezione di Milano, Università di Milano e Università dell'Insubria
 - INFN Sezione di Pisa e Università di Pisa
 - INFN Sezione di Torino e Università di Torino

- Germany
 - Karlsruhe Institute of Technology

• UK

- University of Bristol
- STFC Daresbury Laboratory
- University of Edinburgh
- Lancaster University
- University of Liverpool
- Queen Mary University of London
- University of Oxford
- University of Sheffield
- University of Warwick

IDEA: Silicon

- Active pixel detectors (INFN: Milano, Torino)
 - SEED and ARCADIA (1 M€ INFN grant)
 - Low power, high resolution, stitching
 - First prototypes by late $2020 \rightarrow$ test on beam
 - DAQ development for test beam
 - Potential collaboration with China (FEST grant supports travel to China)
- Active and passive CMOS for Si wrapper (INFN: Milano)
 - Continuation of ATLAS phase 2 upgrade work
- EU grants:
- FEST (travel 4 yr), AIDA++ (applied)
- International collaboration:
 - UK-Oxford, ETH, Zurich university, (IHEP-China?)

IDEA: Drift Chamber

- Drift chamber (INFN: Lecce, Bari)
 - Full length prototype
 - C-fiber wires
 - Cluster counting electronics
 - Non-flammable gases
- EU grants:
 - CREMLIN2, AIDA++ (Applied)
- International collaboration:
 - (BINP, Novosibirsk)

IDEA: DR calorimeter

- Full EM containment prototype (INFN: Pavia, Milano, Pisa)
 - 10 cm x 10 cm x 100 cm
 - Mechanics with metal capillaries 2 mm OD, 1.1 mm ID
 - 9 towers. Central tower read out with SiPM. Remaining with PMT.
 - Alpha-tester compact CAEN electronics (FERS system)
- EU grants:
 - AIDA++ (applied)
- Cofunded by INFN, UK, Croatia
- International collaboration:
- UK: University of Sussex, RBI Croatia, South Korea

IDEA: uRwell chambers

- TECHTRA (INFN: Bologna, Ferrara, Frascati)
- µRwell technology
- Test µRwell 2D readout
- R&D on DLC+Cu sputtering with USTC (China)
- EU grants:
 - ATTRACT, CREMILN2, AIDA++(Applied)
- International collaboration:
 - USTC China, BINP-Novosibirsk

Development of large area chambers with industrial partners ELTOS and

Key R&D Issues Moving Forward

Updated Parameters of Collider Ring since CDR

	Higgs		Z (2T)	
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120	_	45.5	
Synchrotron radiation loss/turn (GeV)	1.73	1.8	0.036	_
Number of particles/bunch N _e (10 ¹⁰)	15.0	16.3	8.0	16.1
Bunch number (bunch spacing)	242 (0.68µs)	214 (0.7 μs)	12000	10870 (27ns)
Beam current (mA)	17.4	16.8	461.0	841.0
Synchrotron radiation power /beam (MW)	30	-	16.5	30
Cell number/cavity	2		2	1
β function at IP β_x^* / β_y^* (m)	0.36/0.0015	0.33/0.001	0.2/0.001	0.15/0.001
Emittance ε _x /ε _y (nm)	1.21/0.000	0.68/0.0014		0.52/0.0016
Beam size at IP σ _x /σ _y (μm)	20.9/0.068	15.0/0.037	6.0/0.04	8.8/0.04
Bunch length σ _z (mm)	have not yet been absorbed in			
Lifetime (hour)	^{0.67} bygics ^{0.65} bod dete ² tor studies			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93			

Luminosity increase factor:

× 1.8

× 3.2

- Machine Detector Interface
- Luminosity meter (LumiCal)
- Services design and integration

Silicon Vertex (continue work on material budget versus resolution versus cooling)

- Machine Detector Interface
- Luminosity meter (LumiCal)
- Silicon Vertex (continue work on material budget versus resolution versus cooling)
 - Services design and integration
- Tracker
 - Time Projection Chamber
 - Finalize investigation of Ion back flow and field distortion at the Z pole and 2 Tesla
 - Follow up on the Pixel TPC possibility
 - Drift Chamber
 - Can it cope with the high rates at the Z pole? Enough resolution?
 - Can provide PID with dE/dx measurement
 - Full silicon tracker \rightarrow need manpower increase to exploit this option
 - Are we adding too much material?
 - Need to add detector for particle identification

Trade off: Transparency <---> reliability/resolution

Calorimetry

- ECAL, HCAL, DR
 - Finalize evaluation of the crystal calorimeter option
 - Cost versus physics performance
 - **Cooling of PFA calorimeter? versus performance?** \bullet

Calorimetry

- ECAL, HCAL, DR
 - Finalize evaluation of the crystal calorimeter option
 - Cost versus physics performance
 - Cooling of PFA calorimeter? versus performance? ullet

Muon System optimization

Optimize number of layers

Optimization of detectors

- Use a mixture of fast simulation and full simulation
- Need to consider engineering aspects
- Need to consider costing issues

Not an easy task without definite detectors/collaborations target

Final remarks

Now considering new ideas and developing new tools

Need more time to explore alternatives and test new ideas

Need to coordinate with engineers to study real detector feasibility

Need to expand international collaboration

CEPC CDR: http://cepc.ihep.ac.cn/

Key accelerator and detector technologies R&D continues and are put to prototyping

Tracker Detector – PFA Detector

Tracker material budget/layer: ~0.50-0.65% X/X₀

25 cm

12 cm

Total Silicon area ~ 68 m²

Required resolution $\sigma_{SP} < 7 \ \mu m$

Sensor technology

- **1. Microstrip sensors** double layers: stereo angle: 5°-7° strip pitch: 50 µm
- 2. Large CMOS pixel sensors (CPS)
 - **HV-CMOS** research on-going: SUPIX-1 / -2 sensor prototypes

Power and Cooling

- **1. DC/DC converters**
- 2. Investigate air cooling

Extensive opportunities for international participation

CEPC CDR: Particle Flow Conceptual Detector

Major concerns being addressed

- **1. MDI region highly constrained** $L^* = 2.2 \text{ m}$ **Compensating magnets**
- 2. Low-material Inner Tracker design
- **3. TPC as tracker in high-luminosity Z-pole scenario**
 - 4. ECAL/HCAL granularity needs Passive versus active cooling **Electromagnetic resolution**

Magnetic Field: 3 Tesla

CEPC CDR: IDEA Conceptual Detector (CEPC + FCC-ee)

Inspired on work for 4th detector concept for ILC

Calorimeter outside the coil

* Dual-readout calorimeter: 2 m/8 λ_{int} * Preshower: ~1 X₀

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

Drift chamber: 4 m long; Radius ~30-200 cm, ~ 1.6% X₀ , 112 layers * (yoke) muon chambers

Vertex: Similar to CEPC default

CMOS Large-Pixel Sensors for Tracker

SUPIX1 (Shandong University PIXel)

Produced and under test

- Matrix: 64 × 16
- Rolling shutter readout mode
- 16 parallel analog outputs
- Sensitive area: 2 × 7.88 mm²

SUPIX2 Submitted to SMIC in November

- Matrices: 32 × 16
- Rolling shutter readout mode
- 16 parallel analog outputs
- Pixel sizes: 60×60 μm², 60×180 μm²

69

MDI Assembly and Installation

Engineering studies started

Different scenarios under study

Silicon tracker assembly pushed from one side

Vacuum connections closed remotely

MDI Assembly and Installation

Engineering studies started

Different scenarios under study

Needs close collaboration between detector designers and MDI engineers

71

Time Projection Chamber (TPC)

Allows for particle identification

Low material budget:

- <1% X₀ in r
- 10% X₀ for readout endcaps in Z

Readout by: Micro-Pattern Gas Detector (MPGD)

Time Projection Chamber (TPC) – Challenges

Mini-workshop, Hong Kong, IAS Jan 2019: http://iasprogram.ust.hk/hep/2019/workshop_cc.php

Position resolution: ~100 μ m in r ϕ dE/dx resolution: 5%

- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- **Problem: Ion Back Flow —> track** distortion

Assumes, for each primary ionization, 5 ions backflow from readout into main gas system

Hybrid: GEM and Micromegas readout

Drift Chamber Option – IDEA Concept

Lead by Italian Colleagues

Low-mass cylindrical drift chamber

- Follows design of the KLOE and MEG2 experiments
- Length: 4 m
- Radius: 0.35- 2m

Layers: $14 SL \times 8 layers = 112$ Cell size: 12 - 14 mm

Stereo angle: 50-250 mrad

• Gas: 90%He – 10%iC₄H₁₀ Material: 1.6% X₀ (barrel)

• Spatial resolution: $< 100 \,\mu m$ • Max drift time: ~350 nsec • Cells: 56,448

MEG2 chamber (naked)

Drift Chamber Considerations

Particle Identification

Wire tension, 25 g, T > 0.32 N

Aluminium and Tungsten wires marginal

Exploring 35 µm Carbon monofilaments

y Berkeley and Argonne cosθ**=**0.80 mited particle identification (dE/dx) wbacks

Calorimeter options

Chinese institutions have been focusing on Particle Flow calorimeters

R&D supported by MOST, NSFC and **HEP** seed funding

Some longitudinal granularity

ECAL with Silicon and Tungsten (LLR, France) ECAL with Scintillator+SiPM and Tungsten (IHEP + USTC)

SDHCAL with RPC and Stainless Steel (SJTU + IPNL, France) SDHCAL with ThGEM/GEM and Stainless Steel (IHEP + UCAS + USTC) HCAL with Scintillator+SiPM and Stainless Steel (IHEP + USTC + SJTU)

Crystal Calorimeter (LYSO:Ce + PbWO) **Dual readout calorimeters (INFN, Italy + Iowa, USA) — RD52**

77)

ECAL Calorimeter — Particle Flow Calorimeter Scintillator-Tungsten Sandwich ECAL

Crucial parameters

- Absorber thickness: 24 X₀
- Layer number: 30 layers
- Cell size: < 10 mm × 10 mm

Superlayer (7 mm) is made of:

- 3 mm thick: Tungsten plate
- 2 mm thick: Scintillator 5 x 45 mm²
- 2 mm thick: Readout/service layer

SiPM studies Determined the optimal dynamic range of SiPM for both Sci-ECAL and AHCAL

1. SiPM with more than 10000 pixels are not required

2. SiPM to be located in center of strip

HCAL Calorimeter — Particle Flow Calorimeter Scintillator and SiPM HCAL (AHCAL)

Dual Readout Calorimeter

Lead by Italian colleagues: based on the D

Projective 4π layout implemented into CEPC simulation (based on 4th Detector collaboration design)

Covers full volume up to $|\cos(\theta)| = 0.995$ with 92 different types of towers (wedge)

4000 fibers (start at different depths to keep constant the sampling fraction)

ΕI 1.8m $\cos(\text{theta}) > 0.995$

/**5**m

ER

Performance in G4 simulation: EM resolution: $10.3\%/\sqrt{E} + 0.3\%$ Had resolution : ~34%/ \sqrt{E}

Studying different readout schemes PMT vs SiPM

Several prototypes from RD52

nave been built

Superconductor solenoid development **3 Tesla Field Solenoid**

Operating current 15.8 A

Cable length

30.1 km

Default is NbTi Rutherford SC cable (4.2K) High-Temperature SC cable is also being considered (YBCO, 20K)

Design for 2 Tesla magnet presents no problems Thin HTS solenoid being designed for IDEA concept **Double-solenoid design also available**

Muon Detector System

Baseline Muon detector

- 8 layers
- Embedded in Yoke
- **Detection efficiency:** > 95%

Baseline: Bakelite/glass RPC

Other technologies considered

Monitored Drift Tubes Gas Electron Multiplier (GEM) MicroMegas

New technology proposal (INFN): µRwell

Better resolution (200-300 µm) at little extra cost (?)

Muon system: open studi

Good experience in China on gas detectors little strong direct R&D on CEPC - rather of international collaboration

Layout optimization:

Visit the requirements for number of lay

 Implications for exotic physics searches • Use as a tail catcher / muon tracker (TCMT)

 Jet energy resolution with/without TCMT **Detector industrialization**

