
# IAC Q&A and Discussion: Meeting with detector group

## João Guimarães da Costa (for the Physics and Detector Working Group)

International Advisory Meeting Committee Beijing, October 29, 2020

Institute of High Energy Physics Chinese Academy of Sciences

中国科学院高能物理研究所

















| George Hou   | Weidong Li | Hong-Jian He |
|--------------|------------|--------------|
| Weiren       | Bin Wang   | Yunlong Chi  |
| ao.guimaraes | Yuan Zhang | Gang LI      |





# Questions from the IAC

ongoing activities and collaborative efforts on CEPC physics and detectors. them at our breakout session?

For some of the questions some simple oral explanations from your side will be sufficient. Other questions are more targeted towards gaining overview; in such cases a few slides may be useful.

exclude sending a few more questions later.

- Thank you for your extensive presentation to the IAC. It provides a good overview of
- In preparation for the IAC Q&A sessions of Friday, we have been collecting a few questions. Could you please forward them to your physics and detector colleagues and try to address

Due to time difference, some of us have not yet been able to provide input. So, we do not

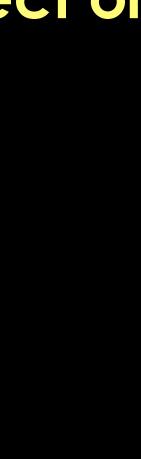




Which are the biggest challenges your are facing in the current stage of the project or for the coming years (for example technical challenges, timeline, achieving collaboration, manpower, structure)?

- Schedule can limit the extent of R&D. Need to find a balance between being ready for construction and targeting the most performing detectors
- International relations stability
- Availability of common software for detector concepts comparisons (working on it)
- Technical challenges:
  - Engineering design and scalability of calorimeters
  - Cooling systems of PFA calorimeter, vertex detector and beam pipe
  - Access to the most advanced sensor foundries and limited access to some electronics
  - Adding PID capabilities with minimal cost to Higgs physics




Which are the biggest challenges your are facing in the current stage of the project or for the coming years (for example technical challenges, timeline, achieving collaboration, manpower, structure)?

### Vertex detector R&D:

- Chinese HEP community has no direct access to 65nm CMOS technology; the requirement of 3  $\mu$ m resolution is not easy to achieve.
- Power consumption is still high, especially at the Z pole at a high rate. It is challenging to design cooling for the vertex detector.
- Design of support structure is a big challenge, it needs to light with a low material budget, and it has to be robust enough and not vibrate in air cooling.

### Timeline:

- Design a Full-size vertex detector prototype in 3 years (by 2023)
- We will look for domestic foundry and also collaborate with international community to explore new technology for smaller feature size and lower power consumption. (Longer term plan)











for the coming years (for example technical challenges, timeline, achieving collaboration, manpower, structure)?

- microRwell "tiles".
- The challenges for both detectors are then of course almost identical
- The biggest challenge will be to achieve the proper technological transfer to industry such that the basic microRWell tiles could in large part, if not completely, be built by industry.
- We have started an R&D program that should lead to the definition of the basic microRwell tiles within 2023-2024. The technology transfer has also started since 2-3 years and will proceed in parallel to the definition of the main characteristics of the microRwell tiles.
- This R&D program is, for the time being, being carried out by 3-4 INFN units and we therefore see room and scope for a more ample international collaboration. This would also ensure a better manpower coverage for the realisation of both detectors. The structure of the collaboration is at the moment rather simple and it could evolve as the collaboration increases.

# Which are the biggest challenges your are facing in the current stage of the project or

 The Preshower and the Muon detection system of IDEA would both be realised using the microRwell technology. Both detectors will be highly modular using a large number of basic

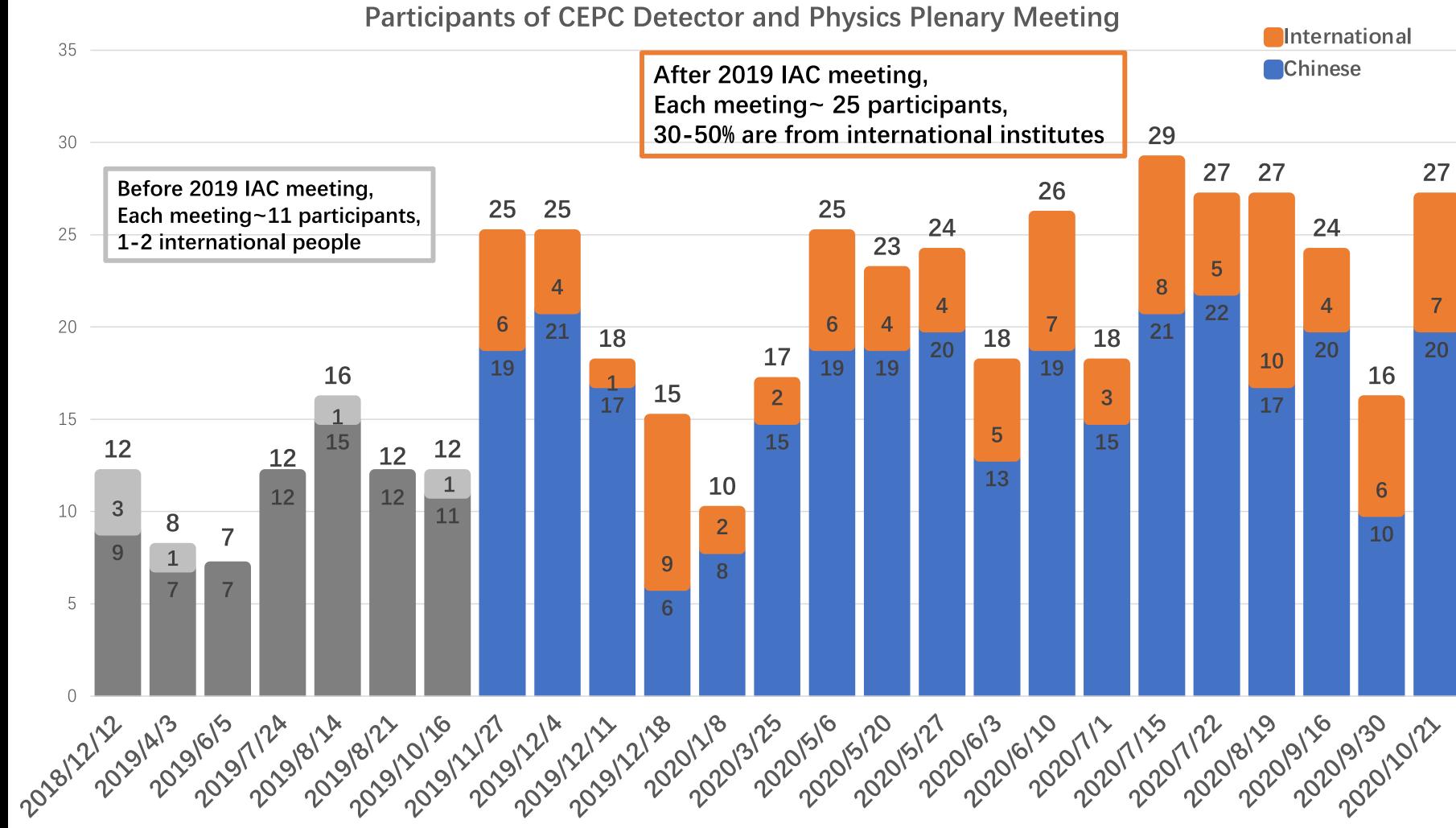




The current time line was driven by the wish to obtain a place for CEPC in the 14th 5year plan. Now that this constraint may no longer be valid, can you estimate what it would take for the different subsystems to perform the detector R&D in depth in preparation for the TDR (time, expertise, international involvement)?

- R&D research will continue to be mostly led by funding availability
- At this stage, the current R&D timescale is not much affected (see next page)
- TDR will be done by International Collaborations (see next question) and ultimately driven by them
- We should be ready by construction date, even if the construction starting time would not be changed (2030).
  - Longer time will allow us to produce better performing detectors at lower cost
- afterwards (2026). If more R&D funding was available times could be anticipated.
- IDEA's R&D will be completed by next European Strategy, ready for a decision soon DR Calorimeter R&D likely to be finished by 2026; Drift Chamber could be ready a little earlier 2023-2024.

# Projects overview: R&D schedule


| PBS   | Task Name                                  | Finish      | 2020 |    | 2021   |         | 2022      |             | 023   |        | 2024    |         | 2025   |        | 2026   |       | 202   |         | 2028    |       | 2029        |
|-------|--------------------------------------------|-------------|------|----|--------|---------|-----------|-------------|-------|--------|---------|---------|--------|--------|--------|-------|-------|---------|---------|-------|-------------|
|       |                                            |             | H1   | H2 | H1     | H2      | H1 H2     | 2 ⊦         | H1    | H2     | H1      | H2      | H1     | H2     | H1     | H2    | H1    |         |         | H2    | H1<br>Broio |
|       | CEPC Detector R&D Project                  | 26/12/31    |      |    |        |         |           |             |       |        |         |         |        |        |        |       | 1 CE  | PCDE    | etector | KQD   | Proje       |
| 1     | Vertex                                     | 23/12/29    |      |    |        |         |           |             |       |        | Vert    |         |        |        |        |       |       |         |         |       |             |
| 1.1   | Vertex Prototype                           | 23/12/29    | _    |    |        |         |           |             |       |        |         |         | ototy  | •      |        |       |       |         |         |       |             |
| 1.2   | ARCADIA CMOS MAPS                          | 23/12/29    | _    |    |        |         |           |             |       |        | ARC     | ADIA    | СМО    | S MAF  | PS     |       |       |         |         |       |             |
| 2     | Tracker                                    | 24/12/31    |      |    |        |         |           |             |       |        |         |         | 1 Trac | cker   |        |       |       |         |         |       |             |
| 2.1   | TPC Module and Prototype                   | 23/12/29    |      |    |        |         |           |             |       |        | TPC     | Modu    | ule an | d Pro  | totyp  | e     |       |         |         |       |             |
| 2.2   | Silicon Tracker Prototype                  | 23/10/31    |      |    |        |         |           |             |       | S      | Silicon | n Trac  | ker Pı | rototy | pe     |       |       |         |         |       |             |
| 2.3   | Drift Chamber Activities                   | 24/12/31    |      |    |        |         |           |             |       |        |         |         | Drift  | t Chan | nber   | Activ | ities |         |         |       |             |
| 3     | Calorimetry                                | 24/12/31    | -    |    |        |         |           |             |       |        |         |         |        | orimet | try    |       |       |         |         |       |             |
| 3.1   | ECAL Calorimeter                           | 24/12/31    | -    |    |        |         |           |             |       |        |         |         | 1 ECA  | L Calo | orime  | ter   |       |         |         |       |             |
| 3.1.1 | Crystal Calorimeter                        | 21/12/31    |      |    |        |         | Crystal   | Calo        | orime | eter   |         |         |        |        |        |       |       |         |         |       |             |
| 3.1.2 | PFA Sci-ECAL Prototype                     | 24/12/31    |      |    |        |         |           |             |       |        |         |         | PFA    | Sci-EC | CAL P  | rotot | ype   |         |         |       |             |
| 3.2   | HCAL Calorimeter                           | 22/12/30    | -    |    |        |         |           | —, ł        | HCAI  | L Cale | orime   | ter     |        |        |        |       |       |         |         |       |             |
| 3.2.1 | PFA Digital Hadronic Calorimeter           | 21/12/31    |      |    |        |         | PFA Dig   | gital       | Hadı  | ronic  | Calo    | rimet   | er     |        |        |       |       |         |         |       |             |
| 3.2.2 | PFA Sci-AHCAL Prototype                    | 22/12/30    |      |    |        |         |           | P           | PFA S | Sci-A  | HCAL    | Proto   | otype  |        |        |       |       |         |         |       |             |
| 3.3   | Dual-readout Calorimeter                   | 24/12/31    |      |    |        |         |           |             |       |        |         |         | Dua    | l-read | out C  | alori | met   | er      |         |       |             |
| 4     | Muon Detector                              | 24/12/31    | -    |    |        |         |           |             |       |        |         |         | 1 Mue  | on De  | tecto  | r     |       |         |         |       |             |
| 4.1   | Scintillator-based Muon Detector Prototype | 23/12/29    |      |    |        |         |           |             |       |        | Scint   | tillato | or-bas | ed M   | uon D  | )etec | tor F | Protot  | уре     |       |             |
| 4.2   | Muon and pre-shower µRWELL-based detector  | ors24/12/31 |      |    |        |         |           |             |       |        |         |         | Muc    | on and | l pre- | show  | ver µ | RWE     | L-base  | ed de | tector      |
| 5     | Solenoid                                   | 26/12/31    | -    |    |        |         |           |             |       |        |         |         |        |        |        |       | 1 So  | lenoi   | d       |       |             |
| 5.1   | LTS solenoid magnet                        | 25/12/31    |      |    |        |         |           |             |       |        |         |         |        |        | LTS s  | solen | oid   | magn    | et      |       |             |
| 5.2   | HTS solenoid magnet                        | 26/12/31    |      |    |        |         |           |             |       |        |         |         |        |        |        |       | НТ    | 'S sole | noid n  | nagne | et          |
| 6     | MDI                                        | 22/12/30    | _ r_ |    |        |         |           | —, r        | MDI   |        |         |         |        |        |        |       |       |         |         |       |             |
| 6.1   | LumiCal Prototype                          | 20/12/31    |      |    | Lum    | niCal F | Prototype | 9           |       |        |         |         |        |        |        |       |       |         |         |       |             |
| 6.2   | Interaction Region Mechanics               | 22/12/30    |      |    |        |         |           | <b>–</b> II | ntera | actio  | n Reg   | ion N   | /lecha | nics   |        |       |       |         |         |       |             |
| 8     | Software and Computing                     | 20/12/31    | -    |    | ⊓ Soft | tware   | e and Con | nput        | ting  |        |         |         |        |        |        |       |       |         |         |       |             |





What is the trajectory compared to 12 months ago?

### Plenary **Physics and Detector** Meeting



## The screen shots in Joao's presentation showing many meetings of various groups working on various aspects of the detector are very encouraging. What is the balance of international to Chinese participants in these meetings and how many people overall participate typically in each type of working group meeting on a regular basis.





The screen shots in Joao's presentation showing many meetings of various groups working on various aspects of the detector are very encouraging. What is the balance of international to Chinese participants in these meetings and how many people overall participate typically in each type of working group meeting on a regular basis. What is the trajectory compared to 12 months ago?

### Calorimeter •

- Plenary PFA CALO meeting, biweekly, Thu 9 am, 10-15 people, mostly domestic
- ECAL, monthly, China/Japan meeting, 10 participants, 50% from Japan
- DR meetings exist between Italy, UK, Croatia, US, and Korean
- Tracker biweekly, Thu 4 pm 20-30 participants
  - 50% international participation (UK, Italy, Germany)
  - Participation already established last year, but grew this year with inclusion of more groups
- Offline Software two bi-weekly international meetings + CEPC specific
  - EDM4HEP, and Key4HEP (hosted by CERN) both biweekly ullet
  - Two L2 bi-weekly CEPC specific meetings (ACTS, CEPC software), Monday, 2:30 pm
    - ACTS, participation grew in last year,  $6 \rightarrow 12$  people, 1 international (DESY)
    - IHEP, China Universities, and a few participates from UK to join soon
  - **Several L3**  $\bullet$ 
    - Calorimeter, monthly, IHEP-Japan meeting, 10 participants, 50% from Japan
    - Drift chamber software, weekly, Friday morning, 10 participants from China  $\bullet$



The screen shots in Joao's presentation showing many meetings of various groups working on various aspects of the detector are very encouraging. What is the balance of international to Chinese participants in these meetings and how many people overall participate typically in each type of working group meeting on a regular basis. What is the trajectory compared to 12 months ago?

- MDI
  - Biweekly meetings, Wednesday 9 am, ~20 people, mostly from IHEP+IPAS
- Vertex
  - ASIC design, weekly, Monday 3:30 pm, ~10 people, 2 from Barcelona
  - Mechanics, weekly, Friday 9:30 am, no international participation but UK people interested
- Physics and Simulation
  - Topical meetings:
    - Top physics
    - Snowmass preparation
    - Flavor meetings



# Please comment also on Chinese/non-Chinese participation in the detector technology R&D projects that were shown.

| PBS   | Task Name                            | Page | Subtasks | Context     | Team                               | Document Responsible                           |
|-------|--------------------------------------|------|----------|-------------|------------------------------------|------------------------------------------------|
|       | <b>CEPC Detector R&amp;D Project</b> |      |          |             |                                    |                                                |
| 1     | Vertex                               |      |          |             |                                    |                                                |
| 1.1   | Vertex Prototype                     | 5    | 9        | CEPC        | China+ international collaborators | Zhijun, Ouyang                                 |
| 1.2   | ARCADIA CMOS MAPS                    | 6    | 6        | Generic     | INFN, Italy                        | Manuel Rolo                                    |
| 2     | Tracker                              |      |          |             |                                    |                                                |
| 2.1   | <b>TPC Module and Prototype</b>      | 6    | 12       | CEPC        | IHEP, Tsinghua                     | Huirong                                        |
| 2.2   | Silicon Tracker Prototype            | 6    | 8        | Generic     | China, UK, Italy                   | Harald Fox, Meng Wang                          |
| 2.3   | <b>Drift Chamber Activities</b>      | 4    | 3        | FCC-ee/CEPC | INFN, Novosibirsk                  | Franco Grancagnolo                             |
| 3     | Calorimetry                          |      |          |             |                                    |                                                |
| 3.1   | ECAL Calorimeter                     |      |          |             |                                    |                                                |
| 3.1.1 | Crystal Calorimeter                  | 5    | 6        | CEPC        | IHEP, Princeton + others           | Yong Liu                                       |
| 3.1.2 | PFA Sci-ECAL Prototype               | 3    | 3        | CEPC        | USTC, IHEP                         | Jianbei Liu                                    |
| 3.2   | HCAL Calorimeter                     |      |          |             |                                    |                                                |
| 3.2.1 | PFA Digital Hadronic Calorimeter     | 4    | 5        | CEPC        | SJTU, IPNL, Weizmann, IIT, USTC    | Haijun Yang, Imad Laktineh, Shikma Bressler    |
| 3.2.2 | PFA Sci-AHCAL Prototype              | 4    | 4        | CEPC        | USTC, IHEP, SJTU                   | Jianbei Liu                                    |
| 3.3   | Dual-readout Calorimeter             | 5    | 5        | FCC-ee/CEPC | INFN, Sussex, Zagreb, South Korea  | Roberto Ferrari                                |
| 4     | Muon Detector                        |      |          |             |                                    |                                                |
| 4.1   | Scintillator-based Muon Detector     | 4    | 5        | CEPC        | Fudan, SJTU                        | Xiaolong Wang, Liang Li                        |
| 4.2   | Muon and pre-shower µRWELL-          | 5    | 4        | FCC-ee/CEPC | INFN, LNF                          | Paolo Giacomelli                               |
| 5     | Solenoid                             |      |          |             |                                    |                                                |
| 5.1   | LTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | Zhu Zian                                       |
| 5.2   | HTS solenoid magnet                  | 4    | 4        | CEPC        | IHEP+Industry                      | Zhu Zian                                       |
| 6     | MDI                                  |      |          |             |                                    |                                                |
| 6.1   | LumiCal Prototype                    | 4    | 2        | ILC/CEPC    | AC, IHEP                           | Suen Hou                                       |
| 6.2   | Interaction Region Mechanics         | 3    | 4        | CEPC        | IHEP                               | Hongbo Zhu                                     |
| 8     | Software and Computing               | 7    | 11       | CEPC        | IHEP, SDU                          | Li Weidong, Ruan Manqi, Sun Shengseng, Li Gang |



In the light of the recent evolution in governmental approval process, to which extent do you believe to have guaranteed resources to carry out key progress, waiting for more clear and substantial commitments from their government. What is their prioritization process, in view of the available and guaranteed resources? What is the plan to piggy back on existing detector design and R&D efforts worldwide, and to seek synergies and collaboration?

- this decision
- Expect funds for FCC-ee research to grow, which will allow for common R&D
- calorimeter

The availability of the R&D research funds in China so far have been independent of

 Already working on LHC detector upgrades that can provide know-how for CEPC later: ATLAS silicon tracker, ATLAS timing detector, LHCb silicon tracker, CMS Silicon







The ESPPU gives high priority to a future Higgs factory. Assuming that this will generate an upgoing trend in engagement in e+e- studies, in particular for the circular options, do you see emerging opportunities for collaboration with FCC-ee in order to achieve design and performance improvements overall for both? Has there been a trend in this direction recently?

- that these are also of interest for CEPC
  - Track demonstrator
  - The IDEA collaboration is targeting both
  - EDM4HEP and Key4HEP of common FCC-ee and CEPC
- Continued interest in exchange programs with Italian colleagues

 Yes, there is now a clear push in Europe for studies and R&D towards a circular e+e-Interest in working on FCC-ee projects grew, but several participants emphasize





The International Detector Advisory Committee (IDAC) did not meet since its 1st meeting in 2019. The IDAC is composed of talented scientists, eager to help CEPC. How do you see the role of IDAC and how do you plan to work with (and profit from) **IDAC in going forward?** 

- Advise on detector designs and suggested technologies is welcome
- The name of this committee is "International Detector R&D Review Committee" The charge follows the 2018 recommendation from IAC (see next slide) Initial function was to review international R&D proposals for detector work on CEPC

- Aiming for two meetings per year:
  - Meeting around March 2021, independently of the workshop, would be desirable



# **CEPC International Detector R&D Committee (IDC)**

### Committee proposed by CEPC IAC

- Evaluate International proposals for detector R&D relevant to the CEPC
- Independent organ to evaluate the importance and suitability of worldwide detector R&D proposals for CEPC and produce short report with findings.
- Evaluate the quality of the research proposed independently of the CEPC project, and therefore unbiased regarding internal institutional or personal interests
- Later, this committee is expected to evolve to evaluate the Letters of Intent for the CEPC Detectors submitted by the proponents of the International Detector Collaborations

### Charge





One of the main challenges in the detector design will be to set performance requirements followed by detector optimisaton for the different CEPC energy stages. This may lead to conflicting requirements and compromises to be made. Moreover, various detector technologies may be competing for a place in the same concept. What is your approach to tackling this, and what will be a good timing for setting up means for systematic comparisons, e.g. through a defined set of physics benchmarks, and other gauging factors.

- Physics and performance requirements are being updated now (as reported yesterday)
  - (work done together FCC-ee)
- Need the software baseline
- $\bullet$ are optimized differently.
  - Need to evaluate the added value of PID for Higgs study •
- Cost and international contributions will be an issue ullet

 More directly comparisons of concepts could be done in one year (with common software platform) Higgs run should have priority in what regards performance, but it is conceivable that the two detectors



Over recent years the number of sub-detector options for CEPC has increased. At the same time, much work has been invested in the software stack for detector simulation and event reconstruction, including the move to the common Key4hep software framework. Can you comment on the progress in the detailed integration of the different sub-detectors in the full software framework. How is this dealt with in the case of physics benchmark studies, where a multitude of options can become heavy on manpower and can make it difficult to bring coherence in results and comparisons.

See slides from Weidong





The common software development for future colliders, as illustrated by Joao's report on the common workshop on software for a e+e- collider earlier this year, is very positive and should be encouraged. Can you elaborate a bit more in detail on the planning and whether there is real cooperative work on the work floor by the Higgs factory communities? Do the software stack of CEPC and FCC-ee really get integrated?

- See answer by Weidong
- Add DELPHES cards for CEPC detectors?





Two interaction regions are foreseen. What is the present plan of the CEPC management to approve the corresponding detector projects? Will there be at some point a call for LOI's and proposals submitted by proto-collaborations with subsequent development into real projects that need to be approved? Of course the people involved in the present designs and studies will be in good position to be leading actors, but for a machine that will be the leading accelerator in the world at that time, some outsiders will certaily emerge with their own ideas and projects.

- The procedure for selecting the two detectors is unchanged
- Letters of Intent will be submitted
- Collaborations

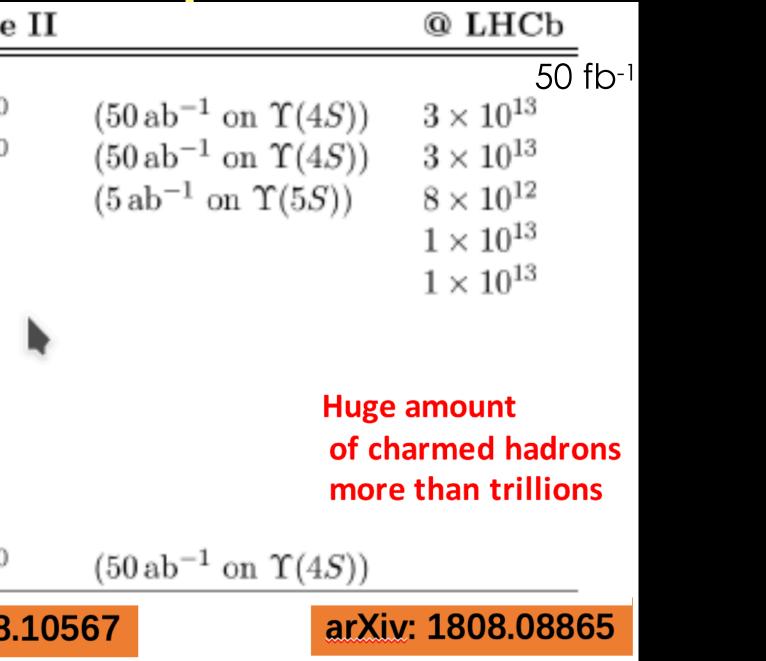
 The detector committee is expected to evolve to evaluate the Letters of Intent for the CEPC Detectors submitted by the proponents of the International Detector





Flavour at the Z: this part of the program, together with EWPT, being specific to CEPC and not shared by ILC, deserves a high-profile dedicated effort, reflected also in the detector design.

Related to this: On Joao's slide 12 for flavor physics, what are the assumptions table with tau-tau statistics, very useful for comparison to Belle II.


| Particle                 | @ Tera-Z           | @ Bell             |
|--------------------------|--------------------|--------------------|
| b hadrons                |                    |                    |
| $B^+$                    | $6 \times 10^{10}$ | $3 \times 10^{10}$ |
| $B^0$                    | $6 \times 10^{10}$ | $3 \times 10^{10}$ |
| $B_s$                    | $2 \times 10^{10}$ | $3 \times 10^8$    |
| b baryons                | $1 	imes 10^{10}$  |                    |
| $\Lambda_b$              | $1 	imes 10^{10}$  |                    |
| c hadrons                |                    |                    |
| $D^0$                    | $2 \times 10^{11}$ |                    |
| $D^+$                    | $6	imes 10^{10}$   |                    |
| $D_s^+$                  | $3 	imes 10^{10}$  |                    |
| $D_s^+$<br>$\Lambda_c^+$ | $2 \times 10^{10}$ |                    |
| $\tau^+$                 | $3	imes 10^{10}$   | $5 \times 10^{10}$ |
|                          |                    |                    |

arXiv: 1808.10567

### Info

- CEPC:
- FCC-ee:  $1 \times 10^{11}$  Z  $\rightarrow$  tau tau, with 4.6 x 10<sup>36</sup> luminosity; efficiency for tau pair reconstruction : 90%
- Bellell: ٠
- $2.1 \times 10^{10}$  with 10 ab<sup>-1</sup>; efficiency: less than 10%. • STCF:

# (integrated lumi: peak lumi, running time) for CEPC? Would be good to complete the



Tera-Z of CEPC  $\leftarrow$  2 years running with the luminosity 1x10<sup>36</sup>/cm<sup>2</sup>.s<sup>-1</sup>

 $3 \times 10^{10}$  Z  $\rightarrow$  tau tau, with 1.0x10<sup>36</sup> luminosity ; efficiency for tau pair reconstruction : 90% 5x10<sup>10</sup> tau pairs at Y(4S) with integrated luminosity 50 ab<sup>-1</sup>; efficiency for tau pair reconstruction : 15%





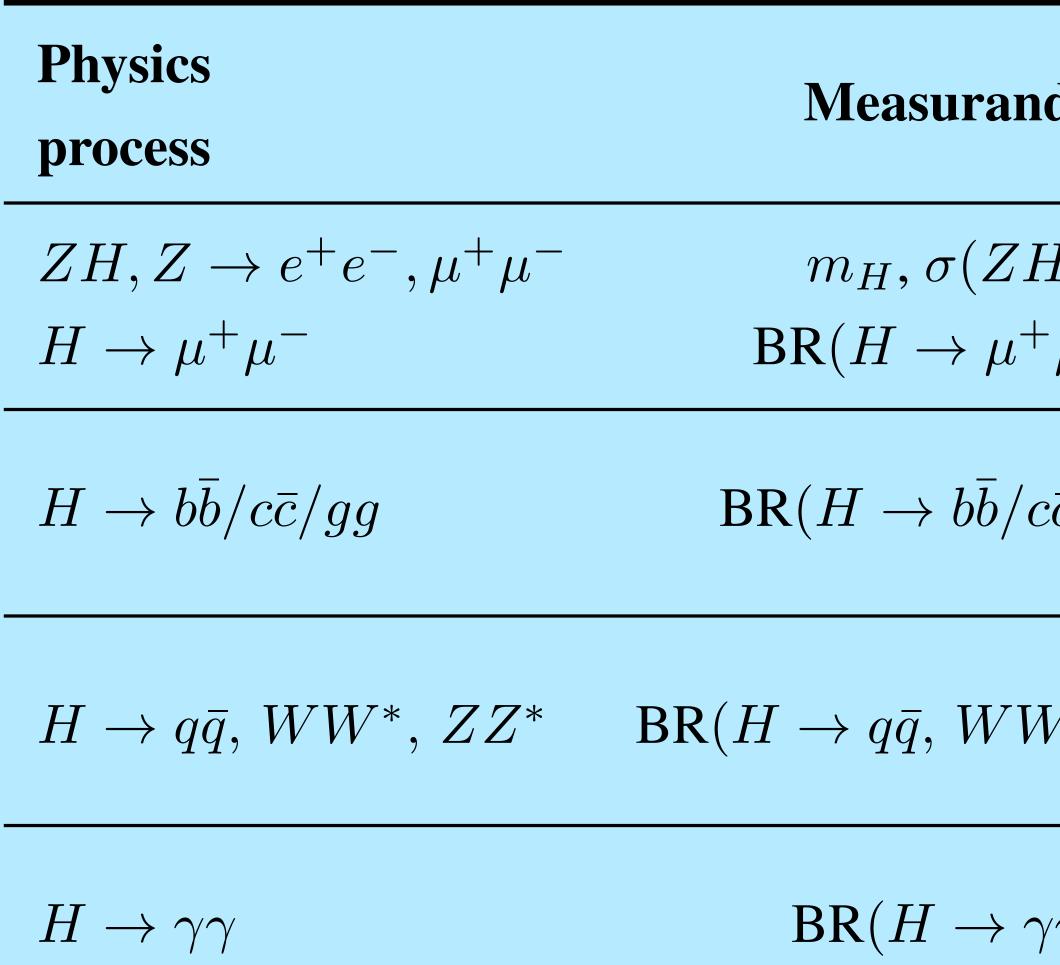
# Flavor Physics

| Particle         | @ Tera-Z           | Belle II           |                                                             | <pre>@ LHCb</pre>  |
|------------------|--------------------|--------------------|-------------------------------------------------------------|--------------------|
| <b>b</b> hadrons |                    |                    |                                                             |                    |
| $B^+$            | $2 \times 10^{10}$ | $3	imes 10^{10}$   | $(50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$            | $3 \times 10^{13}$ |
| $B^0$            | $2 \times 10^{10}$ | $3 	imes 10^{10}$  | $(50 \mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$            | $3 \times 10^{13}$ |
| $B_s$            | $7 \times 10^9$    | $3 	imes 10^8$     | $(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$ | $8 \times 10^{12}$ |
| b baryons        | $3 \times 10^9$    |                    |                                                             | $1 \times 10^{13}$ |
| $\Lambda_b$      | $3 \times 10^9$    | vs Belle II: b bar | yons, $\Lambda_b$ , 100x $B_s$                              | $1 \times 10^{13}$ |
|                  |                    | vs LHCb: low bkg-  | $\rightarrow$ neutrals ( $\gamma, \pi_0, \dots$ )           |                    |

**Unique sensitivity** to processes unavailable at LHCb or Belle II: flavor-violating Z decays\*, lepton universality in Z decays\*, rare  $b \rightarrow s \tau \tau$  decays, rare  $b \rightarrow s v v$  decays,  $B_c$  decays<sup>\*</sup>, semi-tauonic  $b \rightarrow c \tau v decays$ ,  $\tau decays$ , FCNC single top.

### Some progress since CDR — 2 sessions at workshop — 9 talks




similarly, physics at the top threshold and slightly above should be revamped. For long time CEPC focused on the Higgs energy-stage, keeping the other runs in the sidelines. We recommend that the management, and the physics coordination, show more firm commitment to make this an integral part of the program. The relevant physics studies should be promoted. This goes together with achieving compelling evidence that the accelerator design is not only compatible with the higher energy stage, but also optimized for it.

- Running at the top threshold is an upgrade to the CEPC project.
- It is important that we focus on the core goals of the project, although we understand the need to ensure the accelerator will be upgradable to higher energies at a modest cost





# **Re-evaluation of physics requirements**



| ds             | Detector<br>subsystem | Performance<br>requirement                                                                   |
|----------------|-----------------------|----------------------------------------------------------------------------------------------|
| Η)<br>-μ-)     | Tracker               | $\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$      |
| $c\bar{c}/gg)$ | Vertex                | $\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu \text{m})$ |
| $V^*, ZZ^*)$   | ECAL<br>HCAL          | $\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV                                            |
| $(\gamma)$     | ECAL                  | $\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01$                            |

### under discussion $\rightarrow$ started at the workshop last year





# Physics at near the top threshold

- independent way with luminosity around 200-400 fb<sup>-1</sup> with optimized setup: ~ 1 year of running (~480 fb<sup>-1</sup>/year)
- Considering the run for top coupling measurement at CEPC, 360 GeV should be enough
  - Need to investigate the feasibility of running with a lower energy
  - The expected precision for the coupling is much better than LHC
  - 2 ab<sup>-1</sup> luminosity corresponds to 4-5 years with optimized setup
- 360 GeV run is helpful for the Higgs width measurement
  - The results are not much different from the running at 365 GeV
- Some thoughts on new physics with 360 GeV have been addressed
- 2HDM, Georgi-Machacek (GM) models, H—>sh (2HDM+S)

### Led by Yaquan Fang

The target accuracy of e<sup>+</sup>e<sup>-</sup> for top mass measurement is O(10) MeV and in a model





## Flavor Physics

| Particle         | @ Tera-Z           |         |
|------------------|--------------------|---------|
| <b>b</b> hadrons |                    |         |
| $B^+$            | $2 \times 10^{10}$ | 3       |
| $B^0$            | $2 \times 10^{10}$ | 3       |
| $B_s$            | $7 \times 10^9$    | 3       |
| b baryons        | $3 \times 10^9$    |         |
| $\Lambda_b$      | $3 	imes 10^9$     | vs Bel  |
|                  |                    | vs LHCk |

### Some progress since CDR — 2 sessions at workshop — 9 talks

### Belle II

### @ LHCb

- $3 \times 10^{13}$  $\times 10^{10}$  $(50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$  $imes 10^{10}$  $3 \times 10^{13}$  $(50 \,\mathrm{ab^{-1}} \text{ on } \Upsilon(4S))$  $8 \times 10^{12}$  $\times 10^8$  $(5 \operatorname{ab}^{-1} \operatorname{on} \Upsilon(5S))$  $1 \times 10^{13}$
- lle II: b baryons,  $\Lambda_b$ , 100x  $B_s$  $1 \times 10^{13}$ b: low  $bkg \rightarrow neutrals$  ( $\gamma, \pi_0, \ldots$ )
- Unique sensitivity to processes unavailable at LHCb or Belle II: flavor-violating Z decays\*, lepton universality in Z decays\*, rare  $b \rightarrow s \tau \tau decays$ , rare  $b \rightarrow s v v decays$ ,  $B_c decays^*$ , semi-tauonic  $b \rightarrow c\tau v$  decays,  $\tau$  decays, FCNC single top.



# TDAQ

### Working on expanding the Trigger and DAQ requirements for the CEPC from the CDR into a better understanding of the overall situation

### Triggerless running has impact on detector design, power consumption and cooling

| TDAQ and         | d Onlin   | e                                                                              |
|------------------|-----------|--------------------------------------------------------------------------------|
| Conveners        | : Prof. Z | hen An LIU (IHEP), David Newbold (UKRI), Chris Bee (CERN)                      |
| Location:        | Grand     | Ballroom C ( Online Meeting Room: https://weidijia.zoom.com.cn/j/66965146553 ) |
| 10:30 Ir         | ntroduc   | tion of the TDAQ requirements 10'                                              |
| S                | peaker:   | Prof. Zhen An LIU (IHEP)                                                       |
| М                | laterial: | Slides 📔                                                                       |
| 10:40 <b>R</b>   | equiren   | nents from the LumiCal, Suen Hou 10'                                           |
| S                | peaker:   | Suen Hou (IPAS)                                                                |
| М                | laterial: | Slides 📩                                                                       |
| 10:50 <b>R</b>   | equiren   | nents from the Vertex Dedector 10'                                             |
| S                | peaker:   | Mr. Wei WEI (IHEP)                                                             |
| М                | laterial: | Slides 📩                                                                       |
| 11:00 <b>R</b>   | equiren   | nents from the TPC 10'                                                         |
| S                | peaker:   | Dr. Huirong Qi (IHEP)                                                          |
| М                | laterial: | Slides 📩                                                                       |
| 11:10 <b>R</b>   | equiren   | nents from the ECAL & HCAL 10'                                                 |
| S                | peaker:   | Dr. Yong Liu (IHEP)                                                            |
| М                | laterial: | Slides 📩                                                                       |
| 11:20 <b>P</b> i | ixel rea  | dout technologies and the challenges for the future 20'                        |
| S                | peaker:   | Garcia-Sciveres Maurice (LBNL)                                                 |
| М                | laterial: | Slides 📩                                                                       |

### Series of discussions culminated in the workshop, to continue to followup, led by Zhen An Liu

| TDAQ    | and Onlin    | e                                                                              |
|---------|--------------|--------------------------------------------------------------------------------|
| Conven  | ers: Prof. Z | Zhen An LIU (IHEP), David Newbold (UKRI), Chris Bee (CERN)                     |
| Locatio | n: Grand     | Ballroom C ( Online Meeting Room: https://weidijia.zoom.com.cn/j/66965146553 ) |
| 14:00   | Requiren     | nents from the Drift Chamber 10'                                               |
|         | Speaker:     | Francesco Grancagnolo (INFN-Lecce)                                             |
|         | Material:    | Slides 🔁                                                                       |
| 14:10   | Requiren     | nents from DR Calorimeter 10'                                                  |
|         | Speaker:     | Roberto Ferrari (INFN)                                                         |
|         | Material:    | Slides 📩                                                                       |
| 14:20   | Requiren     | nents from the Muon Detector 10'                                               |
|         | Speaker:     | Paolo Giacomelli (INFN-Bo)                                                     |
|         | Material:    | Slides 📩                                                                       |
| 14:30   | Requiren     | nents from the Silicon Tracker 10'                                             |
|         | Speaker:     | Jens Dopke (STFC Rutherford Appleton Laboratory)                               |
|         | Material:    | Slides                                                                         |
| 14:40   | LHCb sof     | tware-only trigger 15'                                                         |
|         | Speaker:     | Dorothea vom Bruch (LPNHE)                                                     |
| 14:55   | ATLAS H      | LT tracking optimisation 15'                                                   |
|         | Speaker:     | Mark Sutton (Sussex)                                                           |
|         | Material:    | Slides 🛃                                                                       |
| 15:10   | High-Pre     | cision Timing Distribution Systems for LHC experiments 15'                     |
|         | Speaker:     | Eduardo Mendes (CERN)                                                          |
|         | Material:    | Slides 🔁                                                                       |





# Software and Reconstruction algorithms

Last year reported that we had started developing a new CEPC software platform (moving away from iLCSoft)

Workshop in Bologna (June 12-13) (FCC, CEPC, ILC, CLIC) kicked-off collaboration: https://agenda.infn.it/event/19047/

### Consensus:

- Develop a Common Turnkey Software Stack (Key4hep) for future collider experiments - Maximize the sharing of software components between experiments

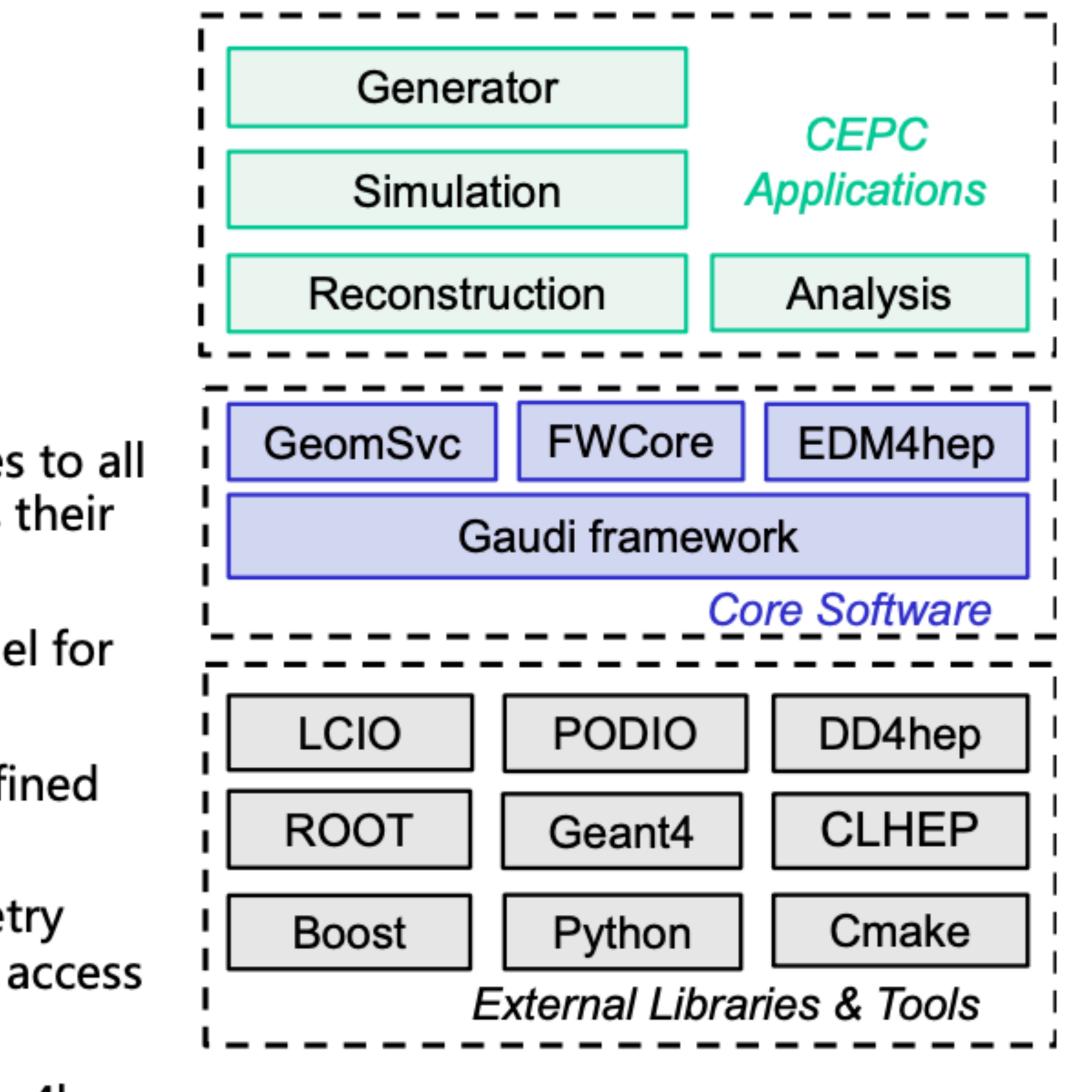
CEPCSW is now fully integrated with Key4hep, and supports application development

See Xingtao Huang's talk during workshop for details








# **CEPCSW and Core Software**

### Architecture of CEPCSW ٠.

- External libraries
- Core software
- CEPC applications for simulation, reconstruction and analysis

### Core software

- Gaudi framework: defines interfaces to all software components and controls their execution.
- EDM4hep: generic event data model for • **HEP collider experiments**
- FWCore :manage event objects defined by EDM4hep.
- GeomSvc :a DD4hep-based geometry • service to provide a unified way to access detector geometry data.
- Both FWCore and EDM4hep are Key4hep packages.

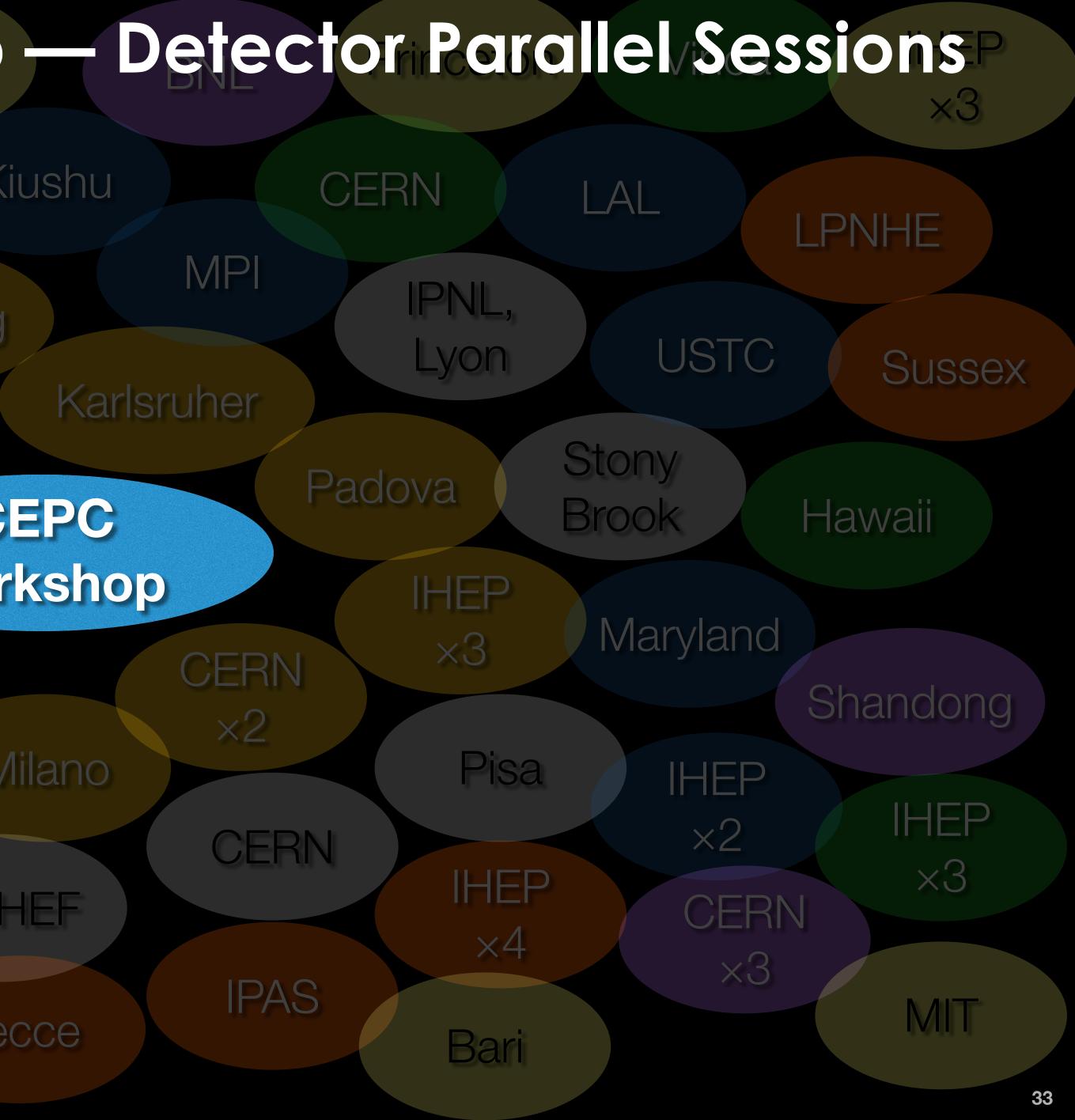


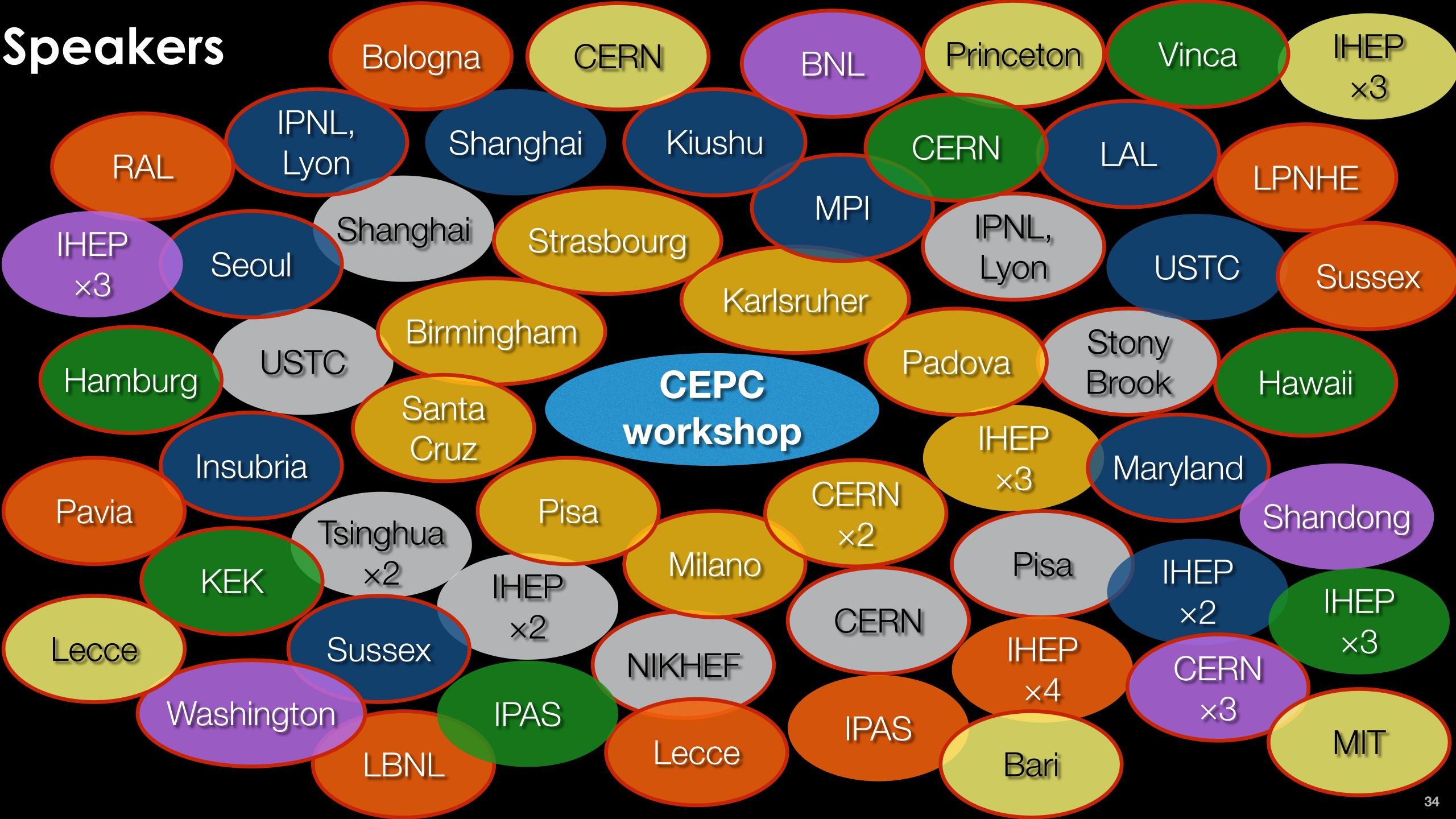


# **CEPCSW Progress and Plans**

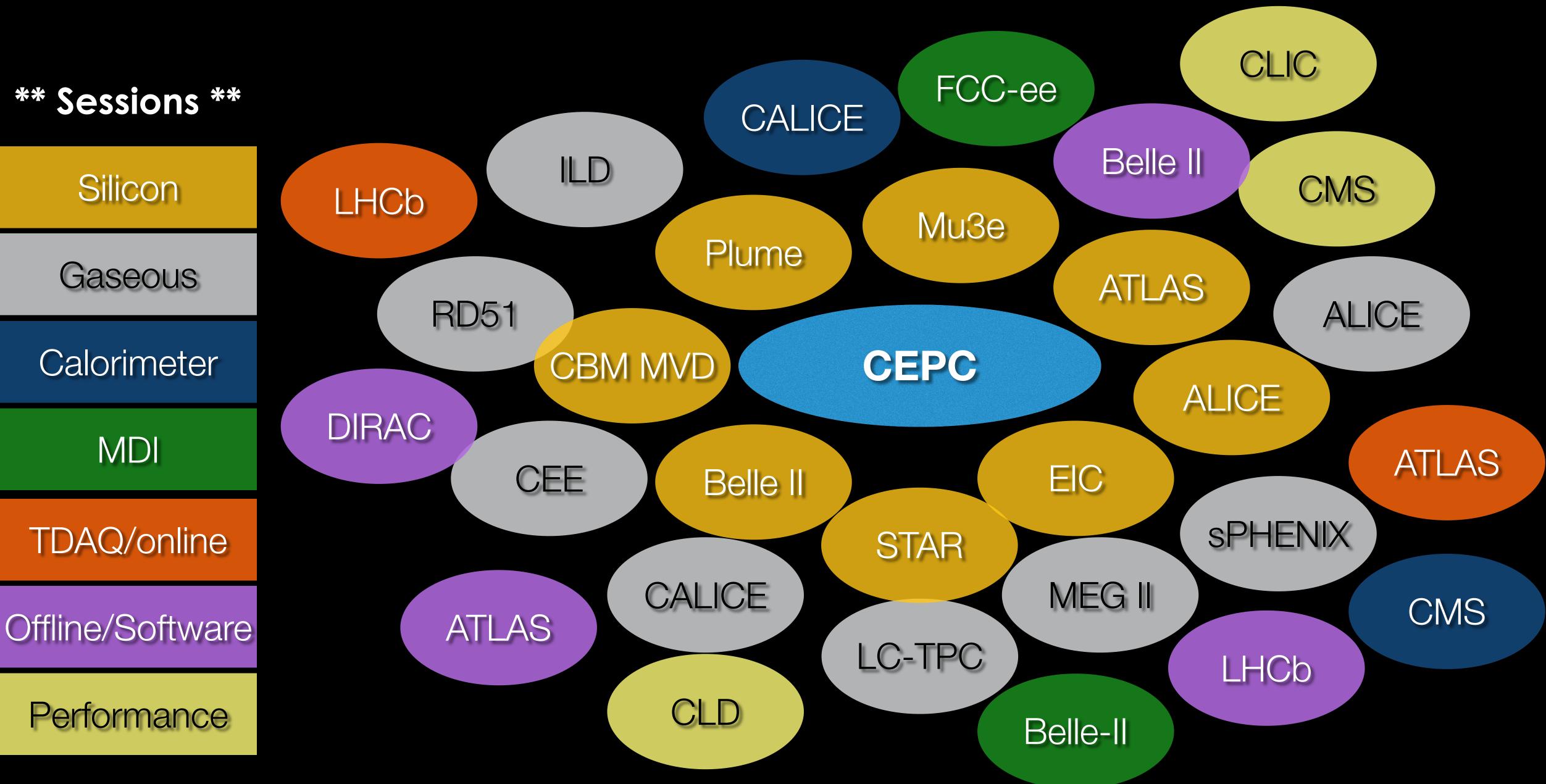
- Further progress made since last CEPC workshop
  - Detector simulation framework was developed and used for the study of CEPC\_v4 detector and ulletreference detector
  - ECAL fast simulation with the frozen shower method was developed to speed up the simulation of  $\bullet$ electromagnetic shower
  - Finished porting of digitization and reconstruction algorithms for trackers and ECAL from Marlin to CEPCSW
  - k4Pandora package was developed to integrate Pandora with CEPCSW and became part of Key4hep software stack
- CEPCSW is managed with Github, deployed with CVMFS, and available for all CEPC Sites
- Plan
  - Adding more components from Key4hep when they are available ullet
  - Non-uniform magnetic field and pile-up of beam backgrounds
  - Development of simulation and reconstruction algorithms for the reference detector (SiTrk+DC, Crystal bar ECal)
  - Add algorithms for building reconstructed particles  $\bullet$







# **Detector International Collaboration**




# Speakers at CEPC Workshop -

| ** Sessions **   | Talks *   | ** Shanghai Ki    |
|------------------|-----------|-------------------|
| Silicon          | 12        | anghai Strasbourg |
| Gaseous          | 11        | Birmingham        |
| Calorimeter      | UST<br>10 | Santa C           |
| MDI Insul        | nia10     | Cruz Wor          |
| TDAQ/online      | 13        | Pisa<br>hua<br>M  |
| Offline/Software | 9         | HEP<br>x2<br>Sex  |
| Performance      | oto8      | IPAS INIKF        |
|                  | 73        | Lee               |





# Collaborations



# Main Detector and Physics Workshops in 2020

- Jan 18, 2020: Physics Potential Study for Future e+e- Higgs Factories.
  - http://iasprogram.ust.hk/hep/2020/meeting\_20200118.php
- - <u>http://iasprogram.ust.hk/hep/2020/workshop\_experiment.php</u>
- <u>http://iasprogram.ust.hk/hep/2020/workshop\_accelerator.php</u>
- May 28-29, 2020: CEPC MDI Workshop
  - https://indico.ihep.ac.cn/event/11801/
- <u>https://indico.ihep.ac.cn/event/11938/other-view?view=standard</u>
- Aug 28-29, 2020: Workshop on Detector & Accelerator Mechanics
- https://indico.ihep.ac.cn/event/12324/

• Jan 16-17, 2020: Mini-workshop: Software and Physics Requirements for e+e- Colliders Jan 16-17, 2020: Mini-Workshop: Machine Detector Interface for Future Colliders:

July 22-23, 2020: Online mini-workshop on a detector concept with a crystal ECAL

# Snowmass — Letters of Intent

### https://indico.ihep.ac.cn/event/12410/

### Detector 14 Lol

| Detecto                                                               |                                                                  |                                                                                         |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| Conveners: Joao Guimaraes Costa, WANG Jianchun, Mr. Manqi Ruan (IHEP) |                                                                  |                                                                                         |  |  |  |  |  |
| 15:00 CEPC Detectors Overview LoI 1'                                  |                                                                  |                                                                                         |  |  |  |  |  |
|                                                                       | CEPC Detector Overview LOI<br>SNOWMASS21-EF1_EF4-IF9_IF0-260.pdf |                                                                                         |  |  |  |  |  |
|                                                                       | Speakers:                                                        | Joao Guimaraes Costa, Mr. Manqi Ruan (IHEP), WANG Jianchun                              |  |  |  |  |  |
|                                                                       | Material:                                                        | Paper 🕑 Slides 📆                                                                        |  |  |  |  |  |
| 15:02 IDEA Concept 1'                                                 |                                                                  |                                                                                         |  |  |  |  |  |
|                                                                       | Speaker:                                                         | Franco Bedeschi (INFN-Pisa)                                                             |  |  |  |  |  |
|                                                                       | Material:                                                        | Paper 🕑                                                                                 |  |  |  |  |  |
| 15:03                                                                 | Dual Rea                                                         | dout Calorimeter 1'                                                                     |  |  |  |  |  |
|                                                                       | Speaker:                                                         | Roberto Ferrari (INFN)                                                                  |  |  |  |  |  |
|                                                                       | Material:                                                        | Paper 🕑                                                                                 |  |  |  |  |  |
| 15:04                                                                 | Drift Cha                                                        | mber 1'                                                                                 |  |  |  |  |  |
|                                                                       |                                                                  | Franco Grancagnolo                                                                      |  |  |  |  |  |
|                                                                       | Material:                                                        | Paper 🕑                                                                                 |  |  |  |  |  |
| 15.00                                                                 |                                                                  |                                                                                         |  |  |  |  |  |
| 15:06                                                                 |                                                                  | LL (muons, preshower) 1'<br>Paolo Giacomelli (INFN-Bo)                                  |  |  |  |  |  |
|                                                                       | Material:                                                        |                                                                                         |  |  |  |  |  |
|                                                                       | Platerial.                                                       | Paper 🕑                                                                                 |  |  |  |  |  |
| 15:08                                                                 |                                                                  | ector LoI 1'                                                                            |  |  |  |  |  |
|                                                                       |                                                                  | Prof. Zhijun Liang (IHEP)                                                               |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 🛃                                                                                |  |  |  |  |  |
| 15:09                                                                 | Key4hep                                                          | 1'                                                                                      |  |  |  |  |  |
|                                                                       | Speakers:                                                        | Dr. Weidong Li (高能所), Dr. Tao LIN (高能所), Prof. Xingtao Huang (Shandong University),     |  |  |  |  |  |
|                                                                       |                                                                  | Wenxing Fang (Beihang University)                                                       |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 🛃                                                                                |  |  |  |  |  |
| 15:10                                                                 | PFA Calor                                                        | rimeter 1'                                                                              |  |  |  |  |  |
|                                                                       | Speakers:                                                        | Haljun Yang (Shanghai Jiao Tong University), Dr. Jianbei Liu (University of Science and |  |  |  |  |  |
|                                                                       | Material:                                                        | Technology of China), Dr. Yong Liu (Institute of High Energy Physics)                   |  |  |  |  |  |
|                                                                       | Haterial.                                                        | Slides 🛃                                                                                |  |  |  |  |  |
| 15:11                                                                 | -                                                                | nularity Crystal Calorimeter 1'                                                         |  |  |  |  |  |
|                                                                       | -                                                                | Dr. Yong Liu (Institute of High Energy Physics)                                         |  |  |  |  |  |
|                                                                       | Material:                                                        | Paper 🕑 Slides 🛃                                                                        |  |  |  |  |  |
| 15:12                                                                 | Muon Sci                                                         | ntillator Detector 1'                                                                   |  |  |  |  |  |
|                                                                       | Speaker:                                                         | Dr. Xiaolong Wang (Institute of Modern Physics, Fudan University)                       |  |  |  |  |  |
|                                                                       | Material:                                                        | document 🛃                                                                              |  |  |  |  |  |
| 15:13                                                                 | Vertex Lo                                                        | DI 1'                                                                                   |  |  |  |  |  |
|                                                                       | Speaker:                                                         | Prof. Zhijun Liang (IHEP)                                                               |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 🛃                                                                                |  |  |  |  |  |
| 15:15                                                                 | MDI LoI 2                                                        | 1'                                                                                      |  |  |  |  |  |
|                                                                       |                                                                  | Dr. Hongbo ZHU (IHEP)                                                                   |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 🔁                                                                                |  |  |  |  |  |
| 15:16                                                                 | TPC LoI 1                                                        |                                                                                         |  |  |  |  |  |
| 15.10                                                                 |                                                                  | Dr. Huirong Qi (Institute of High Energy Physics, CAS)                                  |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 📆                                                                                |  |  |  |  |  |
|                                                                       |                                                                  |                                                                                         |  |  |  |  |  |
| 15:17                                                                 |                                                                  | R&D LoI 1'                                                                              |  |  |  |  |  |
|                                                                       |                                                                  | Dr. Feipeng NING (IHEP)                                                                 |  |  |  |  |  |
|                                                                       | Material:                                                        | Slides 🛃                                                                                |  |  |  |  |  |

Physics 17 Lol

| Open Physics Questions                                                             |                                                                                                                                                                                       |  |  |  |
|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Convener: Mr. Manqi Ruan (IHEP)<br>16:00 EF01-Higgs boson CP properties at CEPC 3' |                                                                                                                                                                                       |  |  |  |
|                                                                                    | Speakers: Meng Xiao, Xin Shi<br>Material: Slides 🔂                                                                                                                                    |  |  |  |
| 16:03                                                                              | EF01-Measurement of branching fractions of Higgs hadronic decays 3'<br>Speaker: Yanping Huang<br>Material: Slides T                                                                   |  |  |  |
| 16:06                                                                              | EF02-Study of Electroweak Phase Transition in Exotic Higgs Decays with CEPC                                                                                                           |  |  |  |
|                                                                                    | Detector Simulation 3'<br>Speaker: Shu Li<br>Material: Slides 1                                                                                                                       |  |  |  |
| 16:09                                                                              | EF03-Feasibility study of CP-violating Phase $\varphi s$ measurement via Bs $\rightarrow$ J/ $\Psi \varphi$ channel                                                                   |  |  |  |
|                                                                                    | at CEPC 3'<br>Speaker: Mingrui Zhao<br>Material: Slides 1                                                                                                                             |  |  |  |
| 16:12                                                                              | EF03-Probing top quark FCNC couplings tqγ, tqZ at future e+e- collider 3'<br>Speaker: Peiwen Wu<br>Material: Slides 1                                                                 |  |  |  |
| 16:15                                                                              | <b>EF03-Searching for Bs</b> $\rightarrow \phi vv$ and other b $\rightarrow svv$ processes at CEPC 3'<br>Speaker: Lingfeng Li<br>Material: Slides 1                                   |  |  |  |
| 16:18                                                                              | EF04-Measurement of the leptonic effective weak mixing angle at CEPC 3'<br>Speaker: Siqi Yang<br>Material: Slides 1                                                                   |  |  |  |
| 16:21                                                                              | <b>EF04-Probing new physics with the measurements of <math>e+e- \rightarrow W+W-</math> at CEPC with optimal observables </b> <i>3</i> ' Speaker: Jiayin Gu Material: Slides : $\Box$ |  |  |  |
| 16:24                                                                              | EF05-Exlusive Z decays 3'<br>Speaker: Qin Qin<br>Material: Slides T                                                                                                                   |  |  |  |
| 16:27                                                                              | EF05-NNLO electroweak correction to Higgs and Z associated production at future<br>Higgs factory 3'<br>Speaker: Zhao Li<br>Material: Slides :                                         |  |  |  |
| 16:30                                                                              | EF08-SUSY global fits with future colliders using GAMBIT 3'<br>Speaker: Peter Athron<br>Material: Slides T                                                                            |  |  |  |
| 16:33                                                                              | EF08-Probing Supersymmetry and Dark Matter at the CEPC, FCCee, and ILC 3'<br>Speaker: Tianjun Li<br>Material: Slides 1                                                                |  |  |  |
| 16:36                                                                              | EF09-Search for Asymmetric Dark Matter model at CEPC by displaced lepton jets 3'<br>Speaker: Mengchao Zhang<br>Material: Slides 1                                                     |  |  |  |
| 16:39                                                                              | EF09-Search for t + j + MET signals from dark matter models at future $e+e$ - collider                                                                                                |  |  |  |
|                                                                                    | Speaker: Peiwen Wu<br>Material: Slides 1                                                                                                                                              |  |  |  |
| 16:42                                                                              | EF0910-Dark Matter via Higgs portal at CEPC 3'<br>Speaker: Xin Shi<br>Material: Slides 1                                                                                              |  |  |  |
| 16:45                                                                              | EF0910-Lepton portal dark matter, gravitational waves and collider phenomenology                                                                                                      |  |  |  |
|                                                                                    | 3'<br>Speaker: Ke-Pan Xie<br>Material: Slides 1                                                                                                                                       |  |  |  |
| 16:48                                                                              | RF1-Exploring new physics with Bc →τ v_τ 3'<br>Speaker: Taifan Zheng<br>Material: Slides :                                                                                            |  |  |  |

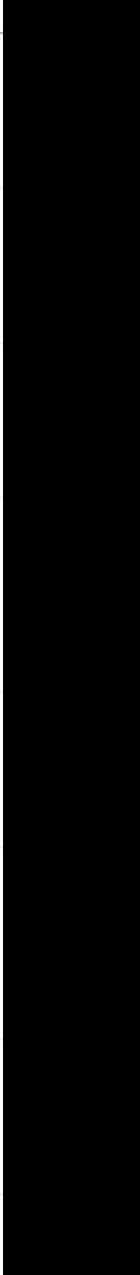




## **CEPC Physics and Detector Meetings**

## https://indico.ihep.ac.cn/category/214/

### **Physics and Detector Meetings**


| Physics and Simulations |  |  |  |  |  |
|-------------------------|--|--|--|--|--|
| Vertex                  |  |  |  |  |  |
| Tracker                 |  |  |  |  |  |
| Calo&Muon               |  |  |  |  |  |
| MDI                     |  |  |  |  |  |
| General                 |  |  |  |  |  |
| 100 TeV Simulation      |  |  |  |  |  |
| Pure Silicon Detector   |  |  |  |  |  |
| Offline Software        |  |  |  |  |  |
| Mechanics               |  |  |  |  |  |

## Regular International Participation to the Plenary Meetings CEPC Day meeting every month

| 416 events | •••• |
|------------|------|
| 12 events  |      |
| 128 events |      |
| 160 events |      |
| 52 events  |      |
| 138 events |      |
| 12 events  |      |
| 8 events   |      |
| 1 event 🔘  | -    |
| 3 events   |      |

| 00000012                                                          | 020                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| _                                                                 | Oct CEPC Physics and Detector Plenary Meeting<br>Oct CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| _                                                                 |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| _                                                                 | Sep CEPC Physics and Detector Plenary Meeting<br>Sep CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| August 2020                                                       |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 19                                                                | Aug CEPC Physics and Detector Snowmass Letters of Intent<br>Aug CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| July 2020                                                         |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| 15                                                                | Jul CEPC Physics and Detector Plenary Meeting<br>Jul CEPC Physics and Detector Plenary Meeting<br>Jul CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                     |  |  |  |  |  |  |
| June 2020                                                         | June 2020                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 10                                                                | Jun CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| 🔲 оз<br>Мау 2020                                                  | Jun CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| May 2020                                                          | Jun CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |  |
| May 2020                                                          |                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |
| May 2020                                                          | Jun CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                                                                      |  |  |  |  |  |  |
| May 2020                                                          | Jun CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                     |  |  |  |  |  |  |
| May 2020                                                          | Jun CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting                                                                                                   |  |  |  |  |  |  |
| May 2020<br>27<br>20<br>06<br>April 2020<br>29                    | Jun CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting                                                                                                                                                                                                     |  |  |  |  |  |  |
| May 2020<br>27<br>20<br>06<br>April 2020<br>29                    | May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting |  |  |  |  |  |  |
| May 2020<br>27<br>20<br>06<br>April 2020<br>29<br>15<br>March 202 | May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>May CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting<br>Apr CEPC Physics and Detector Plenary Meeting |  |  |  |  |  |  |

08 Jan CEPC Physics and Detector Plenary Meeting



38

# Particle Flow Calorimeter Collaborations

### **CEPC HCAL:**

- Imad Laktineh, IPNL, University of Lyon, France (SDHCAL based on GRPC)
- Shikma Bressler, Weizmann Institute of Science, Israel (SDHCAL based on RPWELL)
- Enrique Kajomovitz, Israel Institute of Technology, Israel (SDHCAL based on RPWELL)
- Hans-Christian Schultz-Coulon and Wei Shen, University of Heidelberg, Germany (Scintillator+Steel HCAL)

### **CEPC ECAL:**

- Vincent Boudry, Jean-Claude Brient, LLR, France (Silicon+W ECAL) Tohru Takeshita, Shinshu University, Japan (Scintillator+SiPM ECAL) Wataru Ootani, University of Tokyo, Japan (Scintilator+W ECAL) Christoph Tully, Princeton University, USA (Crystal ECAL) Sarah Eno, University of Maryland, USA (Crystal ECAL)

- France (Readout electronics)



Christophe de la taille, CNRS/IN2P3 Micro-Electronics Design Lab, Ecole Polytechnique Palaiseau,



## Silicon Vertex Detector

- CMOS pixel sensor development:
  - Marc Winter, Christine Hu-Guo, IPHC Strasburg, France
  - Sebastian Grinstein, Raimon Casanova, IFAE, Barcelona, Spain
  - ALICE, indirectly through CCNU
- SOI pixel sensor development
  - KEK, Japan

## Vertex Detector Prototype (MOST2):

- CMOS Pixel Sensor development
  - Barcelona, IFAE
- Mechanics and services
  - Liverpool, Oxford, RAL, QMU (UK)
  - Univ. Massachusetts (USA)

asburg, France IFAE, Barcelona, Spain



## Trackers

- Time Projection Chamber
  - Paul Colas, Aleksan Roy, Stephan Anne., CEA-Saclay IRFU group, France (FCPPL)
  - Keisuke Fujii's group, KEK, Japan
  - Joined LC-TPC in Dec 2016
    - DESY test beam in 2018



- Full Silicon Tracker Design
  - Weiming Yao, Berkeley (USA)
  - Sergei Chekanov, Argonne (USA)
- Tracker Demonstrator
  - Harald Fox (Lancaster), Yanyan Gao (Edinburgh), ulletRoy Lemmon (Daresbury), Tim Jones (Liverpool)
  - Ivan Peric (KIT)
  - **Based on ALICE and ATLAS technology**





### China

- Institute of High Energy Physics, CAS
- Shangdong University
- Tsinghua University
- University of Science and Technology of China
- Northwestern Polytechnical University
- T.D. Lee Institute Shanghai Jiao Tong University
- Harbin Institute of Technology
- University of South China
- Italy
  - INFN Sezione di Milano, Università di Milano e Università dell'Insubria
  - INFN Sezione di Pisa e Università di Pisa
  - INFN Sezione di Torino e Università di Torino

- Germany
  - Karlsruhe Institute of Technology

### • UK

- University of Bristol
- STFC Daresbury Laboratory
- University of Edinburgh
- Lancaster University
- University of Liverpool
- Queen Mary University of London
- University of Oxford
- University of Sheffield
- University of Warwick

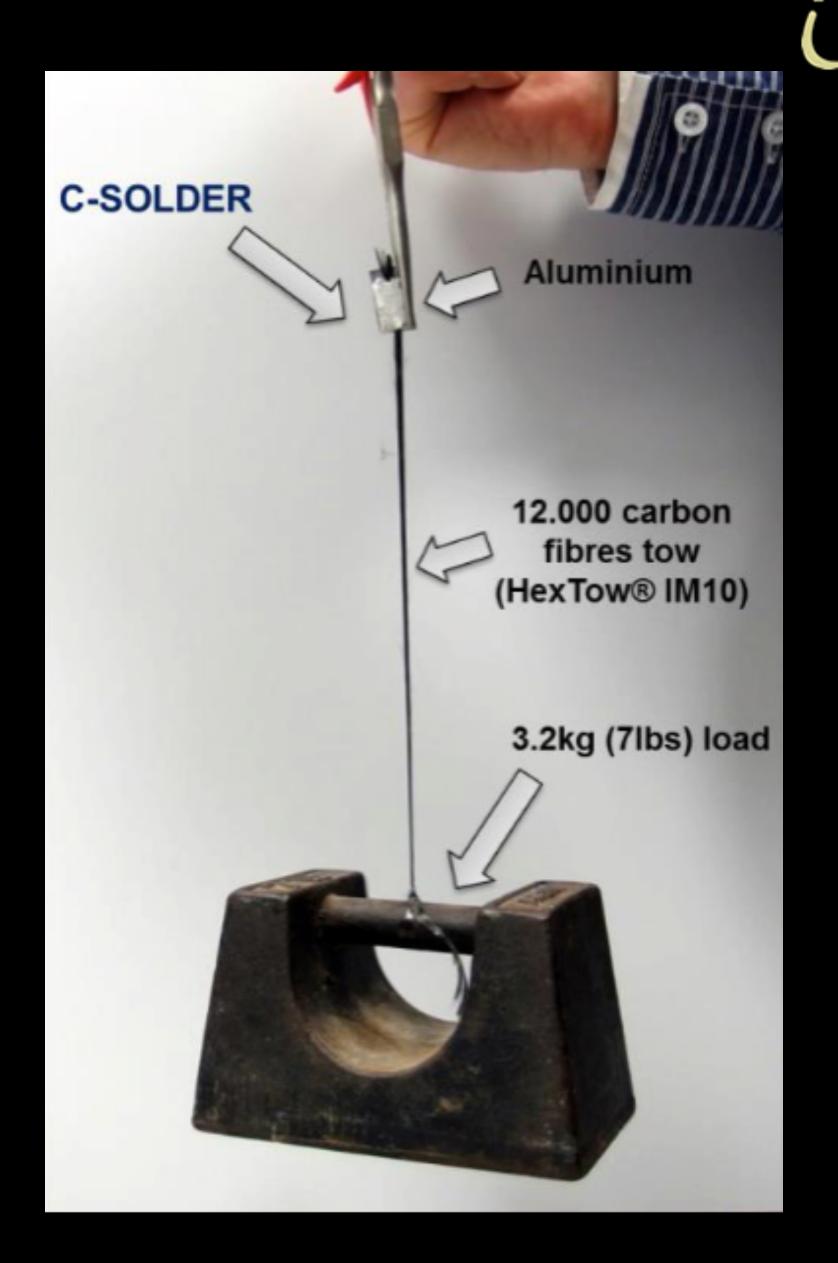


41





## IDEA: Silicon


- Active pixel detectors (INFN: Milano, Torino)
  - SEED and ARCADIA (1 M€ INFN grant)
    - Low power, high resolution, stitching
    - First prototypes by late  $2020 \rightarrow$  test on beam
  - DAQ development for test beam
    - Potential collaboration with China (FEST grant supports travel to China)
- Active and passive CMOS for Si wrapper (INFN: Milano)
  - Continuation of ATLAS phase 2 upgrade work
- EU grants:
- FEST (travel 4 yr), AIDA++ (applied)
- International collaboration:
  - UK-Oxford, ETH, Zurich university, (IHEP-China?)

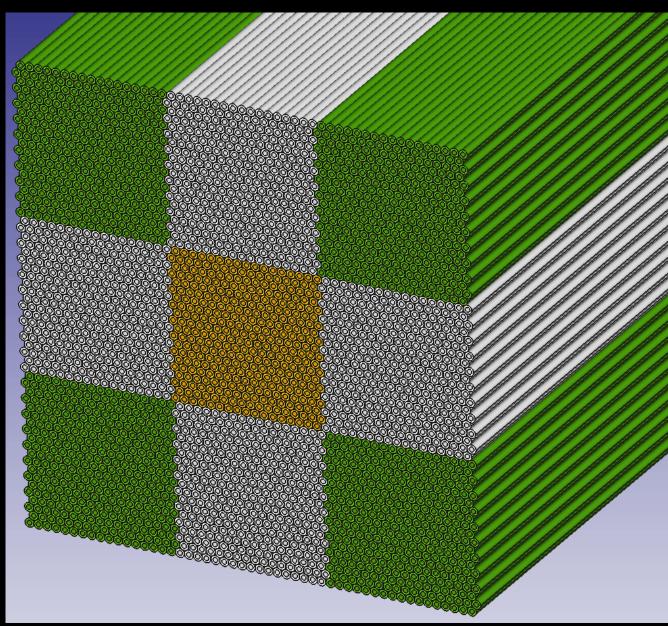




## **IDEA: Drift Chamber**

- Drift chamber (INFN: Lecce, Bari)
  - Full length prototype
    - C-fiber wires
    - Cluster counting electronics
    - Non-flammable gases
- EU grants:
  - CREMLIN2, AIDA++ (Applied)
- International collaboration:
  - (BINP, Novosibirsk)








## **IDEA: DR calorimeter**

- Full EM containment prototype (INFN: Pavia, Milano, Pisa)
  - 10 cm x 10 cm x 100 cm
    - Mechanics with metal capillaries 2 mm OD, 1.1 mm ID
    - 9 towers. Central tower read out with SiPM. Remaining with PMT.
    - Alpha-tester compact CAEN electronics (FERS system)
- EU grants:
  - AIDA++ (applied)
- Cofunded by INFN, UK, Croatia
- International collaboration:
- UK: University of Sussex, RBI Croatia, South Korea











## IDEA: uRwell chambers

- TECHTRA (INFN: Bologna, Ferrara, Frascati)
- µRwell technology
- Test µRwell 2D readout
- R&D on DLC+Cu sputtering with USTC (China)
- EU grants:
  - ATTRACT, CREMILN2, AIDA++(Applied)
- International collaboration:
  - USTC China, BINP-Novosibirsk



# Development of large area chambers with industrial partners ELTOS and





# Key R&D Issues Moving Forward



# **Updated** Parameters of Collider Ring since CDR

|                                                                      | Higgs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              | Z (2T)      |              |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------|--------------|--|
|                                                                      | CDR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Updated      | CDR         | Updated      |  |
| Beam energy (GeV)                                                    | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -            | 45.5        | _            |  |
| Synchrotron radiation loss/turn (GeV)                                | 1.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.8          | 0.036       | -            |  |
| Number of particles/bunch N <sub>e</sub> (10 <sup>10</sup> )         | 15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.3         | 8.0         | 16.1         |  |
| Bunch number (bunch spacing)                                         | 242 (0.68µs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 214 (0.7 μs) | 12000       | 10870 (27ns) |  |
| Beam current (mA)                                                    | 17.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 16.8         | 461.0       | 841.0        |  |
| Synchrotron radiation power /beam (MW)                               | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -            | 16.5        | 30           |  |
| Cell number/cavity                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -            | 2           | 1            |  |
| $\beta$ function at IP $\beta_x^*$ / $\beta_y^*$ (m)                 | 0.36/0.0015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.33/0.001   | 0.2/0.001   | 0.15/0.001   |  |
| Emittance ε <sub>x</sub> /ε <sub>y</sub> (nm)                        | 1.21/0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.08/0.0014  | 0.18/0.9016 | 0.52/0.0016  |  |
| Beam size at IP $\sigma_x / \sigma_y$ (µm)                           | 1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00<br>1.21/0.00 |              |             |              |  |
| Bunch length σ <sub>z</sub> (mm)                                     | have not yet been absorbed int                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |             |              |  |
| Lifetime (hour)                                                      | physics and detector studies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |             |              |  |
| Luminosity/IP L (10 <sup>34</sup> cm <sup>-2</sup> s <sup>-1</sup> ) | 2.95 2.95 2.01 2.02 2.95 2.01 2.02 2.01 2.02 2.01 2.02 2.02 2.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |             |              |  |

### Luminosity increase factor:

× 1.8

× 3.2





- Machine Detector Interface
- Luminosity meter (LumiCal)
- Services design and integration

## Silicon Vertex (continue work on material budget versus resolution versus cooling)



- Machine Detector Interface
- Luminosity meter (LumiCal)
- Silicon Vertex (continue work on material budget versus resolution versus cooling)
  - Services design and integration
- Tracker
  - Time Projection Chamber
    - Finalize investigation of Ion back flow and field distortion at the Z pole and 2 Tesla
    - Follow up on the Pixel TPC possibility
  - Drift Chamber
    - Can it cope with the high rates at the Z pole? Enough resolution?
    - Can provide PID with dE/dx measurement
  - Full silicon tracker  $\rightarrow$  need manpower increase to exploit this option
    - Are we adding too much material?
    - Need to add detector for particle identification

Trade off: Transparency <---> reliability/resolution





## Calorimetry

- ECAL, HCAL, DR
  - Finalize evaluation of the crystal calorimeter option
  - Cost versus physics performance
  - **Cooling of PFA calorimeter? versus performance?**  $\bullet$



## Calorimetry

- ECAL, HCAL, DR
  - Finalize evaluation of the crystal calorimeter option
  - Cost versus physics performance
  - Cooling of PFA calorimeter? versus performance? ullet

### Muon System optimization

Optimize number of layers



## **Optimization of detectors**

- Use a mixture of fast simulation and full simulation
- Need to consider engineering aspects
- Need to consider costing issues

## Not an easy task without definite detectors/collaborations target



## Final remarks

## Now considering new ideas and developing new tools

Need more time to explore alternatives and test new ideas

Need to coordinate with engineers to study real detector feasibility

Need to expand international collaboration

**CEPC CDR: http://cepc.ihep.ac.cn/** 

Key accelerator and detector technologies R&D continues and are put to prototyping



