

Neural Networks and Deep Learning

���Michael Nielsen
;
;
.8(!,.�:___>WO]ZKUWO_XZT[KWNNOOYUOKZWSWQ>MXV;

;
YNP ($�/:&�;

;
&�*��:___>US]RKX>VO;

;
;

�����
@9$�.-7)�%:DZOK\S^O;DXVVXW[;C\\ZSL]\SXW=HXW;DXVVOZMSKUB>?;JWYXZ\ON;
GSMOW[O��'���%0����4� IEF ($9#�����4��%�93�
2�)$�.-(�� IEF (!,51+��;
;
A9.-(!,6�
	� IEF "���� ��;
;

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/index.html 1/2

Neural Networks and Deep Learning is a free online book. The
book will teach you about:

Neural networks, a beautiful biologically-inspired
programming paradigm which enables a computer to learn
from observational data
Deep learning, a powerful set of techniques for learning in
neural networks

Neural networks and deep learning currently provide the best
solutions to many problems in image recognition, speech
recognition, and natural language processing. This book will teach
you many of the core concepts behind neural networks and deep
learning.

For more details about the approach taken in the book, see here. Or
you can jump directly to Chapter 1 and get started.

Neural Networks and Deep Learning

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian
Goodfellow, and Aaron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/index.html 2/2

By Michael Nielsen / Jan 2016

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/about.html 1/3

Neural networks are one of the most beautiful programming
paradigms ever invented. In the conventional approach to
programming, we tell the computer what to do, breaking big
problems up into many small, precisely defined tasks that the
computer can easily perform. By contrast, in a neural network we
don't tell the computer how to solve our problem. Instead, it learns
from observational data, figuring out its own solution to the
problem at hand.

Automatically learning from data sounds promising. However, until
2006 we didn't know how to train neural networks to surpass more
traditional approaches, except for a few specialized problems. What
changed in 2006 was the discovery of techniques for learning in so-
called deep neural networks. These techniques are now known as
deep learning. They've been developed further, and today deep
neural networks and deep learning achieve outstanding
performance on many important problems in computer vision,
speech recognition, and natural language processing. They're being
deployed on a large scale by companies such as Google, Microsoft,
and Facebook.

The purpose of this book is to help you master the core concepts of
neural networks, including modern techniques for deep learning.
After working through the book you will have written code that uses
neural networks and deep learning to solve complex pattern
recognition problems. And you will have a foundation to use neural
networks and deep learning to attack problems of your own
devising.

A principle-oriented approach
One conviction underlying the book is that it's better to obtain a
solid understanding of the core principles of neural networks and
deep learning, rather than a hazy understanding of a long laundry
list of ideas. If you've understood the core ideas well, you can
rapidly understand other new material. In programming language
terms, think of it as mastering the core syntax, libraries and data
structures of a new language. You may still only "know" a tiny

What this book is about

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian
Goodfellow, and Aaron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/about.html 2/3

fraction of the total language - many languages have enormous
standard libraries - but new libraries and data structures can be
understood quickly and easily.

This means the book is emphatically not a tutorial in how to use
some particular neural network library. If you mostly want to learn
your way around a library, don't read this book! Find the library you
wish to learn, and work through the tutorials and documentation.
But be warned. While this has an immediate problem-solving
payoff, if you want to understand what's really going on in neural
networks, if you want insights that will still be relevant years from
now, then it's not enough just to learn some hot library. You need to
understand the durable, lasting insights underlying how neural
networks work. Technologies come and technologies go, but insight
is forever.

A hands-on approach
We'll learn the core principles behind neural networks and deep
learning by attacking a concrete problem: the problem of teaching a
computer to recognize handwritten digits. This problem is
extremely difficult to solve using the conventional approach to
programming. And yet, as we'll see, it can be solved pretty well
using a simple neural network, with just a few tens of lines of code,
and no special libraries. What's more, we'll improve the program
through many iterations, gradually incorporating more and more of
the core ideas about neural networks and deep learning.

This hands-on approach means that you'll need some programming
experience to read the book. But you don't need to be a professional
programmer. I've written the code in Python (version 2.7), which,
even if you don't program in Python, should be easy to understand
with just a little effort. Through the course of the book we will
develop a little neural network library, which you can use to
experiment and to build understanding. All the code is available for
download here. Once you've finished the book, or as you read it, you
can easily pick up one of the more feature-complete neural network
libraries intended for use in production.

On a related note, the mathematical requirements to read the book
are modest. There is some mathematics in most chapters, but it's

By Michael Nielsen / Jan 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/about.html 3/3

usually just elementary algebra and plots of functions, which I
expect most readers will be okay with. I occasionally use more
advanced mathematics, but have structured the material so you can
follow even if some mathematical details elude you. The one
chapter which uses heavier mathematics extensively is Chapter 2,
which requires a little multivariable calculus and linear algebra. If
those aren't familiar, I begin Chapter 2 with a discussion of how to
navigate the mathematics. If you're finding it really heavy going,
you can simply skip to the summary of the chapter's main results.
In any case, there's no need to worry about this at the outset.

It's rare for a book to aim to be both principle-oriented and hands-
on. But I believe you'll learn best if we build out the fundamental
ideas of neural networks. We'll develop living code, not just abstract
theory, code which you can explore and extend. This way you'll
understand the fundamentals, both in theory and practice, and be
well set to add further to your knowledge.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/exercises_and_problems.html 1/2

It's not uncommon for technical books to include an admonition
from the author that readers must do the exercises and problems. I
always feel a little peculiar when I read such warnings. Will
something bad happen to me if I don't do the exercises and
problems? Of course not. I'll gain some time, but at the expense of
depth of understanding. Sometimes that's worth it. Sometimes it's
not.

So what's worth doing in this book? My advice is that you really
should attempt most of the exercises, and you should aim not to do
most of the problems.

You should do most of the exercises because they're basic checks
that you've understood the material. If you can't solve an exercise
relatively easily, you've probably missed something fundamental.
Of course, if you do get stuck on an occasional exercise, just move
on - chances are it's just a small misunderstanding on your part, or
maybe I've worded something poorly. But if most exercises are a
struggle, then you probably need to reread some earlier material.

The problems are another matter. They're more difficult than the
exercises, and you'll likely struggle to solve some problems. That's
annoying, but, of course, patience in the face of such frustration is
the only way to truly understand and internalize a subject.

With that said, I don't recommend working through all the
problems. What's even better is to find your own project. Maybe
you want to use neural nets to classify your music collection. Or to
predict stock prices. Or whatever. But find a project you care
about. Then you can ignore the problems in the book, or use them
simply as inspiration for work on your own project. Struggling with
a project you care about will teach you far more than working
through any number of set problems. Emotional commitment is a
key to achieving mastery.

Of course, you may not have such a project in mind, at least up
front. That's fine. Work through those problems you feel motivated
to work on. And use the material in the book to help you search for
ideas for creative personal projects.

On the exercises and problems

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian
Goodfellow, and Aaron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/exercises_and_problems.html 2/2

By Michael Nielsen / Jan 2016

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1/50

The human visual system is one of the wonders of the world.
Consider the following sequence of handwritten digits:

Most people effortlessly recognize those digits as 504192. That ease
is deceptive. In each hemisphere of our brain, humans have a
primary visual cortex, also known as V1, containing 140 million
neurons, with tens of billions of connections between them. And yet
human vision involves not just V1, but an entire series of visual
cortices - V2, V3, V4, and V5 - doing progressively more complex
image processing. We carry in our heads a supercomputer, tuned by
evolution over hundreds of millions of years, and superbly adapted
to understand the visual world. Recognizing handwritten digits isn't
easy. Rather, we humans are stupendously, astoundingly good at
making sense of what our eyes show us. But nearly all that work is
done unconsciously. And so we don't usually appreciate how tough
a problem our visual systems solve.

The difficulty of visual pattern recognition becomes apparent if you
attempt to write a computer program to recognize digits like those
above. What seems easy when we do it ourselves suddenly becomes
extremely difficult. Simple intuitions about how we recognize
shapes - "a 9 has a loop at the top, and a vertical stroke in the
bottom right" - turn out to be not so simple to express
algorithmically. When you try to make such rules precise, you
quickly get lost in a morass of exceptions and caveats and special
cases. It seems hopeless.

Neural networks approach the problem in a different way. The idea
is to take a large number of handwritten digits, known as training
examples,

CHAPTER 1

Using neural nets to recognize handwritten digits

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2/50

and then develop a system which can learn from those training
examples. In other words, the neural network uses the examples to
automatically infer rules for recognizing handwritten digits.
Furthermore, by increasing the number of training examples, the
network can learn more about handwriting, and so improve its
accuracy. So while I've shown just 100 training digits above,
perhaps we could build a better handwriting recognizer by using
thousands or even millions or billions of training examples.

In this chapter we'll write a computer program implementing a
neural network that learns to recognize handwritten digits. The
program is just 74 lines long, and uses no special neural network
libraries. But this short program can recognize digits with an
accuracy over 96 percent, without human intervention.
Furthermore, in later chapters we'll develop ideas which can
improve accuracy to over 99 percent. In fact, the best commercial
neural networks are now so good that they are used by banks to
process cheques, and by post offices to recognize addresses.

We're focusing on handwriting recognition because it's an excellent
prototype problem for learning about neural networks in general.
As a prototype it hits a sweet spot: it's challenging - it's no small feat
to recognize handwritten digits - but it's not so difficult as to require
an extremely complicated solution, or tremendous computational
power. Furthermore, it's a great way to develop more advanced
techniques, such as deep learning. And so throughout the book we'll
return repeatedly to the problem of handwriting recognition. Later
in the book, we'll discuss how these ideas may be applied to other

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 3/50

problems in computer vision, and also in speech, natural language
processing, and other domains.

Of course, if the point of the chapter was only to write a computer
program to recognize handwritten digits, then the chapter would be
much shorter! But along the way we'll develop many key ideas
about neural networks, including two important types of artificial
neuron (the perceptron and the sigmoid neuron), and the standard
learning algorithm for neural networks, known as stochastic
gradient descent. Throughout, I focus on explaining why things are
done the way they are, and on building your neural networks
intuition. That requires a lengthier discussion than if I just
presented the basic mechanics of what's going on, but it's worth it
for the deeper understanding you'll attain. Amongst the payoffs, by
the end of the chapter we'll be in position to understand what deep
learning is, and why it matters.

Perceptrons
What is a neural network? To get started, I'll explain a type of
artificial neuron called a perceptron. Perceptrons were developed in
the 1950s and 1960s by the scientist Frank Rosenblatt, inspired by
earlier work by Warren McCulloch and Walter Pitts. Today, it's
more common to use other models of artificial neurons - in this
book, and in much modern work on neural networks, the main
neuron model used is one called the sigmoid neuron. We'll get to
sigmoid neurons shortly. But to understand why sigmoid neurons
are defined the way they are, it's worth taking the time to first
understand perceptrons.

So how do perceptrons work? A perceptron takes several binary
inputs, , and produces a single binary output:

In the example shown the perceptron has three inputs, . In
general it could have more or fewer inputs. Rosenblatt proposed a
simple rule to compute the output. He introduced weights,

, real numbers expressing the importance of the respective

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 4/50

inputs to the output. The neuron's output, or , is determined by
whether the weighted sum is less than or greater than some
threshold value. Just like the weights, the threshold is a real
number which is a parameter of the neuron. To put it in more
precise algebraic terms:

That's all there is to how a perceptron works!

That's the basic mathematical model. A way you can think about the
perceptron is that it's a device that makes decisions by weighing up
evidence. Let me give an example. It's not a very realistic example,
but it's easy to understand, and we'll soon get to more realistic
examples. Suppose the weekend is coming up, and you've heard
that there's going to be a cheese festival in your city. You like
cheese, and are trying to decide whether or not to go to the festival.
You might make your decision by weighing up three factors:

1. Is the weather good?
2. Does your boyfriend or girlfriend want to accompany you?
3. Is the festival near public transit? (You don't own a car).

We can represent these three factors by corresponding binary
variables , and . For instance, we'd have if the weather
is good, and if the weather is bad. Similarly, if your
boyfriend or girlfriend wants to go, and if not. And similarly
again for and public transit.

Now, suppose you absolutely adore cheese, so much so that you're
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. But perhaps you
really loathe bad weather, and there's no way you'd go to the festival
if the weather is bad. You can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight for
the weather, and and for the other conditions. The
larger value of indicates that the weather matters a lot to you,
much more than whether your boyfriend or girlfriend joins you, or
the nearness of public transit. Finally, suppose you choose a
threshold of for the perceptron. With these choices, the
perceptron implements the desired decision-making model,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 5/50

outputting whenever the weather is good, and whenever the
weather is bad. It makes no difference to the output whether your
boyfriend or girlfriend wants to go, or whether public transit is
nearby.

By varying the weights and the threshold, we can get different
models of decision-making. For example, suppose we instead chose
a threshold of . Then the perceptron would decide that you should
go to the festival whenever the weather was good or when both the
festival was near public transit and your boyfriend or girlfriend was
willing to join you. In other words, it'd be a different model of
decision-making. Dropping the threshold means you're more
willing to go to the festival.

Obviously, the perceptron isn't a complete model of human
decision-making! But what the example illustrates is how a
perceptron can weigh up different kinds of evidence in order to
make decisions. And it should seem plausible that a complex
network of perceptrons could make quite subtle decisions:

In this network, the first column of perceptrons - what we'll call the
first layer of perceptrons - is making three very simple decisions, by
weighing the input evidence. What about the perceptrons in the
second layer? Each of those perceptrons is making a decision by
weighing up the results from the first layer of decision-making. In
this way a perceptron in the second layer can make a decision at a
more complex and more abstract level than perceptrons in the first
layer. And even more complex decisions can be made by the
perceptron in the third layer. In this way, a many-layer network of
perceptrons can engage in sophisticated decision making.

Incidentally, when I defined perceptrons I said that a perceptron
has just a single output. In the network above the perceptrons look
like they have multiple outputs. In fact, they're still single output.
The multiple output arrows are merely a useful way of indicating

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 6/50

that the output from a perceptron is being used as the input to
several other perceptrons. It's less unwieldy than drawing a single
output line which then splits.

Let's simplify the way we describe perceptrons. The condition
 is cumbersome, and we can make two notational

changes to simplify it. The first change is to write as a dot
product, , where and are vectors whose
components are the weights and inputs, respectively. The second
change is to move the threshold to the other side of the inequality,
and to replace it by what's known as the perceptron's bias,

. Using the bias instead of the threshold, the
perceptron rule can be rewritten:

You can think of the bias as a measure of how easy it is to get the
perceptron to output a . Or to put it in more biological terms, the
bias is a measure of how easy it is to get the perceptron to fire. For a
perceptron with a really big bias, it's extremely easy for the
perceptron to output a . But if the bias is very negative, then it's
difficult for the perceptron to output a . Obviously, introducing the
bias is only a small change in how we describe perceptrons, but
we'll see later that it leads to further notational simplifications.
Because of this, in the remainder of the book we won't use the
threshold, we'll always use the bias.

I've described perceptrons as a method for weighing evidence to
make decisions. Another way perceptrons can be used is to compute
the elementary logical functions we usually think of as underlying
computation, functions such as AND, OR, and NAND. For example,

suppose we have a perceptron with two inputs, each with weight ,
and an overall bias of . Here's our perceptron:

Then we see that input produces output , since
 is positive. Here, I've introduced the

symbol to make the multiplications explicit. Similar calculations
show that the inputs and produce output . But the input

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 7/50

produces output , since is negative.
And so our perceptron implements a NAND gate!

The NAND example shows that we can use perceptrons to compute

simple logical functions. In fact, we can use networks of
perceptrons to compute any logical function at all. The reason is
that the NAND gate is universal for computation, that is, we can

build any computation up out of NAND gates. For example, we can

use NAND gates to build a circuit which adds two bits, and .

This requires computing the bitwise sum, , as well as a carry
bit which is set to when both and are , i.e., the carry bit is
just the bitwise product :

To get an equivalent network of perceptrons we replace all the NAND

gates by perceptrons with two inputs, each with weight , and an
overall bias of . Here's the resulting network. Note that I've moved
the perceptron corresponding to the bottom right NAND gate a little,

just to make it easier to draw the arrows on the diagram:

One notable aspect of this network of perceptrons is that the output
from the leftmost perceptron is used twice as input to the
bottommost perceptron. When I defined the perceptron model I
didn't say whether this kind of double-output-to-the-same-place
was allowed. Actually, it doesn't much matter. If we don't want to
allow this kind of thing, then it's possible to simply merge the two
lines, into a single connection with a weight of -4 instead of two
connections with -2 weights. (If you don't find this obvious, you
should stop and prove to yourself that this is equivalent.) With that
change, the network looks as follows, with all unmarked weights

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 8/50

equal to -2, all biases equal to 3, and a single weight of -4, as
marked:

Up to now I've been drawing inputs like and as variables
floating to the left of the network of perceptrons. In fact, it's
conventional to draw an extra layer of perceptrons - the input layer
- to encode the inputs:

This notation for input perceptrons, in which we have an output,
but no inputs,

is a shorthand. It doesn't actually mean a perceptron with no
inputs. To see this, suppose we did have a perceptron with no
inputs. Then the weighted sum would always be zero, and so
the perceptron would output if , and if . That is, the
perceptron would simply output a fixed value, not the desired value
(, in the example above). It's better to think of the input
perceptrons as not really being perceptrons at all, but rather special
units which are simply defined to output the desired values,

.

The adder example demonstrates how a network of perceptrons can
be used to simulate a circuit containing many NAND gates. And

because NAND gates are universal for computation, it follows that

perceptrons are also universal for computation.

The computational universality of perceptrons is simultaneously
reassuring and disappointing. It's reassuring because it tells us that
networks of perceptrons can be as powerful as any other computing

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 9/50

device. But it's also disappointing, because it makes it seem as
though perceptrons are merely a new type of NAND gate. That's

hardly big news!

However, the situation is better than this view suggests. It turns out
that we can devise learning algorithms which can automatically
tune the weights and biases of a network of artificial neurons. This
tuning happens in response to external stimuli, without direct
intervention by a programmer. These learning algorithms enable us
to use artificial neurons in a way which is radically different to
conventional logic gates. Instead of explicitly laying out a circuit of
NAND and other gates, our neural networks can simply learn to solve

problems, sometimes problems where it would be extremely
difficult to directly design a conventional circuit.

Sigmoid neurons
Learning algorithms sound terrific. But how can we devise such
algorithms for a neural network? Suppose we have a network of
perceptrons that we'd like to use to learn to solve some problem.
For example, the inputs to the network might be the raw pixel data
from a scanned, handwritten image of a digit. And we'd like the
network to learn weights and biases so that the output from the
network correctly classifies the digit. To see how learning might
work, suppose we make a small change in some weight (or bias) in
the network. What we'd like is for this small change in weight to
cause only a small corresponding change in the output from the
network. As we'll see in a moment, this property will make learning
possible. Schematically, here's what we want (obviously this
network is too simple to do handwriting recognition!):

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 10/50

If it were true that a small change in a weight (or bias) causes only a
small change in output, then we could use this fact to modify the
weights and biases to get our network to behave more in the
manner we want. For example, suppose the network was
mistakenly classifying an image as an "8" when it should be a "9".
We could figure out how to make a small change in the weights and
biases so the network gets a little closer to classifying the image as a
"9". And then we'd repeat this, changing the weights and biases
over and over to produce better and better output. The network
would be learning.

The problem is that this isn't what happens when our network
contains perceptrons. In fact, a small change in the weights or bias
of any single perceptron in the network can sometimes cause the
output of that perceptron to completely flip, say from to . That
flip may then cause the behaviour of the rest of the network to
completely change in some very complicated way. So while your "9"
might now be classified correctly, the behaviour of the network on
all the other images is likely to have completely changed in some
hard-to-control way. That makes it difficult to see how to gradually
modify the weights and biases so that the network gets closer to the
desired behaviour. Perhaps there's some clever way of getting
around this problem. But it's not immediately obvious how we can
get a network of perceptrons to learn.

We can overcome this problem by introducing a new type of
artificial neuron called a sigmoid neuron. Sigmoid neurons are
similar to perceptrons, but modified so that small changes in their
weights and bias cause only a small change in their output. That's
the crucial fact which will allow a network of sigmoid neurons to
learn.

Okay, let me describe the sigmoid neuron. We'll depict sigmoid
neurons in the same way we depicted perceptrons:

Just like a perceptron, the sigmoid neuron has inputs, . But
instead of being just or , these inputs can also take on any values

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 11/50

between and . So, for instance, is a valid input for a
sigmoid neuron. Also just like a perceptron, the sigmoid neuron has
weights for each input, , and an overall bias, . But the
output is not or . Instead, it's , where is called the
sigmoid function*, and is defined by:

To put it all a little more explicitly, the output of a sigmoid neuron
with inputs , weights , and bias is

At first sight, sigmoid neurons appear very different to perceptrons.
The algebraic form of the sigmoid function may seem opaque and
forbidding if you're not already familiar with it. In fact, there are
many similarities between perceptrons and sigmoid neurons, and
the algebraic form of the sigmoid function turns out to be more of a
technical detail than a true barrier to understanding.

To understand the similarity to the perceptron model, suppose
 is a large positive number. Then and so

. In other words, when is large and positive, the
output from the sigmoid neuron is approximately , just as it would
have been for a perceptron. Suppose on the other hand that

 is very negative. Then , and . So when
 is very negative, the behaviour of a sigmoid neuron

also closely approximates a perceptron. It's only when is of
modest size that there's much deviation from the perceptron model.

What about the algebraic form of ? How can we understand that?
In fact, the exact form of isn't so important - what really matters is
the shape of the function when plotted. Here's the shape:

*Incidentally, is sometimes called the logistic
function, and this new class of neurons called
logistic neurons. It's useful to remember this
terminology, since these terms are used by many
people working with neural nets. However, we'll
stick with the sigmoid terminology.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 12/50

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

z

sigmoid function

This shape is a smoothed out version of a step function:

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

z

step function

If had in fact been a step function, then the sigmoid neuron would
be a perceptron, since the output would be or depending on
whether was positive or negative*. By using the actual
function we get, as already implied above, a smoothed out
perceptron. Indeed, it's the smoothness of the function that is the
crucial fact, not its detailed form. The smoothness of means that
small changes in the weights and in the bias will produce a
small change in the output from the neuron. In fact,
calculus tells us that is well approximated by

where the sum is over all the weights, , and and
 denote partial derivatives of the with respect to

and , respectively. Don't panic if you're not comfortable with
partial derivatives! While the expression above looks complicated,
with all the partial derivatives, it's actually saying something very
simple (and which is very good news): is a linear function
of the changes and in the weights and bias. This linearity

*Actually, when the perceptron
outputs , while the step function outputs . So,
strictly speaking, we'd need to modify the step
function at that one point. But you get the idea.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 13/50

makes it easy to choose small changes in the weights and biases to
achieve any desired small change in the output. So while sigmoid
neurons have much of the same qualitative behaviour as
perceptrons, they make it much easier to figure out how changing
the weights and biases will change the output.

If it's the shape of which really matters, and not its exact form,
then why use the particular form used for in Equation (3)? In fact,
later in the book we will occasionally consider neurons where the
output is for some other activation function . The
main thing that changes when we use a different activation function
is that the particular values for the partial derivatives in Equation
(5) change. It turns out that when we compute those partial
derivatives later, using will simplify the algebra, simply because
exponentials have lovely properties when differentiated. In any
case, is commonly-used in work on neural nets, and is the
activation function we'll use most often in this book.

How should we interpret the output from a sigmoid neuron?
Obviously, one big difference between perceptrons and sigmoid
neurons is that sigmoid neurons don't just output or . They can
have as output any real number between and , so values such as

 and are legitimate outputs. This can be useful, for
example, if we want to use the output value to represent the average
intensity of the pixels in an image input to a neural network. But
sometimes it can be a nuisance. Suppose we want the output from
the network to indicate either "the input image is a 9" or "the input
image is not a 9". Obviously, it'd be easiest to do this if the output
was a or a , as in a perceptron. But in practice we can set up a
convention to deal with this, for example, by deciding to interpret
any output of at least as indicating a "9", and any output less
than as indicating "not a 9". I'll always explicitly state when
we're using such a convention, so it shouldn't cause any confusion.

Exercises

Sigmoid neurons simulating perceptrons, part I
Suppose we take all the weights and biases in a network of
perceptrons, and multiply them by a positive constant, .
Show that the behaviour of the network doesn't change.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 14/50

Sigmoid neurons simulating perceptrons, part II
Suppose we have the same setup as the last problem - a
network of perceptrons. Suppose also that the overall input to
the network of perceptrons has been chosen. We won't need
the actual input value, we just need the input to have been
fixed. Suppose the weights and biases are such that
for the input to any particular perceptron in the network.
Now replace all the perceptrons in the network by sigmoid
neurons, and multiply the weights and biases by a positive
constant . Show that in the limit as the behaviour
of this network of sigmoid neurons is exactly the same as the
network of perceptrons. How can this fail when
for one of the perceptrons?

The architecture of neural networks
In the next section I'll introduce a neural network that can do a
pretty good job classifying handwritten digits. In preparation for
that, it helps to explain some terminology that lets us name
different parts of a network. Suppose we have the network:

As mentioned earlier, the leftmost layer in this network is called the
input layer, and the neurons within the layer are called input
neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle
layer is called a hidden layer, since the neurons in this layer are
neither inputs nor outputs. The term "hidden" perhaps sounds a
little mysterious - the first time I heard the term I thought it must
have some deep philosophical or mathematical significance - but it
really means nothing more than "not an input or an output". The
network above has just a single hidden layer, but some networks
have multiple hidden layers. For example, the following four-layer
network has two hidden layers:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 15/50

Somewhat confusingly, and for historical reasons, such multiple
layer networks are sometimes called multilayer perceptrons or
MLPs, despite being made up of sigmoid neurons, not perceptrons.
I'm not going to use the MLP terminology in this book, since I think
it's confusing, but wanted to warn you of its existence.

The design of the input and output layers in a network is often
straightforward. For example, suppose we're trying to determine
whether a handwritten image depicts a "9" or not. A natural way to
design the network is to encode the intensities of the image pixels
into the input neurons. If the image is a by greyscale image,
then we'd have input neurons, with the intensities
scaled appropriately between and . The output layer will contain
just a single neuron, with output values of less than indicating
"input image is not a 9", and values greater than indicating
"input image is a 9 ".

While the design of the input and output layers of a neural network
is often straightforward, there can be quite an art to the design of
the hidden layers. In particular, it's not possible to sum up the
design process for the hidden layers with a few simple rules of
thumb. Instead, neural networks researchers have developed many
design heuristics for the hidden layers, which help people get the
behaviour they want out of their nets. For example, such heuristics
can be used to help determine how to trade off the number of
hidden layers against the time required to train the network. We'll
meet several such design heuristics later in this book.

Up to now, we've been discussing neural networks where the output
from one layer is used as input to the next layer. Such networks are
called feedforward neural networks. This means there are no loops

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 16/50

in the network - information is always fed forward, never fed back.
If we did have loops, we'd end up with situations where the input to
the function depended on the output. That'd be hard to make
sense of, and so we don't allow such loops.

However, there are other models of artificial neural networks in
which feedback loops are possible. These models are called
recurrent neural networks. The idea in these models is to have
neurons which fire for some limited duration of time, before
becoming quiescent. That firing can stimulate other neurons, which
may fire a little while later, also for a limited duration. That causes
still more neurons to fire, and so over time we get a cascade of
neurons firing. Loops don't cause problems in such a model, since a
neuron's output only affects its input at some later time, not
instantaneously.

Recurrent neural nets have been less influential than feedforward
networks, in part because the learning algorithms for recurrent nets
are (at least to date) less powerful. But recurrent networks are still
extremely interesting. They're much closer in spirit to how our
brains work than feedforward networks. And it's possible that
recurrent networks can solve important problems which can only be
solved with great difficulty by feedforward networks. However, to
limit our scope, in this book we're going to concentrate on the more
widely-used feedforward networks.

A simple network to classify
handwritten digits
Having defined neural networks, let's return to handwriting
recognition. We can split the problem of recognizing handwritten
digits into two sub-problems. First, we'd like a way of breaking an
image containing many digits into a sequence of separate images,
each containing a single digit. For example, we'd like to break the
image

into six separate images,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 17/50

We humans solve this segmentation problem with ease, but it's
challenging for a computer program to correctly break up the
image. Once the image has been segmented, the program then
needs to classify each individual digit. So, for instance, we'd like our
program to recognize that the first digit above,

is a 5.

We'll focus on writing a program to solve the second problem, that
is, classifying individual digits. We do this because it turns out that
the segmentation problem is not so difficult to solve, once you have
a good way of classifying individual digits. There are many
approaches to solving the segmentation problem. One approach is
to trial many different ways of segmenting the image, using the
individual digit classifier to score each trial segmentation. A trial
segmentation gets a high score if the individual digit classifier is
confident of its classification in all segments, and a low score if the
classifier is having a lot of trouble in one or more segments. The
idea is that if the classifier is having trouble somewhere, then it's
probably having trouble because the segmentation has been chosen
incorrectly. This idea and other variations can be used to solve the
segmentation problem quite well. So instead of worrying about
segmentation we'll concentrate on developing a neural network
which can solve the more interesting and difficult problem, namely,
recognizing individual handwritten digits.

To recognize individual digits we will use a three-layer neural
network:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 18/50

The input layer of the network contains neurons encoding the
values of the input pixels. As discussed in the next section, our
training data for the network will consist of many by pixel
images of scanned handwritten digits, and so the input layer
contains neurons. For simplicity I've omitted most of
the input neurons in the diagram above. The input pixels are
greyscale, with a value of representing white, a value of
representing black, and in between values representing gradually
darkening shades of grey.

The second layer of the network is a hidden layer. We denote the
number of neurons in this hidden layer by , and we'll experiment
with different values for . The example shown illustrates a small
hidden layer, containing just neurons.

The output layer of the network contains 10 neurons. If the first
neuron fires, i.e., has an output , then that will indicate that the
network thinks the digit is a . If the second neuron fires then that
will indicate that the network thinks the digit is a . And so on. A
little more precisely, we number the output neurons from through

, and figure out which neuron has the highest activation value. If
that neuron is, say, neuron number , then our network will guess
that the input digit was a . And so on for the other output neurons.

You might wonder why we use output neurons. After all, the goal
of the network is to tell us which digit () corresponds to
the input image. A seemingly natural way of doing that is to use just

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 19/50

 output neurons, treating each neuron as taking on a binary value,
depending on whether the neuron's output is closer to or to .
Four neurons are enough to encode the answer, since is
more than the 10 possible values for the input digit. Why should our
network use neurons instead? Isn't that inefficient? The ultimate
justification is empirical: we can try out both network designs, and
it turns out that, for this particular problem, the network with
output neurons learns to recognize digits better than the network
with output neurons. But that leaves us wondering why using
output neurons works better. Is there some heuristic that would tell
us in advance that we should use the -output encoding instead of
the -output encoding?

To understand why we do this, it helps to think about what the
neural network is doing from first principles. Consider first the case
where we use output neurons. Let's concentrate on the first
output neuron, the one that's trying to decide whether or not the
digit is a . It does this by weighing up evidence from the hidden
layer of neurons. What are those hidden neurons doing? Well, just
suppose for the sake of argument that the first neuron in the hidden
layer detects whether or not an image like the following is present:

It can do this by heavily weighting input pixels which overlap with
the image, and only lightly weighting the other inputs. In a similar
way, let's suppose for the sake of argument that the second, third,
and fourth neurons in the hidden layer detect whether or not the
following images are present:

As you may have guessed, these four images together make up the
image that we saw in the line of digits shown earlier:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 20/50

So if all four of these hidden neurons are firing then we can
conclude that the digit is a . Of course, that's not the only sort of
evidence we can use to conclude that the image was a - we could
legitimately get a in many other ways (say, through translations of
the above images, or slight distortions). But it seems safe to say that
at least in this case we'd conclude that the input was a .

Supposing the neural network functions in this way, we can give a
plausible explanation for why it's better to have outputs from the
network, rather than . If we had outputs, then the first output
neuron would be trying to decide what the most significant bit of
the digit was. And there's no easy way to relate that most significant
bit to simple shapes like those shown above. It's hard to imagine
that there's any good historical reason the component shapes of the
digit will be closely related to (say) the most significant bit in the
output.

Now, with all that said, this is all just a heuristic. Nothing says that
the three-layer neural network has to operate in the way I
described, with the hidden neurons detecting simple component
shapes. Maybe a clever learning algorithm will find some
assignment of weights that lets us use only output neurons. But as
a heuristic the way of thinking I've described works pretty well, and
can save you a lot of time in designing good neural network
architectures.

Exercise

There is a way of determining the bitwise representation of a
digit by adding an extra layer to the three-layer network above.
The extra layer converts the output from the previous layer into
a binary representation, as illustrated in the figure below. Find
a set of weights and biases for the new output layer. Assume
that the first layers of neurons are such that the correct
output in the third layer (i.e., the old output layer) has

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 21/50

activation at least , and incorrect outputs have activation
less than .

Learning with gradient descent
Now that we have a design for our neural network, how can it learn
to recognize digits? The first thing we'll need is a data set to learn
from - a so-called training data set. We'll use the MNIST data set,
which contains tens of thousands of scanned images of handwritten
digits, together with their correct classifications. MNIST's name
comes from the fact that it is a modified subset of two data sets
collected by NIST, the United States' National Institute of
Standards and Technology. Here's a few images from MNIST:

As you can see, these digits are, in fact, the same as those shown at
the beginning of this chapter as a challenge to recognize. Of course,
when testing our network we'll ask it to recognize images which
aren't in the training set!

The MNIST data comes in two parts. The first part contains 60,000
images to be used as training data. These images are scanned
handwriting samples from 250 people, half of whom were US
Census Bureau employees, and half of whom were high school
students. The images are greyscale and 28 by 28 pixels in size. The
second part of the MNIST data set is 10,000 images to be used as
test data. Again, these are 28 by 28 greyscale images. We'll use the
test data to evaluate how well our neural network has learned to
recognize digits. To make this a good test of performance, the test

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 22/50

data was taken from a different set of 250 people than the original
training data (albeit still a group split between Census Bureau
employees and high school students). This helps give us confidence
that our system can recognize digits from people whose writing it
didn't see during training.

We'll use the notation to denote a training input. It'll be
convenient to regard each training input as a -
dimensional vector. Each entry in the vector represents the grey
value for a single pixel in the image. We'll denote the corresponding
desired output by , where is a -dimensional vector. For
example, if a particular training image, , depicts a , then

 is the desired output from the
network. Note that here is the transpose operation, turning a row
vector into an ordinary (column) vector.

What we'd like is an algorithm which lets us find weights and biases
so that the output from the network approximates for all
training inputs . To quantify how well we're achieving this goal we
define a cost function*:

Here, denotes the collection of all weights in the network, all the
biases, is the total number of training inputs, is the vector of
outputs from the network when is input, and the sum is over all
training inputs, . Of course, the output depends on , and , but
to keep the notation simple I haven't explicitly indicated this
dependence. The notation just denotes the usual length
function for a vector . We'll call the quadratic cost function; it's
also sometimes known as the mean squared error or just MSE.
Inspecting the form of the quadratic cost function, we see that

 is non-negative, since every term in the sum is non-negative.
Furthermore, the cost becomes small, i.e., ,
precisely when is approximately equal to the output, , for all
training inputs, . So our training algorithm has done a good job if it
can find weights and biases so that . By contrast, it's not
doing so well when is large - that would mean that is not
close to the output for a large number of inputs. So the aim of our
training algorithm will be to minimize the cost as a function
of the weights and biases. In other words, we want to find a set of

*Sometimes referred to as a loss or objective
function. We use the term cost function
throughout this book, but you should note the
other terminology, since it's often used in
research papers and other discussions of neural
networks.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 23/50

weights and biases which make the cost as small as possible. We'll
do that using an algorithm known as gradient descent.

Why introduce the quadratic cost? After all, aren't we primarily
interested in the number of images correctly classified by the
network? Why not try to maximize that number directly, rather
than minimizing a proxy measure like the quadratic cost? The
problem with that is that the number of images correctly classified
is not a smooth function of the weights and biases in the network.
For the most part, making small changes to the weights and biases
won't cause any change at all in the number of training images
classified correctly. That makes it difficult to figure out how to
change the weights and biases to get improved performance. If we
instead use a smooth cost function like the quadratic cost it turns
out to be easy to figure out how to make small changes in the
weights and biases so as to get an improvement in the cost. That's
why we focus first on minimizing the quadratic cost, and only after
that will we examine the classification accuracy.

Even given that we want to use a smooth cost function, you may still
wonder why we choose the quadratic function used in Equation (6).
Isn't this a rather ad hoc choice? Perhaps if we chose a different
cost function we'd get a totally different set of minimizing weights
and biases? This is a valid concern, and later we'll revisit the cost
function, and make some modifications. However, the quadratic
cost function of Equation (6) works perfectly well for understanding
the basics of learning in neural networks, so we'll stick with it for
now.

Recapping, our goal in training a neural network is to find weights
and biases which minimize the quadratic cost function . This
is a well-posed problem, but it's got a lot of distracting structure as
currently posed - the interpretation of and as weights and
biases, the function lurking in the background, the choice of
network architecture, MNIST, and so on. It turns out that we can
understand a tremendous amount by ignoring most of that
structure, and just concentrating on the minimization aspect. So for
now we're going to forget all about the specific form of the cost
function, the connection to neural networks, and so on. Instead,
we're going to imagine that we've simply been given a function of
many variables and we want to minimize that function. We're going

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 24/50

to develop a technique called gradient descent which can be used to
solve such minimization problems. Then we'll come back to the
specific function we want to minimize for neural networks.

Okay, let's suppose we're trying to minimize some function, .
This could be any real-valued function of many variables,

. Note that I've replaced the and notation by to
emphasize that this could be any function - we're not specifically
thinking in the neural networks context any more. To minimize
it helps to imagine as a function of just two variables, which we'll
call and :

What we'd like is to find where achieves its global minimum.
Now, of course, for the function plotted above, we can eyeball the
graph and find the minimum. In that sense, I've perhaps shown
slightly too simple a function! A general function, , may be a
complicated function of many variables, and it won't usually be
possible to just eyeball the graph to find the minimum.

One way of attacking the problem is to use calculus to try to find the
minimum analytically. We could compute derivatives and then try
using them to find places where is an extremum. With some luck
that might work when is a function of just one or a few variables.
But it'll turn into a nightmare when we have many more variables.
And for neural networks we'll often want far more variables - the
biggest neural networks have cost functions which depend on
billions of weights and biases in an extremely complicated way.
Using calculus to minimize that just won't work!

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 25/50

(After asserting that we'll gain insight by imagining as a function
of just two variables, I've turned around twice in two paragraphs
and said, "hey, but what if it's a function of many more than two
variables?" Sorry about that. Please believe me when I say that it
really does help to imagine as a function of two variables. It just
happens that sometimes that picture breaks down, and the last two
paragraphs were dealing with such breakdowns. Good thinking
about mathematics often involves juggling multiple intuitive
pictures, learning when it's appropriate to use each picture, and
when it's not.)

Okay, so calculus doesn't work. Fortunately, there is a beautiful
analogy which suggests an algorithm which works pretty well. We
start by thinking of our function as a kind of a valley. If you squint
just a little at the plot above, that shouldn't be too hard. And we
imagine a ball rolling down the slope of the valley. Our everyday
experience tells us that the ball will eventually roll to the bottom of
the valley. Perhaps we can use this idea as a way to find a minimum
for the function? We'd randomly choose a starting point for an
(imaginary) ball, and then simulate the motion of the ball as it
rolled down to the bottom of the valley. We could do this simulation
simply by computing derivatives (and perhaps some second
derivatives) of - those derivatives would tell us everything we
need to know about the local "shape" of the valley, and therefore
how our ball should roll.

Based on what I've just written, you might suppose that we'll be
trying to write down Newton's equations of motion for the ball,
considering the effects of friction and gravity, and so on. Actually,
we're not going to take the ball-rolling analogy quite that seriously -
we're devising an algorithm to minimize , not developing an
accurate simulation of the laws of physics! The ball's-eye view is
meant to stimulate our imagination, not constrain our thinking. So
rather than get into all the messy details of physics, let's simply ask
ourselves: if we were declared God for a day, and could make up our
own laws of physics, dictating to the ball how it should roll, what
law or laws of motion could we pick that would make it so the ball
always rolled to the bottom of the valley?

To make this question more precise, let's think about what happens
when we move the ball a small amount in the direction, and

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 26/50

a small amount in the direction. Calculus tells us that
changes as follows:

We're going to find a way of choosing and so as to make
negative; i.e., we'll choose them so the ball is rolling down into the
valley. To figure out how to make such a choice it helps to define
to be the vector of changes in , , where is again
the transpose operation, turning row vectors into column vectors.
We'll also define the gradient of to be the vector of partial
derivatives, . We denote the gradient vector by , i.e.:

In a moment we'll rewrite the change in terms of and the
gradient, . Before getting to that, though, I want to clarify
something that sometimes gets people hung up on the gradient.
When meeting the notation for the first time, people sometimes
wonder how they should think about the symbol. What, exactly,
does mean? In fact, it's perfectly fine to think of as a single
mathematical object - the vector defined above - which happens to
be written using two symbols. In this point of view, is just a piece
of notational flag-waving, telling you "hey, is a gradient vector".
There are more advanced points of view where can be viewed as
an independent mathematical entity in its own right (for example,
as a differential operator), but we won't need such points of view.

With these definitions, the expression (7) for can be rewritten as

This equation helps explain why is called the gradient vector:
 relates changes in to changes in , just as we'd expect

something called a gradient to do. But what's really exciting about
the equation is that it lets us see how to choose so as to make
negative. In particular, suppose we choose

where is a small, positive parameter (known as the learning rate).
Then Equation (9) tells us that .
Because , this guarantees that , i.e., will always

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 27/50

decrease, never increase, if we change according to the
prescription in (10). (Within, of course, the limits of the
approximation in Equation (9)). This is exactly the property we
wanted! And so we'll take Equation (10) to define the "law of
motion" for the ball in our gradient descent algorithm. That is, we'll
use Equation (10) to compute a value for , then move the ball's
position by that amount:

Then we'll use this update rule again, to make another move. If we
keep doing this, over and over, we'll keep decreasing until - we
hope - we reach a global minimum.

Summing up, the way the gradient descent algorithm works is to
repeatedly compute the gradient , and then to move in the
opposite direction, "falling down" the slope of the valley. We can
visualize it like this:

Notice that with this rule gradient descent doesn't reproduce real
physical motion. In real life a ball has momentum, and that
momentum may allow it to roll across the slope, or even
(momentarily) roll uphill. It's only after the effects of friction set in
that the ball is guaranteed to roll down into the valley. By contrast,
our rule for choosing just says "go down, right now". That's still
a pretty good rule for finding the minimum!

To make gradient descent work correctly, we need to choose the
learning rate to be small enough that Equation (9) is a good

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 28/50

approximation. If we don't, we might end up with , which
obviously would not be good! At the same time, we don't want to
be too small, since that will make the changes tiny, and thus the
gradient descent algorithm will work very slowly. In practical
implementations, is often varied so that Equation (9) remains a
good approximation, but the algorithm isn't too slow. We'll see later
how this works.

I've explained gradient descent when is a function of just two
variables. But, in fact, everything works just as well even when is
a function of many more variables. Suppose in particular that is a
function of variables, . Then the change in
produced by a small change is

where the gradient is the vector

Just as for the two variable case, we can choose

and we're guaranteed that our (approximate) expression (12) for
will be negative. This gives us a way of following the gradient to a
minimum, even when is a function of many variables, by
repeatedly applying the update rule

You can think of this update rule as defining the gradient descent
algorithm. It gives us a way of repeatedly changing the position in
order to find a minimum of the function . The rule doesn't always
work - several things can go wrong and prevent gradient descent
from finding the global minimum of , a point we'll return to
explore in later chapters. But, in practice gradient descent often
works extremely well, and in neural networks we'll find that it's a
powerful way of minimizing the cost function, and so helping the
net learn.

Indeed, there's even a sense in which gradient descent is the
optimal strategy for searching for a minimum. Let's suppose that

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 29/50

we're trying to make a move in position so as to decrease as
much as possible. This is equivalent to minimizing .
We'll constrain the size of the move so that for some small
fixed . In other words, we want a move that is a small step of a
fixed size, and we're trying to find the movement direction which
decreases as much as possible. It can be proved that the choice of

 which minimizes is , where is
determined by the size constraint . So gradient descent can
be viewed as a way of taking small steps in the direction which does
the most to immediately decrease .

Exercises

Prove the assertion of the last paragraph. Hint: If you're not
already familiar with the Cauchy-Schwarz inequality, you may
find it helpful to familiarize yourself with it.

I explained gradient descent when is a function of two
variables, and when it's a function of more than two variables.
What happens when is a function of just one variable? Can
you provide a geometric interpretation of what gradient
descent is doing in the one-dimensional case?

People have investigated many variations of gradient descent,
including variations that more closely mimic a real physical ball.
These ball-mimicking variations have some advantages, but also
have a major disadvantage: it turns out to be necessary to compute
second partial derivatives of , and this can be quite costly. To see
why it's costly, suppose we want to compute all the second partial
derivatives . If there are a million such variables then
we'd need to compute something like a trillion (i.e., a million
squared) second partial derivatives*! That's going to be
computationally costly. With that said, there are tricks for avoiding
this kind of problem, and finding alternatives to gradient descent is
an active area of investigation. But in this book we'll use gradient
descent (and variations) as our main approach to learning in neural
networks.

How can we apply gradient descent to learn in a neural network?
The idea is to use gradient descent to find the weights and biases

 which minimize the cost in Equation (6). To see how this works,
let's restate the gradient descent update rule, with the weights and

*Actually, more like half a trillion, since
. Still, you get the point.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 30/50

biases replacing the variables . In other words, our "position" now
has components and , and the gradient vector has
corresponding components and . Writing out the
gradient descent update rule in terms of components, we have

By repeatedly applying this update rule we can "roll down the hill",
and hopefully find a minimum of the cost function. In other words,
this is a rule which can be used to learn in a neural network.

There are a number of challenges in applying the gradient descent
rule. We'll look into those in depth in later chapters. But for now I
just want to mention one problem. To understand what the problem
is, let's look back at the quadratic cost in Equation (6). Notice that
this cost function has the form , that is, it's an average

over costs for individual training examples. In
practice, to compute the gradient we need to compute the
gradients separately for each training input, , and then
average them, . Unfortunately, when the number of
training inputs is very large this can take a long time, and learning
thus occurs slowly.

An idea called stochastic gradient descent can be used to speed up
learning. The idea is to estimate the gradient by computing
for a small sample of randomly chosen training inputs. By
averaging over this small sample it turns out that we can quickly get
a good estimate of the true gradient , and this helps speed up
gradient descent, and thus learning.

To make these ideas more precise, stochastic gradient descent
works by randomly picking out a small number of randomly
chosen training inputs. We'll label those random training inputs

, and refer to them as a mini-batch. Provided the
sample size is large enough we expect that the average value of
the will be roughly equal to the average over all , that is,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 31/50

where the second sum is over the entire set of training data.
Swapping sides we get

confirming that we can estimate the overall gradient by computing
gradients just for the randomly chosen mini-batch.

To connect this explicitly to learning in neural networks, suppose
and denote the weights and biases in our neural network. Then
stochastic gradient descent works by picking out a randomly chosen
mini-batch of training inputs, and training with those,

where the sums are over all the training examples in the current
mini-batch. Then we pick out another randomly chosen mini-batch
and train with those. And so on, until we've exhausted the training
inputs, which is said to complete an epoch of training. At that point
we start over with a new training epoch.

Incidentally, it's worth noting that conventions vary about scaling of
the cost function and of mini-batch updates to the weights and
biases. In Equation (6) we scaled the overall cost function by a
factor . People sometimes omit the , summing over the costs of
individual training examples instead of averaging. This is
particularly useful when the total number of training examples isn't
known in advance. This can occur if more training data is being
generated in real time, for instance. And, in a similar way, the mini-
batch update rules (20) and (21) sometimes omit the term out
the front of the sums. Conceptually this makes little difference,
since it's equivalent to rescaling the learning rate . But when doing
detailed comparisons of different work it's worth watching out for.

We can think of stochastic gradient descent as being like political
polling: it's much easier to sample a small mini-batch than it is to
apply gradient descent to the full batch, just as carrying out a poll is
easier than running a full election. For example, if we have a
training set of size , as in MNIST, and choose a mini-

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 32/50

batch size of (say) , this means we'll get a factor of
speedup in estimating the gradient! Of course, the estimate won't be
perfect - there will be statistical fluctuations - but it doesn't need to
be perfect: all we really care about is moving in a general direction
that will help decrease , and that means we don't need an exact
computation of the gradient. In practice, stochastic gradient
descent is a commonly used and powerful technique for learning in
neural networks, and it's the basis for most of the learning
techniques we'll develop in this book.

Exercise

An extreme version of gradient descent is to use a mini-batch
size of just 1. That is, given a training input, , we update our
weights and biases according to the rules

 and . Then we
choose another training input, and update the weights and
biases again. And so on, repeatedly. This procedure is known as
online, on-line, or incremental learning. In online learning, a
neural network learns from just one training input at a time
(just as human beings do). Name one advantage and one
disadvantage of online learning, compared to stochastic
gradient descent with a mini-batch size of, say, .

Let me conclude this section by discussing a point that sometimes
bugs people new to gradient descent. In neural networks the cost
is, of course, a function of many variables - all the weights and
biases - and so in some sense defines a surface in a very high-
dimensional space. Some people get hung up thinking: "Hey, I have
to be able to visualize all these extra dimensions". And they may
start to worry: "I can't think in four dimensions, let alone five (or
five million)". Is there some special ability they're missing, some
ability that "real" supermathematicians have? Of course, the answer
is no. Even most professional mathematicians can't visualize four
dimensions especially well, if at all. The trick they use, instead, is to
develop other ways of representing what's going on. That's exactly
what we did above: we used an algebraic (rather than visual)
representation of to figure out how to move so as to decrease .
People who are good at thinking in high dimensions have a mental
library containing many different techniques along these lines; our
algebraic trick is just one example. Those techniques may not have

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 33/50

the simplicity we're accustomed to when visualizing three
dimensions, but once you build up a library of such techniques, you
can get pretty good at thinking in high dimensions. I won't go into
more detail here, but if you're interested then you may enjoy
reading this discussion of some of the techniques professional
mathematicians use to think in high dimensions. While some of the
techniques discussed are quite complex, much of the best content is
intuitive and accessible, and could be mastered by anyone.

Implementing our network to classify
digits
Alright, let's write a program that learns how to recognize
handwritten digits, using stochastic gradient descent and the
MNIST training data. We'll do this with a short Python (2.7)
program, just 74 lines of code! The first thing we need is to get the
MNIST data. If you're a git user then you can obtain the data by
cloning the code repository for this book,

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

If you don't use git then you can download the data and code here.

Incidentally, when I described the MNIST data earlier, I said it was
split into 60,000 training images, and 10,000 test images. That's
the official MNIST description. Actually, we're going to split the
data a little differently. We'll leave the test images as is, but split the
60,000-image MNIST training set into two parts: a set of 50,000
images, which we'll use to train our neural network, and a separate
10,000 image validation set. We won't use the validation data in
this chapter, but later in the book we'll find it useful in figuring out
how to set certain hyper-parameters of the neural network - things
like the learning rate, and so on, which aren't directly selected by
our learning algorithm. Although the validation data isn't part of
the original MNIST specification, many people use MNIST in this
fashion, and the use of validation data is common in neural
networks. When I refer to the "MNIST training data" from now on,
I'll be referring to our 50,000 image data set, not the original
60,000 image data set*.

Apart from the MNIST data we also need a Python library called
Numpy, for doing fast linear algebra. If you don't already have

*As noted earlier, the MNIST data set is based
on two data sets collected by NIST, the United
States' National Institute of Standards and
Technology. To construct MNIST the NIST data
sets were stripped down and put into a more
convenient format by Yann LeCun, Corinna

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 34/50

Numpy installed, you can get it here.

Let me explain the core features of the neural networks code, before
giving a full listing, below. The centerpiece is a Network class, which
we use to represent a neural network. Here's the code we use to
initialize a Network object:

class Network(object):

 def __init__(self, sizes):
 self.num_layers = len(sizes)

 self.sizes = sizes

 self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
 self.weights = [np.random.randn(y, x)

 for x, y in zip(sizes[:-1], sizes[1:])]

In this code, the list sizes contains the number of neurons in the
respective layers. So, for example, if we want to create a Network
object with 2 neurons in the first layer, 3 neurons in the second
layer, and 1 neuron in the final layer, we'd do this with the code:

net = Network([2, 3, 1])

The biases and weights in the Network object are all initialized
randomly, using the Numpy np.random.randn function to generate
Gaussian distributions with mean and standard deviation . This
random initialization gives our stochastic gradient descent
algorithm a place to start from. In later chapters we'll find better
ways of initializing the weights and biases, but this will do for now.
Note that the Network initialization code assumes that the first layer
of neurons is an input layer, and omits to set any biases for those
neurons, since biases are only ever used in computing the outputs
from later layers.

Note also that the biases and weights are stored as lists of Numpy
matrices. So, for example net.weights[1] is a Numpy matrix storing
the weights connecting the second and third layers of neurons. (It's
not the first and second layers, since Python's list indexing starts at
0.) Since net.weights[1] is rather verbose, let's just denote that
matrix . It's a matrix such that is the weight for the connection
between the neuron in the second layer, and the neuron in the
third layer. This ordering of the and indices may seem strange -
surely it'd make more sense to swap the and indices around? The
big advantage of using this ordering is that it means that the vector
of activations of the third layer of neurons is:

Cortes, and Christopher J. C. Burges. See this
link for more details. The data set in my
repository is in a form that makes it easy to load
and manipulate the MNIST data in Python. I
obtained this particular form of the data from
the LISA machine learning laboratory at the
University of Montreal (link).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 35/50

There's quite a bit going on in this equation, so let's unpack it piece
by piece. is the vector of activations of the second layer of
neurons. To obtain we multiply by the weight matrix , and
add the vector of biases. We then apply the function
elementwise to every entry in the vector . (This is called
vectorizing the function .) It's easy to verify that Equation (22)
gives the same result as our earlier rule, Equation (4), for
computing the output of a sigmoid neuron.

Exercise

Write out Equation (22) in component form, and verify that it
gives the same result as the rule (4) for computing the output
of a sigmoid neuron.

With all this in mind, it's easy to write code computing the output
from a Network instance. We begin by defining the sigmoid function:

def sigmoid(z):
 return 1.0/(1.0+np.exp(-z))

Note that when the input z is a vector or Numpy array, Numpy
automatically applies the function sigmoid elementwise, that is, in
vectorized form.

We then add a feedforward method to the Network class, which,
given an input a for the network, returns the corresponding
output*. All the method does is applies Equation (22) for each
layer:

 def feedforward(self, a):
 """Return the output of the network if "a" is input."""

 for b, w in zip(self.biases, self.weights):
 a = sigmoid(np.dot(w, a)+b)

 return a

Of course, the main thing we want our Network objects to do is to
learn. To that end we'll give them an SGD method which implements
stochastic gradient descent. Here's the code. It's a little mysterious
in a few places, but I'll break it down below, after the listing.

 def SGD(self, training_data, epochs, mini_batch_size, eta,
 test_data=None):

 """Train the neural network using mini-batch stochastic

 gradient descent. The "training_data" is a list of tuples

 "(x, y)" representing the training inputs and the desired

 outputs. The other non-optional parameters are

 self-explanatory. If "test_data" is provided then the

 network will be evaluated against the test data after each

 epoch, and partial progress printed out. This is useful for

 tracking progress, but slows things down substantially."""

*It is assumed that the input a is an (n, 1)
Numpy ndarray, not a (n,) vector. Here, n is
the number of inputs to the network. If you try to
use an (n,) vector as input you'll get strange
results. Although using an (n,) vector appears
the more natural choice, using an (n, 1)
ndarray makes it particularly easy to modify the
code to feedforward multiple inputs at once, and
that is sometimes convenient.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 36/50

 if test_data: n_test = len(test_data)
 n = len(training_data)

 for j in xrange(epochs):
 random.shuffle(training_data)

 mini_batches = [

 training_data[k:k+mini_batch_size]

 for k in xrange(0, n, mini_batch_size)]
 for mini_batch in mini_batches:
 self.update_mini_batch(mini_batch, eta)

 if test_data:
 print "Epoch {0}: {1} / {2}".format(
 j, self.evaluate(test_data), n_test)

 else:
 print "Epoch {0} complete".format(j)

The training_data is a list of tuples (x, y) representing the training
inputs and corresponding desired outputs. The variables epochs and
mini_batch_size are what you'd expect - the number of epochs to
train for, and the size of the mini-batches to use when sampling. eta
is the learning rate, . If the optional argument test_data is
supplied, then the program will evaluate the network after each
epoch of training, and print out partial progress. This is useful for
tracking progress, but slows things down substantially.

The code works as follows. In each epoch, it starts by randomly
shuffling the training data, and then partitions it into mini-batches
of the appropriate size. This is an easy way of sampling randomly
from the training data. Then for each mini_batch we apply a single
step of gradient descent. This is done by the code
self.update_mini_batch(mini_batch, eta), which updates the
network weights and biases according to a single iteration of
gradient descent, using just the training data in mini_batch. Here's
the code for the update_mini_batch method:

 def update_mini_batch(self, mini_batch, eta):
 """Update the network's weights and biases by applying

 gradient descent using backpropagation to a single mini batch.

 The "mini_batch" is a list of tuples "(x, y)", and "eta"

 is the learning rate."""

 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 for x, y in mini_batch:
 delta_nabla_b, delta_nabla_w = self.backprop(x, y)

 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 self.weights = [w-(eta/len(mini_batch))*nw

 for w, nw in zip(self.weights, nabla_w)]
 self.biases = [b-(eta/len(mini_batch))*nb

 for b, nb in zip(self.biases, nabla_b)]

Most of the work is done by the line

 delta_nabla_b, delta_nabla_w = self.backprop(x, y)

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 37/50

This invokes something called the backpropagation algorithm,
which is a fast way of computing the gradient of the cost function.
So update_mini_batch works simply by computing these gradients
for every training example in the mini_batch, and then updating
self.weights and self.biases appropriately.

I'm not going to show the code for self.backprop right now. We'll
study how backpropagation works in the next chapter, including the
code for self.backprop. For now, just assume that it behaves as
claimed, returning the appropriate gradient for the cost associated
to the training example x.

Let's look at the full program, including the documentation strings,
which I omitted above. Apart from self.backprop the program is
self-explanatory - all the heavy lifting is done in self.SGD and
self.update_mini_batch, which we've already discussed. The
self.backprop method makes use of a few extra functions to help in
computing the gradient, namely sigmoid_prime, which computes the
derivative of the function, and self.cost_derivative, which I
won't describe here. You can get the gist of these (and perhaps the
details) just by looking at the code and documentation strings. We'll
look at them in detail in the next chapter. Note that while the
program appears lengthy, much of the code is documentation
strings intended to make the code easy to understand. In fact, the
program contains just 74 lines of non-whitespace, non-comment
code. All the code may be found on GitHub here.

"""

network.py

~~~~~~~~~~

A module to implement the stochastic gradient descent learning

algorithm for a feedforward neural network.  Gradients are calculated

using backpropagation.  Note that I have focused on making the code

simple, easily readable, and easily modifiable.  It is not optimized,

and omits many desirable features.

"""

#### Libraries

# Standard library

import random

# Third-party libraries

import numpy as np

class Network(object):

    def __init__(self, sizes):
        """The list ``sizes`` contains the number of neurons in the

        respective layers of the network.  For example, if the list

        was [2, 3, 1] then it would be a three-layer network, with the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 38/50

        first layer containing 2 neurons, the second layer 3 neurons,

        and the third layer 1 neuron.  The biases and weights for the

        network are initialized randomly, using a Gaussian

        distribution with mean 0, and variance 1.  Note that the first

        layer is assumed to be an input layer, and by convention we

        won't set any biases for those neurons, since biases are only

        ever used in computing the outputs from later layers."""

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
        self.weights = [np.random.randn(y, x)

                        for x, y in zip(sizes[:-1], sizes[1:])]

    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""

        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)

        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            test_data=None):

        """Train the neural network using mini-batch stochastic

        gradient descent.  The ``training_data`` is a list of tuples

        ``(x, y)`` representing the training inputs and the desired

        outputs.  The other non-optional parameters are

        self-explanatory.  If ``test_data`` is provided then the

        network will be evaluated against the test data after each

        epoch, and partial progress printed out.  This is useful for

        tracking progress, but slows things down substantially."""

        if test_data: n_test = len(test_data)
        n = len(training_data)

        for j in xrange(epochs):
            random.shuffle(training_data)

            mini_batches = [

                training_data[k:k+mini_batch_size]

                for k in xrange(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(mini_batch, eta)

            if test_data:
                print "Epoch {0}: {1} / {2}".format(
                    j, self.evaluate(test_data), n_test)

            else:
                print "Epoch {0} complete".format(j)

    def update_mini_batch(self, mini_batch, eta):
        """Update the network's weights and biases by applying

        gradient descent using backpropagation to a single mini batch.

        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``

        is the learning rate."""

        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [w-(eta/len(mini_batch))*nw

                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb

                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):
        """Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 39/50

        activation = x

        activations = [x] # list to store all the activations, layer by layer

        zs = [] # list to store all the z vectors, layer by layer

        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b

            zs.append(z)

            activation = sigmoid(z)

            activations.append(activation)

        # backward pass

        delta = self.cost_derivative(activations[-1], y) * \

            sigmoid_prime(zs[-1])

        nabla_b[-1] = delta

        nabla_w[-1] = np.dot(delta, activations[-2].transpose())

        # Note that the variable l in the loop below is used a little

        # differently to the notation in Chapter 2 of the book.  Here,

        # l = 1 means the last layer of neurons, l = 2 is the

        # second-last layer, and so on.  It's a renumbering of the

        # scheme in the book, used here to take advantage of the fact

        # that Python can use negative indices in lists.

        for l in xrange(2, self.num_layers):
            z = zs[-l]

            sp = sigmoid_prime(z)

            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

            nabla_b[-l] = delta

            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

        return (nabla_b, nabla_w)

    def evaluate(self, test_data):
        """Return the number of test inputs for which the neural

        network outputs the correct result. Note that the neural

        network's output is assumed to be the index of whichever

        neuron in the final layer has the highest activation."""

        test_results = [(np.argmax(self.feedforward(x)), y)

                        for (x, y) in test_data]
        return sum(int(x == y) for (x, y) in test_results)

    def cost_derivative(self, output_activations, y):
        """Return the vector of partial derivatives \partial C_x /

        \partial a for the output activations."""

        return (output_activations-y)

#### Miscellaneous functions

def sigmoid(z):
    """The sigmoid function."""

    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
    """Derivative of the sigmoid function."""

    return sigmoid(z)*(1-sigmoid(z))

How well does the program recognize handwritten digits? Well, let's
start by loading in the MNIST data. I'll do this using a little helper
program, mnist_loader.py, to be described below. We execute the
following commands in a Python shell,

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

Of course, this could also be done in a separate Python program,
but if you're following along it's probably easiest to do in a Python
shell.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 40/50

After loading the MNIST data, we'll set up a Network with  hidden
neurons. We do this after importing the Python program listed
above, which is named network,

>>> import network
>>> net = network.Network([784, 30, 10])

Finally, we'll use stochastic gradient descent to learn from the
MNIST training_data over 30 epochs, with a mini-batch size of 10,
and a learning rate of ,

>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

Note that if you're running the code as you read along, it will take
some time to execute - for a typical machine (as of 2015) it will
likely take a few minutes to run. I suggest you set things running,
continue to read, and periodically check the output from the code. If
you're in a rush you can speed things up by decreasing the number
of epochs, by decreasing the number of hidden neurons, or by using
only part of the training data. Note that production code would be
much, much faster: these Python scripts are intended to help you
understand how neural nets work, not to be high-performance
code! And, of course, once we've trained a network it can be run
very quickly indeed, on almost any computing platform. For
example, once we've learned a good set of weights and biases for a
network, it can easily be ported to run in Javascript in a web
browser, or as a native app on a mobile device. In any case, here is a
partial transcript of the output of one training run of the neural
network. The transcript shows the number of test images correctly
recognized by the neural network after each epoch of training. As
you can see, after just a single epoch this has reached 9,129 out of
10,000, and the number continues to grow,

Epoch 0: 9129 / 10000

Epoch 1: 9295 / 10000

Epoch 2: 9348 / 10000

...

Epoch 27: 9528 / 10000

Epoch 28: 9542 / 10000

Epoch 29: 9534 / 10000

That is, the trained network gives us a classification rate of about 
percent -  percent at its peak ("Epoch 28")! That's quite
encouraging as a first attempt. I should warn you, however, that if
you run the code then your results are not necessarily going to be
quite the same as mine, since we'll be initializing our network using

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 41/50

(different) random weights and biases. To generate results in this
chapter I've taken best-of-three runs.

Let's rerun the above experiment, changing the number of hidden
neurons to . As was the case earlier, if you're running the code as
you read along, you should be warned that it takes quite a while to
execute (on my machine this experiment takes tens of seconds for
each training epoch), so it's wise to continue reading in parallel
while the code executes.

>>> net = network.Network([784, 100, 10])

>>> net.SGD(training_data, 30, 10, 3.0, test_data=test_data)

Sure enough, this improves the results to  percent. At least in
this case, using more hidden neurons helps us get better results*.

Of course, to obtain these accuracies I had to make specific choices
for the number of epochs of training, the mini-batch size, and the
learning rate, . As I mentioned above, these are known as hyper-
parameters for our neural network, in order to distinguish them
from the parameters (weights and biases) learnt by our learning
algorithm. If we choose our hyper-parameters poorly, we can get
bad results. Suppose, for example, that we'd chosen the learning
rate to be ,

>>> net = network.Network([784, 100, 10])

>>> net.SGD(training_data, 30, 10, 0.001, test_data=test_data)

The results are much less encouraging,

Epoch 0: 1139 / 10000

Epoch 1: 1136 / 10000

Epoch 2: 1135 / 10000

...

Epoch 27: 2101 / 10000

Epoch 28: 2123 / 10000

Epoch 29: 2142 / 10000

However, you can see that the performance of the network is getting
slowly better over time. That suggests increasing the learning rate,
say to . If we do that, we get better results, which suggests
increasing the learning rate again. (If making a change improves
things, try doing more!) If we do that several times over, we'll end
up with a learning rate of something like  (and perhaps fine
tune to ), which is close to our earlier experiments. So even
though we initially made a poor choice of hyper-parameters, we at
least got enough information to help us improve our choice of
hyper-parameters.

*Reader feedback indicates quite some variation
in results for this experiment, and some training
runs give results quite a bit worse. Using the
techniques introduced in chapter 3 will greatly
reduce the variation in performance across
different training runs for our networks.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 42/50

In general, debugging a neural network can be challenging. This is
especially true when the initial choice of hyper-parameters
produces results no better than random noise. Suppose we try the
successful 30 hidden neuron network architecture from earlier, but
with the learning rate changed to :

>>> net = network.Network([784, 30, 10])

>>> net.SGD(training_data, 30, 10, 100.0, test_data=test_data)

At this point we've actually gone too far, and the learning rate is too
high:

Epoch 0: 1009 / 10000

Epoch 1: 1009 / 10000

Epoch 2: 1009 / 10000

Epoch 3: 1009 / 10000

...

Epoch 27: 982 / 10000

Epoch 28: 982 / 10000

Epoch 29: 982 / 10000

Now imagine that we were coming to this problem for the first time.
Of course, we know from our earlier experiments that the right
thing to do is to decrease the learning rate. But if we were coming to
this problem for the first time then there wouldn't be much in the
output to guide us on what to do. We might worry not only about
the learning rate, but about every other aspect of our neural
network. We might wonder if we've initialized the weights and
biases in a way that makes it hard for the network to learn? Or
maybe we don't have enough training data to get meaningful
learning? Perhaps we haven't run for enough epochs? Or maybe it's
impossible for a neural network with this architecture to learn to
recognize handwritten digits? Maybe the learning rate is too low?
Or, maybe, the learning rate is too high? When you're coming to a
problem for the first time, you're not always sure.

The lesson to take away from this is that debugging a neural
network is not trivial, and, just as for ordinary programming, there
is an art to it. You need to learn that art of debugging in order to get
good results from neural networks. More generally, we need to
develop heuristics for choosing good hyper-parameters and a good
architecture. We'll discuss all these at length through the book,
including how I chose the hyper-parameters above.

Exercise

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 43/50

Try creating a network with just two layers - an input and an
output layer, no hidden layer - with 784 and 10 neurons,
respectively. Train the network using stochastic gradient
descent. What classification accuracy can you achieve?

Earlier, I skipped over the details of how the MNIST data is loaded.
It's pretty straightforward. For completeness, here's the code. The
data structures used to store the MNIST data are described in the
documentation strings - it's straightforward stuff, tuples and lists of
Numpy ndarray objects (think of them as vectors if you're not
familiar with ndarrays):

"""

mnist_loader

~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data

structures that are returned, see the doc strings for ``load_data``

and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the

function usually called by our neural network code.

"""

Libraries

Standard library

import cPickle
import gzip

Third-party libraries

import numpy as np

def load_data():
 """Return the MNIST data as a tuple containing the training data,

 the validation data, and the test data.

 The ``training_data`` is returned as a tuple with two entries.

 The first entry contains the actual training images. This is a

 numpy ndarray with 50,000 entries. Each entry is, in turn, a

 numpy ndarray with 784 values, representing the 28 * 28 = 784

 pixels in a single MNIST image.

 The second entry in the ``training_data`` tuple is a numpy ndarray

 containing 50,000 entries. Those entries are just the digit

 values (0...9) for the corresponding images contained in the first

 entry of the tuple.

 The ``validation_data`` and ``test_data`` are similar, except

 each contains only 10,000 images.

 This is a nice data format, but for use in neural networks it's

 helpful to modify the format of the ``training_data`` a little.

 That's done in the wrapper function ``load_data_wrapper()``, see

 below.

 """

 f = gzip.open('../data/mnist.pkl.gz', 'rb')

 training_data, validation_data, test_data = cPickle.load(f)

 f.close()

 return (training_data, validation_data, test_data)

def load_data_wrapper():
 """Return a tuple containing ``(training_data, validation_data,

 test_data)``. Based on ``load_data``, but the format is more

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 44/50

 convenient for use in our implementation of neural networks.

 In particular, ``training_data`` is a list containing 50,000

 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray

 containing the input image. ``y`` is a 10-dimensional

 numpy.ndarray representing the unit vector corresponding to the

 correct digit for ``x``.

 ``validation_data`` and ``test_data`` are lists containing 10,000

 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional

 numpy.ndarry containing the input image, and ``y`` is the

 corresponding classification, i.e., the digit values (integers)

 corresponding to ``x``.

 Obviously, this means we're using slightly different formats for

 the training data and the validation / test data. These formats

 turn out to be the most convenient for use in our neural network

 code."""

 tr_d, va_d, te_d = load_data()

 training_inputs = [np.reshape(x, (784, 1)) for x in tr_d[0]]
 training_results = [vectorized_result(y) for y in tr_d[1]]
 training_data = zip(training_inputs, training_results)

 validation_inputs = [np.reshape(x, (784, 1)) for x in va_d[0]]
 validation_data = zip(validation_inputs, va_d[1])

 test_inputs = [np.reshape(x, (784, 1)) for x in te_d[0]]
 test_data = zip(test_inputs, te_d[1])

 return (training_data, validation_data, test_data)

def vectorized_result(j):
 """Return a 10-dimensional unit vector with a 1.0 in the jth

 position and zeroes elsewhere. This is used to convert a digit

 (0...9) into a corresponding desired output from the neural

 network."""

 e = np.zeros((10, 1))

 e[j] = 1.0

 return e

I said above that our program gets pretty good results. What does
that mean? Good compared to what? It's informative to have some
simple (non-neural-network) baseline tests to compare against, to
understand what it means to perform well. The simplest baseline of
all, of course, is to randomly guess the digit. That'll be right about
ten percent of the time. We're doing much better than that!

What about a less trivial baseline? Let's try an extremely simple
idea: we'll look at how dark an image is. For instance, an image of a

 will typically be quite a bit darker than an image of a , just
because more pixels are blackened out, as the following examples
illustrate:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 45/50

This suggests using the training data to compute average
darknesses for each digit, . When presented with a new
image, we compute how dark the image is, and then guess that it's
whichever digit has the closest average darkness. This is a simple
procedure, and is easy to code up, so I won't explicitly write out the
code - if you're interested it's in the GitHub repository. But it's a big
improvement over random guessing, getting of the
test images correct, i.e., percent accuracy.

It's not difficult to find other ideas which achieve accuracies in the
 to percent range. If you work a bit harder you can get up over
 percent. But to get much higher accuracies it helps to use

established machine learning algorithms. Let's try using one of the
best known algorithms, the support vector machine or SVM. If
you're not familiar with SVMs, not to worry, we're not going to need
to understand the details of how SVMs work. Instead, we'll use a
Python library called scikit-learn, which provides a simple Python
interface to a fast C-based library for SVMs known as LIBSVM.

If we run scikit-learn's SVM classifier using the default settings,
then it gets 9,435 of 10,000 test images correct. (The code is
available here.) That's a big improvement over our naive approach
of classifying an image based on how dark it is. Indeed, it means
that the SVM is performing roughly as well as our neural networks,
just a little worse. In later chapters we'll introduce new techniques
that enable us to improve our neural networks so that they perform
much better than the SVM.

That's not the end of the story, however. The 9,435 of 10,000 result
is for scikit-learn's default settings for SVMs. SVMs have a number
of tunable parameters, and it's possible to search for parameters
which improve this out-of-the-box performance. I won't explicitly
do this search, but instead refer you to this blog post by Andreas
Mueller if you'd like to know more. Mueller shows that with some
work optimizing the SVM's parameters it's possible to get the
performance up above 98.5 percent accuracy. In other words, a
well-tuned SVM only makes an error on about one digit in 70.
That's pretty good! Can neural networks do better?

In fact, they can. At present, well-designed neural networks
outperform every other technique for solving MNIST, including

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 46/50

SVMs. The current (2013) record is classifying 9,979 of 10,000
images correctly. This was done by Li Wan, Matthew Zeiler, Sixin
Zhang, Yann LeCun, and Rob Fergus. We'll see most of the
techniques they used later in the book. At that level the
performance is close to human-equivalent, and is arguably better,
since quite a few of the MNIST images are difficult even for humans
to recognize with confidence, for example:

I trust you'll agree that those are tough to classify! With images like
these in the MNIST data set it's remarkable that neural networks
can accurately classify all but 21 of the 10,000 test images. Usually,
when programming we believe that solving a complicated problem
like recognizing the MNIST digits requires a sophisticated
algorithm. But even the neural networks in the Wan et al paper just
mentioned involve quite simple algorithms, variations on the
algorithm we've seen in this chapter. All the complexity is learned,
automatically, from the training data. In some sense, the moral of
both our results and those in more sophisticated papers, is that for
some problems:

sophisticated algorithm simple learning algorithm + good
training data.

Toward deep learning
While our neural network gives impressive performance, that
performance is somewhat mysterious. The weights and biases in the
network were discovered automatically. And that means we don't
immediately have an explanation of how the network does what it
does. Can we find some way to understand the principles by which
our network is classifying handwritten digits? And, given such
principles, can we do better?

To put these questions more starkly, suppose that a few decades
hence neural networks lead to artificial intelligence (AI). Will we
understand how such intelligent networks work? Perhaps the
networks will be opaque to us, with weights and biases we don't

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 47/50

understand, because they've been learned automatically. In the
early days of AI research people hoped that the effort to build an AI
would also help us understand the principles behind intelligence
and, maybe, the functioning of the human brain. But perhaps the
outcome will be that we end up understanding neither the brain nor
how artificial intelligence works!

To address these questions, let's think back to the interpretation of
artificial neurons that I gave at the start of the chapter, as a means
of weighing evidence. Suppose we want to determine whether an
image shows a human face or not:

We could attack this problem the same way we attacked
handwriting recognition - by using the pixels in the image as input
to a neural network, with the output from the network a single
neuron indicating either "Yes, it's a face" or "No, it's not a face".

Let's suppose we do this, but that we're not using a learning
algorithm. Instead, we're going to try to design a network by hand,
choosing appropriate weights and biases. How might we go about
it? Forgetting neural networks entirely for the moment, a heuristic
we could use is to decompose the problem into sub-problems: does
the image have an eye in the top left? Does it have an eye in the top
right? Does it have a nose in the middle? Does it have a mouth in
the bottom middle? Is there hair on top? And so on.

If the answers to several of these questions are "yes", or even just
"probably yes", then we'd conclude that the image is likely to be a
face. Conversely, if the answers to most of the questions are "no",
then the image probably isn't a face.

Of course, this is just a rough heuristic, and it suffers from many
deficiencies. Maybe the person is bald, so they have no hair. Maybe
we can only see part of the face, or the face is at an angle, so some of
the facial features are obscured. Still, the heuristic suggests that if

Credits: 1. Ester Inbar. 2. Unknown. 3. NASA,
ESA, G. Illingworth, D. Magee, and P. Oesch
(University of California, Santa Cruz), R.
Bouwens (Leiden University), and the HUDF09
Team. Click on the images for more details.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 48/50

we can solve the sub-problems using neural networks, then perhaps
we can build a neural network for face-detection, by combining the
networks for the sub-problems. Here's a possible architecture, with
rectangles denoting the sub-networks. Note that this isn't intended
as a realistic approach to solving the face-detection problem; rather,
it's to help us build intuition about how networks function. Here's
the architecture:

It's also plausible that the sub-networks can be decomposed.
Suppose we're considering the question: "Is there an eye in the top
left?" This can be decomposed into questions such as: "Is there an
eyebrow?"; "Are there eyelashes?"; "Is there an iris?"; and so on. Of
course, these questions should really include positional
information, as well - "Is the eyebrow in the top left, and above the
iris?", that kind of thing - but let's keep it simple. The network to
answer the question "Is there an eye in the top left?" can now be
decomposed:

Those questions too can be broken down, further and further
through multiple layers. Ultimately, we'll be working with sub-

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 49/50

networks that answer questions so simple they can easily be
answered at the level of single pixels. Those questions might, for
example, be about the presence or absence of very simple shapes at
particular points in the image. Such questions can be answered by
single neurons connected to the raw pixels in the image.

The end result is a network which breaks down a very complicated
question - does this image show a face or not - into very simple
questions answerable at the level of single pixels. It does this
through a series of many layers, with early layers answering very
simple and specific questions about the input image, and later
layers building up a hierarchy of ever more complex and abstract
concepts. Networks with this kind of many-layer structure - two or
more hidden layers - are called deep neural networks.

Of course, I haven't said how to do this recursive decomposition
into sub-networks. It certainly isn't practical to hand-design the
weights and biases in the network. Instead, we'd like to use learning
algorithms so that the network can automatically learn the weights
and biases - and thus, the hierarchy of concepts - from training
data. Researchers in the 1980s and 1990s tried using stochastic
gradient descent and backpropagation to train deep networks.
Unfortunately, except for a few special architectures, they didn't
have much luck. The networks would learn, but very slowly, and in
practice often too slowly to be useful.

Since 2006, a set of techniques has been developed that enable
learning in deep neural nets. These deep learning techniques are
based on stochastic gradient descent and backpropagation, but also
introduce new ideas. These techniques have enabled much deeper
(and larger) networks to be trained - people now routinely train
networks with 5 to 10 hidden layers. And, it turns out that these
perform far better on many problems than shallow neural networks,
i.e., networks with just a single hidden layer. The reason, of course,
is the ability of deep nets to build up a complex hierarchy of
concepts. It's a bit like the way conventional programming
languages use modular design and ideas about abstraction to enable
the creation of complex computer programs. Comparing a deep
network to a shallow network is a bit like comparing a
programming language with the ability to make function calls to a
stripped down language with no ability to make such calls.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 50/50

Abstraction takes a different form in neural networks than it does in
conventional programming, but it's just as important.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1/25

In the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our explanation: we didn't discuss how to
compute the gradient of the cost function. That's quite a gap! In this
chapter I'll explain a fast algorithm for computing such gradients,
an algorithm known as backpropagation.

The backpropagation algorithm was originally introduced in the
1970s, but its importance wasn't fully appreciated until a famous
1986 paper by David Rumelhart, Geoffrey Hinton, and Ronald
Williams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. If you're not crazy about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black box whose
details you're willing to ignore. Why take the time to study those
details?

The reason, of course, is understanding. At the heart of
backpropagation is an expression for the partial derivative of
the cost function with respect to any weight (or bias) in the
network. The expression tells us how quickly the cost changes when
we change the weights and biases. And while the expression is
somewhat complex, it also has a beauty to it, with each element
having a natural, intuitive interpretation. And so backpropagation
isn't just a fast algorithm for learning. It actually gives us detailed
insights into how changing the weights and biases changes the
overall behaviour of the network. That's well worth studying in
detail.

With that said, if you want to skim the chapter, or jump straight to
the next chapter, that's fine. I've written the rest of the book to be
accessible even if you treat backpropagation as a black box. There

CHAPTER 2

How the backpropagation algorithm works

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 2/25

are, of course, points later in the book where I refer back to results
from this chapter. But at those points you should still be able to
understand the main conclusions, even if you don't follow all the
reasoning.

Warm up: a fast matrix-based approach
to computing the output from a neural
network
Before discussing backpropagation, let's warm up with a fast
matrix-based algorithm to compute the output from a neural
network. We actually already briefly saw this algorithm near the
end of the last chapter, but I described it quickly, so it's worth
revisiting in detail. In particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar context.

Let's begin with a notation which lets us refer to weights in the
network in an unambiguous way. We'll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. So, for example, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to
master. But with a little effort you'll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. You might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. I'll explain the reason for this quirk below.

We use a similar notation for the network's biases and activations.
Explicitly, we use for the bias of the neuron in the layer.

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 3/25

And we use for the activation of the neuron in the layer. The
following diagram shows examples of these notations in use:

With these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation (compare Equation (4) and surrounding discussion in the
last chapter)

where the sum is over all neurons in the layer. To rewrite
this expression in a matrix form we define a weight matrix for
each layer, . The entries of the weight matrix are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . Similarly, for each layer we define a bias
vector, . You can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. And finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite (23) in a matrix form is the
idea of vectorizing a function such as . We met vectorization briefly
in the last chapter, but to recap, the idea is that we want to apply a
function such as to every element in a vector . We use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
As an example, if we have the function then the vectorized
form of has the effect

that is, the vectorized just squares every element of the vector.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 4/25

With these notations in mind, Equation (23) can be rewritten in the
beautiful and compact vectorized form

This expression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matrix to the activations, then add
the bias vector, and finally apply the function*. That global view is
often easier and more succinct (and involves fewer indices!) than
the neuron-by-neuron view we've taken to now. Think of it as a way
of escaping index hell, while remaining precise about what's going
on. The expression is also useful in practice, because most matrix
libraries provide fast ways of implementing matrix multiplication,
vector addition, and vectorization. Indeed, the code in the last
chapter made implicit use of this expression to compute the
behaviour of the network.

When using Equation (25) to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weighted input to the neurons in layer . We'll make considerable
use of the weighted input later in the chapter. Equation (25) is
sometimes written in terms of the weighted input, as . It's
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
in layer .

The two assumptions we need about
the cost function
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
Before stating those assumptions, though, it's useful to have an
example cost function in mind. We'll use the quadratic cost function
from last chapter (c.f. Equation (6)). In the notation of the last
section, the quadratic cost has the form

*By the way, it's this expression that motivates
the quirk in the notation mentioned earlier.

If we used to index the input neuron, and to
index the output neuron, then we'd need to
replace the weight matrix in Equation (25) by the
transpose of the weight matrix. That's a small
change, but annoying, and we'd lose the easy
simplicity of saying (and thinking) "apply the
weight matrix to the activations".

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 5/25

where: is the total number of training examples; the sum is over
individual training examples, ; is the corresponding
desired output; denotes the number of layers in the network; and

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied? The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
examples, . This is the case for the quadratic cost function, where
the cost for a single training example is . This
assumption will also hold true for all the other cost functions we'll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training example. We
then recover and by averaging over training examples.
In fact, with this assumption in mind, we'll suppose the training
example has been fixed, and drop the subscript, writing the cost

 as . We'll eventually put the back in, but for now it's a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For example, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training example may be
written as

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 6/25

why we're not regarding the cost also as a function of . Remember,
though, that the input training example is fixed, and so the output
 is also a fixed parameter. In particular, it's not something we can

modify by changing the weights and biases in any way, i.e., it's not
something which the neural network learns. And so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

The Hadamard product,
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matrix, and so on. But one of the operations is a little
less commonly used. In particular, suppose and are two vectors
of the same dimension. Then we use to denote the elementwise
product of the two vectors. Thus the components of are just

. As an example,

This kind of elementwise multiplication is sometimes called the
Hadamard product or Schur product. We'll refer to it as the
Hadamard product. Good matrix libraries usually provide fast
implementations of the Hadamard product, and that comes in
handy when implementing backpropagation.

The four fundamental equations
behind backpropagation
Backpropagation is about understanding how changing the weights
and biases in a network changes the cost function. Ultimately, this
means computing the partial derivatives and . But to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
Backpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

欧拉的博客:www.liuhao.me

Gang LI

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 7/25

The demon sits at the neuron in layer . As the input to the
neuron comes in, the demon messes with the neuron's operation. It
adds a little change to the neuron's weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they're trying to find a which makes the
cost smaller. Suppose has a large value (either positive or

negative). Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . By contrast, if is

close to zero, then the demon can't improve the cost much at all by
perturbing the weighted input . So far as the demon can tell, the
neuron is already pretty near optimal*. And so there's a heuristic
sense in which is a measure of the error in the neuron.

Motivated by this story, we define the error of neuron in layer
by

As per our usual conventions, we use to denote the vector of
errors associated with layer . Backpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

You might wonder why the demon is changing the weighted input
. Surely it'd be more natural to imagine the demon changing the

output activation , with the result that we'd be using as our

measure of error. In fact, if you do this things work out quite
similarly to the discussion below. But it turns out to make the

*This is only the case for small changes , of
course. We'll assume that the demon is
constrained to make such small changes.

欧拉的博客:www.liuhao.me

Gang LI

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 8/25

presentation of backpropagation a little more algebraically
complicated. So we'll stick with as our measure of error*.

Plan of attack: Backpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. I
state the four equations below. Be warned, though: you shouldn't
expect to instantaneously assimilate the equations. Such an
expectation will lead to disappointment. In fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. And so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

Here's a preview of the ways we'll delve more deeply into the
equations later in the chapter: I'll give a short proof of the
equations, which helps explain why they are true; we'll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running Python code; and,
in the final section of the chapter, we'll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. Along the way we'll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

An equation for the error in the output layer, : The
components of are given by

This is a very natural expression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. If, for example, doesn't depend much on a
particular output neuron, , then will be small, which is what
we'd expect. The second term on the right, , measures how
fast the activation function is changing at .

*In classification problems like MNIST the term
"error" is sometimes used to mean the
classification failure rate. E.g., if the neural net
correctly classifies 96.0 percent of the digits,
then the error is 4.0 percent. Obviously, this has
quite a different meaning from our vectors. In
practice, you shouldn't have trouble telling
which meaning is intended in any given usage.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 9/25

Notice that everything in (BP1) is easily computed. In particular, we
compute while computing the behaviour of the network, and it's
only a small additional overhead to compute . The exact form
of will, of course, depend on the form of the cost function.
However, provided the cost function is known there should be little
trouble computing . For example, if we're using the quadratic
cost function then , and so ,
which obviously is easily computable.

Equation (BP1) is a componentwise expression for . It's a
perfectly good expression, but not the matrix-based form we want
for backpropagation. However, it's easy to rewrite the equation in a
matrix-based form, as

Here, is defined to be a vector whose components are the
partial derivatives . You can think of as expressing the
rate of change of with respect to the output activations. It's easy
to see that Equations (BP1a) and (BP1) are equivalent, and for that
reason from now on we'll use (BP1) interchangeably to refer to both
equations. As an example, in the case of the quadratic cost we have

, and so the fully matrix-based form of (BP1)
becomes

As you can see, everything in this expression has a nice vector form,
and is easily computed using a library such as Numpy.

An equation for the error in terms of the error in the
next layer, : In particular

where is the transpose of the weight matrix for the
 layer. This equation appears complicated, but each element

has a nice interpretation. Suppose we know the error at the
 layer. When we apply the transpose weight matrix, ,

we can think intuitively of this as moving the error backward
through the network, giving us some sort of measure of the error at
the output of the layer. We then take the Hadamard product

. This moves the error backward through the activation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 10/25

function in layer , giving us the error in the weighted input to
layer .

By combining (BP2) with (BP1) we can compute the error for any
layer in the network. We start by using (BP1) to compute , then
apply Equation (BP2) to compute , then Equation (BP2) again
to compute , and so on, all the way back through the network.

An equation for the rate of change of the cost with respect
to any bias in the network: In particular:

That is, the error is exactly equal to the rate of change .
This is great news, since (BP1) and (BP2) have already told us how
to compute . We can rewrite (BP3) in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

An equation for the rate of change of the cost with respect
to any weight in the network: In particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less index-heavy
notation as

where it's understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . Zooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 11/25

A nice consequence of Equation (32) is that when the activation
is small, , the gradient term will also tend to be small.
In this case, we'll say the weight learns slowly, meaning that it's not
changing much during gradient descent. In other words, one
consequence of (BP4) is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from (BP1)-(BP4). Let's start by looking at the output layer.
Consider the term in (BP1). Recall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is approximately or . When this occurs we
will have . And so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation (

) or high activation (). In this case it's common to say the
output neuron has saturated and, as a result, the weight has
stopped learning (or is learning slowly). Similar remarks hold also
for the biases of output neuron.

We can obtain similar insights for earlier layers. In particular, note
the term in (BP2). This means that is likely to get small if
the neuron is near saturation. And this, in turn, means that any
weights input to a saturated neuron will learn slowly*.

Summing up, we've learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. Still, they help
improve our mental model of what's going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The
four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function (that's because, as
we'll see in a moment, the proofs don't use any special properties of

). And so we can use these equations to design activation functions
which have particular desired learning properties. As an example to
give you the idea, suppose we were to choose a (non-sigmoid)
activation function so that is always positive, and never gets
close to zero. That would prevent the slow-down of learning that
occurs when ordinary sigmoid neurons saturate. Later in the book
we'll see examples where this kind of modification is made to the

*This reasoning won't hold if has large
enough entries to compensate for the smallness
of . But I'm speaking of the general
tendency.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 12/25

activation function. Keeping the four equations (BP1)-(BP4) in
mind can help explain why such modifications are tried, and what
impact they can have.

Problem

Alternate presentation of the equations of
backpropagation: I've stated the equations of
backpropagation (notably (BP1) and (BP2)) using the
Hadamard product. This presentation may be disconcerting if
you're unused to the Hadamard product. There's an alternative
approach, based on conventional matrix multiplication, which
some readers may find enlightening. (1) Show that (BP1) may
be rewritten as

where is a square matrix whose diagonal entries are the
values , and whose off-diagonal entries are zero. Note
that this matrix acts on by conventional matrix
multiplication. (2) Show that (BP2) may be rewritten as

(3) By combining observations (1) and (2) show that

For readers comfortable with matrix multiplication this
equation may be easier to understand than (BP1) and (BP2).
The reason I've focused on (BP1) and (BP2) is because that
approach turns out to be faster to implement numerically.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 13/25

Proof of the four fundamental
equations (optional)
We'll now prove the four fundamental equations (BP1)-(BP4). All
four are consequences of the chain rule from multivariable calculus.
If you're comfortable with the chain rule, then I strongly encourage
you to attempt the derivation yourself before reading on.

Let's begin with Equation (BP1), which gives an expression for the
output error, . To prove this equation, recall that by definition

Applying the chain rule, we can re-express the partial derivative
above in terms of partial derivatives with respect to the output
activations,

where the sum is over all neurons in the output layer. Of course,
the output activation of the neuron depends only on the input
weight for the neuron when . And so vanishes
when . As a result we can simplify the previous equation to

Recalling that the second term on the right can be
written as , and the equation becomes

which is just (BP1), in component form.

Next, we'll prove (BP2), which gives an equation for the error in
terms of the error in the next layer, . To do this, we want to
rewrite in terms of . We can do this using
the chain rule,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 14/25

where in the last line we have interchanged the two terms on the
right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

Substituting back into (42) we obtain

This is just (BP2) written in component form.

The final two equations we want to prove are (BP3) and (BP4).
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. I leave them to you as an
exercise.

Exercise

Prove Equations (BP3) and (BP4).

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. But it's really
just the outcome of carefully applying the chain rule. A little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That's all there really is to
backpropagation - the rest is details.

The backpropagation algorithm

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 15/25

The backpropagation equations provide us with a way of computing
the gradient of the cost function. Let's explicitly write this out in the
form of an algorithm:

1. Input : Set the corresponding activation for the input
layer.

2. Feedforward: For each compute
and .

3. Output error : Compute the vector .

4. Backpropagate the error: For each
compute .

5. Output: The gradient of the cost function is given by
 and .

Examining the algorithm you can see why it's called
backpropagation. We compute the error vectors backward,
starting from the final layer. It may seem peculiar that we're going
through the network backward. But if you think about the proof of
backpropagation, the backward movement is a consequence of the
fact that the cost is a function of outputs from the network. To
understand how the cost varies with earlier weights and biases we
need to repeatedly apply the chain rule, working backward through
the layers to obtain usable expressions.

Exercises

Backpropagation with a single modified neuron
Suppose we modify a single neuron in a feedforward network
so that the output from the neuron is given by ,
where is some function other than the sigmoid. How should
we modify the backpropagation algorithm in this case?

Backpropagation with linear neurons Suppose we
replace the usual non-linear function with
throughout the network. Rewrite the backpropagation
algorithm for this case.

As I've described it above, the backpropagation algorithm computes
the gradient of the cost function for a single training example,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 16/25

. In practice, it's common to combine backpropagation with
a learning algorithm such as stochastic gradient descent, in which
we compute the gradient for many training examples. In particular,
given a mini-batch of training examples, the following algorithm
applies a gradient descent learning step based on that mini-batch:

1. Input a set of training examples

2. For each training example : Set the corresponding input
activation , and perform the following steps:

Feedforward: For each compute
 and .

Output error : Compute the vector
.

Backpropagate the error: For each
 compute

.

3. Gradient descent: For each update the
weights according to the rule , and
the biases according to the rule .

Of course, to implement stochastic gradient descent in practice you
also need an outer loop generating mini-batches of training
examples, and an outer loop stepping through multiple epochs of
training. I've omitted those for simplicity.

The code for backpropagation
Having understood backpropagation in the abstract, we can now
understand the code used in the last chapter to implement
backpropagation. Recall from that chapter that the code was
contained in the update_mini_batch and backprop methods of the
Network class. The code for these methods is a direct translation of
the algorithm described above. In particular, the update_mini_batch
method updates the Network's weights and biases by computing the
gradient for the current mini_batch of training examples:

class Network(object):
...

 def update_mini_batch(self, mini_batch, eta):
 """Update the network's weights and biases by applying

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 17/25

 gradient descent using backpropagation to a single mini batch.

 The "mini_batch" is a list of tuples "(x, y)", and "eta"

 is the learning rate."""

 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 for x, y in mini_batch:
 delta_nabla_b, delta_nabla_w = self.backprop(x, y)

 nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
 nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
 self.weights = [w-(eta/len(mini_batch))*nw

 for w, nw in zip(self.weights, nabla_w)]
 self.biases = [b-(eta/len(mini_batch))*nb

 for b, nb in zip(self.biases, nabla_b)]

Most of the work is done by the line delta_nabla_b, delta_nabla_w
= self.backprop(x, y) which uses the backprop method to figure
out the partial derivatives and . The backprop
method follows the algorithm in the last section closely. There is
one small change - we use a slightly different approach to indexing
the layers. This change is made to take advantage of a feature of
Python, namely the use of negative list indices to count backward
from the end of a list, so, e.g., l[-3] is the third last entry in a list l.
The code for backprop is below, together with a few helper
functions, which are used to compute the function, the derivative

, and the derivative of the cost function. With these inclusions you
should be able to understand the code in a self-contained way. If
something's tripping you up, you may find it helpful to consult the
original description (and complete listing) of the code.

class Network(object):
...

 def backprop(self, x, y):
 """Return a tuple "(nabla_b, nabla_w)" representing the

 gradient for the cost function C_x. "nabla_b" and

 "nabla_w" are layer-by-layer lists of numpy arrays, similar

 to "self.biases" and "self.weights"."""

 nabla_b = [np.zeros(b.shape) for b in self.biases]
 nabla_w = [np.zeros(w.shape) for w in self.weights]
 # feedforward

 activation = x

 activations = [x] # list to store all the activations, layer by layer

 zs = [] # list to store all the z vectors, layer by layer

 for b, w in zip(self.biases, self.weights):
 z = np.dot(w, activation)+b

 zs.append(z)

 activation = sigmoid(z)

 activations.append(activation)

 # backward pass

 delta = self.cost_derivative(activations[-1], y) * \

 sigmoid_prime(zs[-1])

 nabla_b[-1] = delta

 nabla_w[-1] = np.dot(delta, activations[-2].transpose())

 # Note that the variable l in the loop below is used a little

 # differently to the notation in Chapter 2 of the book. Here,

 # l = 1 means the last layer of neurons, l = 2 is the

 # second-last layer, and so on. It's a renumbering of the

 # scheme in the book, used here to take advantage of the fact

 # that Python can use negative indices in lists.

 for l in xrange(2, self.num_layers):

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 18/25

 z = zs[-l]

 sp = sigmoid_prime(z)

 delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

 nabla_b[-l] = delta

 nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

 return (nabla_b, nabla_w)

...

 def cost_derivative(self, output_activations, y):
 """Return the vector of partial derivatives \partial C_x /

 \partial a for the output activations."""

 return (output_activations-y)

def sigmoid(z):
 """The sigmoid function."""

 return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):
 """Derivative of the sigmoid function."""

 return sigmoid(z)*(1-sigmoid(z))

Problem

Fully matrix-based approach to backpropagation over
a mini-batch Our implementation of stochastic gradient
descent loops over training examples in a mini-batch. It's
possible to modify the backpropagation algorithm so that it
computes the gradients for all training examples in a mini-
batch simultaneously. The idea is that instead of beginning
with a single input vector, , we can begin with a matrix

 whose columns are the vectors in the mini-
batch. We forward-propagate by multiplying by the weight
matrices, adding a suitable matrix for the bias terms, and
applying the sigmoid function everywhere. We backpropagate
along similar lines. Explicitly write out pseudocode for this
approach to the backpropagation algorithm. Modify network.py
so that it uses this fully matrix-based approach. The advantage
of this approach is that it takes full advantage of modern
libraries for linear algebra. As a result it can be quite a bit faster
than looping over the mini-batch. (On my laptop, for example,
the speedup is about a factor of two when run on MNIST
classification problems like those we considered in the last
chapter.) In practice, all serious libraries for backpropagation
use this fully matrix-based approach or some variant.

In what sense is backpropagation a
fast algorithm?

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 19/25

In what sense is backpropagation a fast algorithm? To answer this
question, let's consider another approach to computing the
gradient. Imagine it's the early days of neural networks research.
Maybe it's the 1950s or 1960s, and you're the first person in the
world to think of using gradient descent to learn! But to make the
idea work you need a way of computing the gradient of the cost
function. You think back to your knowledge of calculus, and decide
to see if you can use the chain rule to compute the gradient. But
after playing around a bit, the algebra looks complicated, and you
get discouraged. So you try to find another approach. You decide to
regard the cost as a function of the weights alone (we'll get
back to the biases in a moment). You number the weights ,
and want to compute for some particular weight . An
obvious way of doing that is to use the approximation

where is a small positive number, and is the unit vector in
the direction. In other words, we can estimate by
computing the cost for two slightly different values of , and
then applying Equation (46). The same idea will let us compute the
partial derivatives with respect to the biases.

This approach looks very promising. It's simple conceptually, and
extremely easy to implement, using just a few lines of code.
Certainly, it looks much more promising than the idea of using the
chain rule to compute the gradient!

Unfortunately, while this approach appears promising, when you
implement the code it turns out to be extremely slow. To
understand why, imagine we have a million weights in our network.
Then for each distinct weight we need to compute in
order to compute . That means that to compute the gradient
we need to compute the cost function a million different times,
requiring a million forward passes through the network (per
training example). We need to compute as well, so that's a
total of a million and one passes through the network.

What's clever about backpropagation is that it enables us to
simultaneously compute all the partial derivatives using just
one forward pass through the network, followed by one backward

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 20/25

pass through the network. Roughly speaking, the computational
cost of the backward pass is about the same as the forward pass*.
And so the total cost of backpropagation is roughly the same as
making just two forward passes through the network. Compare that
to the million and one forward passes we needed for the approach
based on (46)! And so even though backpropagation appears
superficially more complex than the approach based on (46), it's
actually much, much faster.

This speedup was first fully appreciated in 1986, and it greatly
expanded the range of problems that neural networks could solve.
That, in turn, caused a rush of people using neural networks. Of
course, backpropagation is not a panacea. Even in the late 1980s
people ran up against limits, especially when attempting to use
backpropagation to train deep neural networks, i.e., networks with
many hidden layers. Later in the book we'll see how modern
computers and some clever new ideas now make it possible to use
backpropagation to train such deep neural networks.

Backpropagation: the big picture
As I've explained it, backpropagation presents two mysteries. First,
what's the algorithm really doing? We've developed a picture of the
error being backpropagated from the output. But can we go any
deeper, and build up more intuition about what is going on when
we do all these matrix and vector multiplications? The second
mystery is how someone could ever have discovered
backpropagation in the first place? It's one thing to follow the steps
in an algorithm, or even to follow the proof that the algorithm
works. But that doesn't mean you understand the problem so well
that you could have discovered the algorithm in the first place. Is
there a plausible line of reasoning that could have led you to
discover the backpropagation algorithm? In this section I'll address
both these mysteries.

To improve our intuition about what the algorithm is doing, let's
imagine that we've made a small change to some weight in the
network, :

*This should be plausible, but it requires some
analysis to make a careful statement. It's
plausible because the dominant computational
cost in the forward pass is multiplying by the
weight matrices, while in the backward pass it's
multiplying by the transposes of the weight
matrices. These operations obviously have
similar computational cost.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 21/25

That change in weight will cause a change in the output activation
from the corresponding neuron:

That, in turn, will cause a change in all the activations in the next
layer:

Those changes will in turn cause changes in the next layer, and then
the next, and so on all the way through to causing a change in the
final layer, and then in the cost function:

The change in the cost is related to the change in the
weight by the equation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 22/25

This suggests that a possible approach to computing is to

carefully track how a small change in propagates to cause a
small change in . If we can do that, being careful to express
everything along the way in terms of easily computable quantities,
then we should be able to compute .

Let's try to carry this out. The change causes a small change
 in the activation of the neuron in the layer. This change is

given by

The change in activation will cause changes in all the
activations in the next layer, i.e., the layer. We'll
concentrate on the way just a single one of those activations is
affected, say ,

In fact, it'll cause the following change:

Substituting in the expression from Equation (48), we get:

Of course, the change will, in turn, cause changes in the
activations in the next layer. In fact, we can imagine a path all the
way through the network from to , with each change in
activation causing a change in the next activation, and, finally, a
change in the cost at the output. If the path goes through activations

 then the resulting expression is

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 23/25

that is, we've picked up a type term for each additional neuron
we've passed through, as well as the term at the end. This
represents the change in due to changes in the activations along
this particular path through the network. Of course, there's many
paths by which a change in can propagate to affect the cost, and
we've been considering just a single path. To compute the total
change in it is plausible that we should sum over all the possible
paths between the weight and the final cost, i.e.,

where we've summed over all possible choices for the intermediate
neurons along the path. Comparing with (47) we see that

Now, Equation (53) looks complicated. However, it has a nice
intuitive interpretation. We're computing the rate of change of
with respect to a weight in the network. What the equation tells us
is that every edge between two neurons in the network is associated
with a rate factor which is just the partial derivative of one neuron's
activation with respect to the other neuron's activation. The edge
from the first weight to the first neuron has a rate factor .
The rate factor for a path is just the product of the rate factors along
the path. And the total rate of change is just the sum of the
rate factors of all paths from the initial weight to the final cost. This
procedure is illustrated here, for a single path:

What I've been providing up to now is a heuristic argument, a way
of thinking about what's going on when you perturb a weight in a
network. Let me sketch out a line of thinking you could use to
further develop this argument. First, you could derive explicit

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 24/25

expressions for all the individual partial derivatives in Equation
(53). That's easy to do with a bit of calculus. Having done that, you
could then try to figure out how to write all the sums over indices as
matrix multiplications. This turns out to be tedious, and requires
some persistence, but not extraordinary insight. After doing all this,
and then simplifying as much as possible, what you discover is that
you end up with exactly the backpropagation algorithm! And so you
can think of the backpropagation algorithm as providing a way of
computing the sum over the rate factor for all these paths. Or, to
put it slightly differently, the backpropagation algorithm is a clever
way of keeping track of small perturbations to the weights (and
biases) as they propagate through the network, reach the output,
and then affect the cost.

Now, I'm not going to work through all this here. It's messy and
requires considerable care to work through all the details. If you're
up for a challenge, you may enjoy attempting it. And even if not, I
hope this line of thinking gives you some insight into what
backpropagation is accomplishing.

What about the other mystery - how backpropagation could have
been discovered in the first place? In fact, if you follow the approach
I just sketched you will discover a proof of backpropagation.
Unfortunately, the proof is quite a bit longer and more complicated
than the one I described earlier in this chapter. So how was that
short (but more mysterious) proof discovered? What you find when
you write out all the details of the long proof is that, after the fact,
there are several obvious simplifications staring you in the face. You
make those simplifications, get a shorter proof, and write that out.
And then several more obvious simplifications jump out at you. So
you repeat again. The result after a few iterations is the proof we
saw earlier* - short, but somewhat obscure, because all the
signposts to its construction have been removed! I am, of course,
asking you to trust me on this, but there really is no great mystery
to the origin of the earlier proof. It's just a lot of hard work
simplifying the proof I've sketched in this section.

*There is one clever step required. In Equation
(53) the intermediate variables are activations
like . The clever idea is to switch to using
weighted inputs, like , as the intermediate
variables. If you don't have this idea, and instead
continue using the activations , the proof you
obtain turns out to be slightly more complex
than the proof given earlier in the chapter.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning", Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 25/25

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 1/92

When a golf player is first learning to play golf, they usually spend
most of their time developing a basic swing. Only gradually do they
develop other shots, learning to chip, draw and fade the ball,
building on and modifying their basic swing. In a similar way, up to
now we've focused on understanding the backpropagation
algorithm. It's our "basic swing", the foundation for learning in
most work on neural networks. In this chapter I explain a suite of
techniques which can be used to improve on our vanilla
implementation of backpropagation, and so improve the way our
networks learn.

The techniques we'll develop in this chapter include: a better choice
of cost function, known as the cross-entropy cost function; four so-
called "regularization" methods (L1 and L2 regularization, dropout,
and artificial expansion of the training data), which make our
networks better at generalizing beyond the training data; a better
method for initializing the weights in the network; and a set of
heuristics to help choose good hyper-parameters for the network.
I'll also overview several other techniques in less depth. The
discussions are largely independent of one another, and so you may
jump ahead if you wish. We'll also implement many of the
techniques in running code, and use them to improve the results
obtained on the handwriting classification problem studied in
Chapter 1.

Of course, we're only covering a few of the many, many techniques
which have been developed for use in neural nets. The philosophy is
that the best entree to the plethora of available techniques is in-
depth study of a few of the most important. Mastering those
important techniques is not just useful in its own right, but will also
deepen your understanding of what problems can arise when you
use neural networks. That will leave you well prepared to quickly
pick up other techniques, as you need them.

The cross-entropy cost function

CHAPTER 3

Improving the way neural networks learn

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 2/92

Most of us find it unpleasant to be wrong. Soon after beginning to
learn the piano I gave my first performance before an audience. I
was nervous, and began playing the piece an octave too low. I got
confused, and couldn't continue until someone pointed out my
error. I was very embarrassed. Yet while unpleasant, we also learn
quickly when we're decisively wrong. You can bet that the next time
I played before an audience I played in the correct octave! By
contrast, we learn more slowly when our errors are less well-
defined.

Ideally, we hope and expect that our neural networks will learn fast
from their errors. Is this what happens in practice? To answer this
question, let's look at a toy example. The example involves a neuron
with just one input:

We'll train this neuron to do something ridiculously easy: take the
input to the output . Of course, this is such a trivial task that we
could easily figure out an appropriate weight and bias by hand,
without using a learning algorithm. However, it turns out to be
illuminating to use gradient descent to attempt to learn a weight
and bias. So let's take a look at how the neuron learns.

To make things definite, I'll pick the initial weight to be and the
initial bias to be . These are generic choices used as a place to
begin learning, I wasn't picking them to be special in any way. The
initial output from the neuron is , so quite a bit of learning will
be needed before our neuron gets near the desired output, . Click
on "Run" in the bottom right corner below to see how the neuron
learns an output much closer to . Note that this isn't a pre-
recorded animation, your browser is actually computing the
gradient, then using the gradient to update the weight and bias, and
displaying the result. The learning rate is , which turns out
to be slow enough that we can follow what's happening, but fast
enough that we can get substantial learning in just a few seconds.
The cost is the quadratic cost function, , introduced back in
Chapter 1. I'll remind you of the exact form of the cost function
shortly, so there's no need to go and dig up the definition. Note that

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 3/92

you can run the animation multiple times by clicking on "Run"
again.

As you can see, the neuron rapidly learns a weight and bias that
drives down the cost, and gives an output from the neuron of about

. That's not quite the desired output, , but it is pretty good.
Suppose, however, that we instead choose both the starting weight
and the starting bias to be . In this case the initial output is ,
which is very badly wrong. Let's look at how the neuron learns to
output in this case. Click on "Run" again:

Although this example uses the same learning rate (), we
can see that learning starts out much more slowly. Indeed, for the
first 150 or so learning epochs, the weights and biases don't change
much at all. Then the learning kicks in and, much as in our first
example, the neuron's output rapidly moves closer to .

This behaviour is strange when contrasted to human learning. As I
said at the beginning of this section, we often learn fastest when
we're badly wrong about something. But we've just seen that our
artificial neuron has a lot of difficulty learning when it's badly
wrong - far more difficulty than when it's just a little wrong. What's

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 4/92

more, it turns out that this behaviour occurs not just in this toy
model, but in more general networks. Why is learning so slow? And
can we find a way of avoiding this slowdown?

To understand the origin of the problem, consider that our neuron
learns by changing the weight and bias at a rate determined by the
partial derivatives of the cost function, and . So saying
"learning is slow" is really the same as saying that those partial
derivatives are small. The challenge is to understand why they are
small. To understand that, let's compute the partial derivatives.
Recall that we're using the quadratic cost function, which, from
Equation (6), is given by

where is the neuron's output when the training input is
used, and is the corresponding desired output. To write this
more explicitly in terms of the weight and bias, recall that ,
where . Using the chain rule to differentiate with respect
to the weight and bias we get

where I have substituted and . To understand the
behaviour of these expressions, let's look more closely at the
term on the right-hand side. Recall the shape of the function:

-4 -3 -2 -1 0 1 2 3 4

0.0

0.2

0.4

0.6

0.8

1.0

z

sigmoid function

We can see from this graph that when the neuron's output is close
to , the curve gets very flat, and so gets very small. Equations
(55) and (56) then tell us that and get very small. This
is the origin of the learning slowdown. What's more, as we shall see

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 5/92

a little later, the learning slowdown occurs for essentially the same
reason in more general neural networks, not just the toy example
we've been playing with.

Introducing the cross-entropy cost function

How can we address the learning slowdown? It turns out that we
can solve the problem by replacing the quadratic cost with a
different cost function, known as the cross-entropy. To understand
the cross-entropy, let's move a little away from our super-simple toy
model. We'll suppose instead that we're trying to train a neuron
with several input variables, , corresponding weights

, and a bias, :

The output from the neuron is, of course, , where
 is the weighted sum of the inputs. We define the

cross-entropy cost function for this neuron by

where is the total number of items of training data, the sum is
over all training inputs, , and is the corresponding desired
output.

It's not obvious that the expression (57) fixes the learning slowdown
problem. In fact, frankly, it's not even obvious that it makes sense to
call this a cost function! Before addressing the learning slowdown,
let's see in what sense the cross-entropy can be interpreted as a cost
function.

Two properties in particular make it reasonable to interpret the
cross-entropy as a cost function. First, it's non-negative, that is,

. To see this, notice that: (a) all the individual terms in the
sum in (57) are negative, since both logarithms are of numbers in
the range to ; and (b) there is a minus sign out the front of the
sum.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 6/92

Second, if the neuron's actual output is close to the desired output
for all training inputs, , then the cross-entropy will be close to
zero*. To see this, suppose for example that and for
some input . This is a case when the neuron is doing a good job on
that input. We see that the first term in the expression (57) for the
cost vanishes, since , while the second term is just

. A similar analysis holds when and . And
so the contribution to the cost will be low provided the actual
output is close to the desired output.

Summing up, the cross-entropy is positive, and tends toward zero
as the neuron gets better at computing the desired output, , for all
training inputs, . These are both properties we'd intuitively expect
for a cost function. Indeed, both properties are also satisfied by the
quadratic cost. So that's good news for the cross-entropy. But the
cross-entropy cost function has the benefit that, unlike the
quadratic cost, it avoids the problem of learning slowing down. To
see this, let's compute the partial derivative of the cross-entropy
cost with respect to the weights. We substitute into (57),
and apply the chain rule twice, obtaining:

Putting everything over a common denominator and simplifying
this becomes:

Using the definition of the sigmoid function, , and
a little algebra we can show that . I'll ask you to
verify this in an exercise below, but for now let's accept it as given.
We see that the and terms cancel in the equation
just above, and it simplifies to become:

This is a beautiful expression. It tells us that the rate at which the
weight learns is controlled by , i.e., by the error in the
output. The larger the error, the faster the neuron will learn. This is

*To prove this I will need to assume that the
desired outputs are all either or . This is
usually the case when solving classification
problems, for example, or when computing
Boolean functions. To understand what happens
when we don't make this assumption, see the
exercises at the end of this section.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 7/92

just what we'd intuitively expect. In particular, it avoids the learning
slowdown caused by the term in the analogous equation for
the quadratic cost, Equation (55). When we use the cross-entropy,
the term gets canceled out, and we no longer need worry about
it being small. This cancellation is the special miracle ensured by
the cross-entropy cost function. Actually, it's not really a miracle. As
we'll see later, the cross-entropy was specially chosen to have just
this property.

In a similar way, we can compute the partial derivative for the bias.
I won't go through all the details again, but you can easily verify
that

Again, this avoids the learning slowdown caused by the term in
the analogous equation for the quadratic cost, Equation (56).

Exercise

Verify that .

Let's return to the toy example we played with earlier, and explore
what happens when we use the cross-entropy instead of the
quadratic cost. To re-orient ourselves, we'll begin with the case
where the quadratic cost did just fine, with starting weight and
starting bias . Press "Run" to see what happens when we replace
the quadratic cost by the cross-entropy:

Unsurprisingly, the neuron learns perfectly well in this instance,
just as it did earlier. And now let's look at the case where our

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 8/92

neuron got stuck before (link, for comparison), with the weight and
bias both starting at :

Success! This time the neuron learned quickly, just as we hoped. If
you observe closely you can see that the slope of the cost curve was
much steeper initially than the initial flat region on the
corresponding curve for the quadratic cost. It's that steepness which
the cross-entropy buys us, preventing us from getting stuck just
when we'd expect our neuron to learn fastest, i.e., when the neuron
starts out badly wrong.

I didn't say what learning rate was used in the examples just
illustrated. Earlier, with the quadratic cost, we used .
Should we have used the same learning rate in the new examples?
In fact, with the change in cost function it's not possible to say
precisely what it means to use the "same" learning rate; it's an
apples and oranges comparison. For both cost functions I simply
experimented to find a learning rate that made it possible to see
what is going on. If you're still curious, despite my disavowal, here's
the lowdown: I used in the examples just given.

You might object that the change in learning rate makes the graphs
above meaningless. Who cares how fast the neuron learns, when
our choice of learning rate was arbitrary to begin with?! That
objection misses the point. The point of the graphs isn't about the
absolute speed of learning. It's about how the speed of learning
changes. In particular, when we use the quadratic cost learning is
slower when the neuron is unambiguously wrong than it is later on,
as the neuron gets closer to the correct output; while with the cross-
entropy learning is faster when the neuron is unambiguously

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 9/92

wrong. Those statements don't depend on how the learning rate is
set.

We've been studying the cross-entropy for a single neuron.
However, it's easy to generalize the cross-entropy to many-neuron
multi-layer networks. In particular, suppose are the
desired values at the output neurons, i.e., the neurons in the final
layer, while are the actual output values. Then we define
the cross-entropy by

This is the same as our earlier expression, Equation (57), except
now we've got the summing over all the output neurons. I won't
explicitly work through a derivation, but it should be plausible that
using the expression (63) avoids a learning slowdown in many-
neuron networks. If you're interested, you can work through the
derivation in the problem below.

When should we use the cross-entropy instead of the quadratic
cost? In fact, the cross-entropy is nearly always the better choice,
provided the output neurons are sigmoid neurons. To see why,
consider that when we're setting up the network we usually
initialize the weights and biases using some sort of randomization.
It may happen that those initial choices result in the network being
decisively wrong for some training input - that is, an output neuron
will have saturated near , when it should be , or vice versa. If
we're using the quadratic cost that will slow down learning. It won't
stop learning completely, since the weights will continue learning
from other training inputs, but it's obviously undesirable.

Exercises

One gotcha with the cross-entropy is that it can be difficult at
first to remember the respective roles of the s and the s. It's
easy to get confused about whether the right form is

 or . What
happens to the second of these expressions when or ?
Does this problem afflict the first expression? Why or why not?

In the single-neuron discussion at the start of this section, I
argued that the cross-entropy is small if for all training

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 10/92

inputs. The argument relied on being equal to either or .
This is usually true in classification problems, but for other
problems (e.g., regression problems) can sometimes take
values intermediate between and . Show that the cross-
entropy is still minimized when for all training inputs.
When this is the case the cross-entropy has the value:

The quantity is sometimes known as
the binary entropy.

Problems

Many-layer multi-neuron networks In the notation
introduced in the last chapter, show that for the quadratic cost
the partial derivative with respect to weights in the output layer
is

The term causes a learning slowdown whenever an
output neuron saturates on the wrong value. Show that for the
cross-entropy cost the output error for a single training
example is given by

Use this expression to show that the partial derivative with
respect to the weights in the output layer is given by

The term has vanished, and so the cross-entropy avoids
the problem of learning slowdown, not just when used with a
single neuron, as we saw earlier, but also in many-layer multi-
neuron networks. A simple variation on this analysis holds also
for the biases. If this is not obvious to you, then you should
work through that analysis as well.

Using the quadratic cost when we have linear neurons
in the output layer Suppose that we have a many-layer

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 11/92

multi-neuron network. Suppose all the neurons in the final
layer are linear neurons, meaning that the sigmoid activation
function is not applied, and the outputs are simply .
Show that if we use the quadratic cost function then the output
error for a single training example is given by

Similarly to the previous problem, use this expression to show
that the partial derivatives with respect to the weights and
biases in the output layer are given by

This shows that if the output neurons are linear neurons then
the quadratic cost will not give rise to any problems with a
learning slowdown. In this case the quadratic cost is, in fact, an
appropriate cost function to use.

Using the cross-entropy to classify MNIST digits

The cross-entropy is easy to implement as part of a program which
learns using gradient descent and backpropagation. We'll do that
later in the chapter, developing an improved version of our earlier
program for classifying the MNIST handwritten digits, network.py.
The new program is called network2.py, and incorporates not just
the cross-entropy, but also several other techniques developed in
this chapter*. For now, let's look at how well our new program
classifies MNIST digits. As was the case in Chapter 1, we'll use a
network with hidden neurons, and we'll use a mini-batch size of

. We set the learning rate to * and we train for epochs.
The interface to network2.py is slightly different than network.py,
but it should still be clear what is going on. You can, by the way, get
documentation about network2.py's interface by using commands
such as help(network2.Network.SGD) in a Python shell.

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

*The code is available on GitHub.

*In Chapter 1 we used the quadratic cost and a
learning rate of . As discussed above, it's
not possible to say precisely what it means to use
the "same" learning rate when the cost function
is changed. For both cost functions I
experimented to find a learning rate that
provides near-optimal performance, given the
other hyper-parameter choices.

There is, incidentally, a very rough general
heuristic for relating the learning rate for the
cross-entropy and the quadratic cost. As we saw
earlier, the gradient terms for the quadratic cost
have an extra term in them.
Suppose we average this over values for ,

. We see that (very roughly)
the quadratic cost learns an average of times

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 12/92

>>> net.SGD(training_data, 30, 10, 0.5, evaluation_data=test_data,

... monitor_evaluation_accuracy=True)

Note, by the way, that the net.large_weight_initializer()
command is used to initialize the weights and biases in the same
way as described in Chapter 1. We need to run this command
because later in this chapter we'll change the default weight
initialization in our networks. The result from running the above
sequence of commands is a network with percent accuracy.
This is pretty close to the result we obtained in Chapter 1,
percent, using the quadratic cost.

Let's look also at the case where we use hidden neurons, the
cross-entropy, and otherwise keep the parameters the same. In this
case we obtain an accuracy of percent. That's a substantial
improvement over the results from Chapter 1, where we obtained a
classification accuracy of percent, using the quadratic cost.
That may look like a small change, but consider that the error rate
has dropped from percent to percent. That is, we've
eliminated about one in fourteen of the original errors. That's quite
a handy improvement.

It's encouraging that the cross-entropy cost gives us similar or
better results than the quadratic cost. However, these results don't
conclusively prove that the cross-entropy is a better choice. The
reason is that I've put only a little effort into choosing hyper-
parameters such as learning rate, mini-batch size, and so on. For
the improvement to be really convincing we'd need to do a thorough
job optimizing such hyper-parameters. Still, the results are
encouraging, and reinforce our earlier theoretical argument that the
cross-entropy is a better choice than the quadratic cost.

This, by the way, is part of a general pattern that we'll see through
this chapter and, indeed, through much of the rest of the book.
We'll develop a new technique, we'll try it out, and we'll get
"improved" results. It is, of course, nice that we see such
improvements. But the interpretation of such improvements is
always problematic. They're only truly convincing if we see an
improvement after putting tremendous effort into optimizing all the
other hyper-parameters. That's a great deal of work, requiring lots
of computing power, and we're not usually going to do such an
exhaustive investigation. Instead, we'll proceed on the basis of

slower, for the same learning rate. This suggests
that a reasonable starting point is to divide the
learning rate for the quadratic cost by . Of
course, this argument is far from rigorous, and
shouldn't be taken too seriously. Still, it can
sometimes be a useful starting point.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 13/92

informal tests like those done above. Still, you should keep in mind
that such tests fall short of definitive proof, and remain alert to
signs that the arguments are breaking down.

By now, we've discussed the cross-entropy at great length. Why go
to so much effort when it gives only a small improvement to our
MNIST results? Later in the chapter we'll see other techniques -
notably, regularization - which give much bigger improvements. So
why so much focus on cross-entropy? Part of the reason is that the
cross-entropy is a widely-used cost function, and so is worth
understanding well. But the more important reason is that neuron
saturation is an important problem in neural nets, a problem we'll
return to repeatedly throughout the book. And so I've discussed the
cross-entropy at length because it's a good laboratory to begin
understanding neuron saturation and how it may be addressed.

What does the cross-entropy mean? Where
does it come from?

Our discussion of the cross-entropy has focused on algebraic
analysis and practical implementation. That's useful, but it leaves
unanswered broader conceptual questions, like: what does the
cross-entropy mean? Is there some intuitive way of thinking about
the cross-entropy? And how could we have dreamed up the cross-
entropy in the first place?

Let's begin with the last of these questions: what could have
motivated us to think up the cross-entropy in the first place?
Suppose we'd discovered the learning slowdown described earlier,
and understood that the origin was the terms in Equations
(55) and (56). After staring at those equations for a bit, we might
wonder if it's possible to choose a cost function so that the
term disappeared. In that case, the cost for a single training
example would satisfy

If we could choose the cost function to make these equations true,
then they would capture in a simple way the intuition that the
greater the initial error, the faster the neuron learns. They'd also

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 14/92

eliminate the problem of a learning slowdown. In fact, starting from
these equations we'll now show that it's possible to derive the form
of the cross-entropy, simply by following our mathematical noses.
To see this, note that from the chain rule we have

Using the last equation becomes

Comparing to Equation (72) we obtain

Integrating this expression with respect to gives

for some constant of integration. This is the contribution to the cost
from a single training example, . To get the full cost function we
must average over training examples, obtaining

where the constant here is the average of the individual constants
for each training example. And so we see that Equations (71) and
(72) uniquely determine the form of the cross-entropy, up to an
overall constant term. The cross-entropy isn't something that was
miraculously pulled out of thin air. Rather, it's something that we
could have discovered in a simple and natural way.

What about the intuitive meaning of the cross-entropy? How should
we think about it? Explaining this in depth would take us further
afield than I want to go. However, it is worth mentioning that there
is a standard way of interpreting the cross-entropy that comes from
the field of information theory. Roughly speaking, the idea is that
the cross-entropy is a measure of surprise. In particular, our neuron
is trying to compute the function . But instead it
computes the function . Suppose we think of as our
neuron's estimated probability that is , and is the estimated
probability that the right value for is . Then the cross-entropy
measures how "surprised" we are, on average, when we learn the

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 15/92

true value for . We get low surprise if the output is what we expect,
and high surprise if the output is unexpected. Of course, I haven't
said exactly what "surprise" means, and so this perhaps seems like
empty verbiage. But in fact there is a precise information-theoretic
way of saying what is meant by surprise. Unfortunately, I don't
know of a good, short, self-contained discussion of this subject
that's available online. But if you want to dig deeper, then
Wikipedia contains a brief summary that will get you started down
the right track. And the details can be filled in by working through
the materials about the Kraft inequality in chapter 5 of the book
about information theory by Cover and Thomas.

Problem

We've discussed at length the learning slowdown that can occur
when output neurons saturate, in networks using the quadratic
cost to train. Another factor that may inhibit learning is the
presence of the term in Equation (61). Because of this term,
when an input is near to zero, the corresponding weight
will learn slowly. Explain why it is not possible to eliminate the

 term through a clever choice of cost function.

Softmax

In this chapter we'll mostly use the cross-entropy cost to address
the problem of learning slowdown. However, I want to briefly
describe another approach to the problem, based on what are called
softmax layers of neurons. We're not actually going to use softmax
layers in the remainder of the chapter, so if you're in a great hurry,
you can skip to the next section. However, softmax is still worth
understanding, in part because it's intrinsically interesting, and in
part because we'll use softmax layers in Chapter 6, in our discussion
of deep neural networks.

The idea of softmax is to define a new type of output layer for our
neural networks. It begins in the same way as with a sigmoid layer,
by forming the weighted inputs* . However, we
don't apply the sigmoid function to get the output. Instead, in a
softmax layer we apply the so-called softmax function to the .
According to this function, the activation of the th output
neuron is

*In describing the softmax we'll make frequent
use of notation introduced in the last chapter.
You may wish to revisit that chapter if you need
to refresh your memory about the meaning of
the notation.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 16/92

where in the denominator we sum over all the output neurons.

If you're not familiar with the softmax function, Equation (78) may
look pretty opaque. It's certainly not obvious why we'd want to use
this function. And it's also not obvious that this will help us address
the learning slowdown problem. To better understand Equation
(78), suppose we have a network with four output neurons, and four
corresponding weighted inputs, which we'll denote , and .
Shown below are adjustable sliders showing possible values for the
weighted inputs, and a graph of the corresponding output
activations. A good place to start exploration is by using the bottom
slider to increase :

 2.5 0.315

 = 1 0.009

 = 3.2 0.633

 = 0.5 0.043

As you increase , you'll see an increase in the corresponding
output activation, , and a decrease in the other output activations.
Similarly, if you decrease then will decrease, and all the other
output activations will increase. In fact, if you look closely, you'll see
that in both cases the total change in the other activations exactly
compensates for the change in . The reason is that the output
activations are guaranteed to always sum up to , as we can prove
using Equation (78) and a little algebra:

As a result, if increases, then the other output activations must
decrease by the same total amount, to ensure the sum over all
activations remains . And, of course, similar statements hold for all
the other activations.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 17/92

Equation (78) also implies that the output activations are all
positive, since the exponential function is positive. Combining this
with the observation in the last paragraph, we see that the output
from the softmax layer is a set of positive numbers which sum up to

. In other words, the output from the softmax layer can be thought
of as a probability distribution.

The fact that a softmax layer outputs a probability distribution is
rather pleasing. In many problems it's convenient to be able to
interpret the output activation as the network's estimate of the
probability that the correct output is . So, for instance, in the
MNIST classification problem, we can interpret as the network's
estimated probability that the correct digit classification is .

By contrast, if the output layer was a sigmoid layer, then we
certainly couldn't assume that the activations formed a probability
distribution. I won't explicitly prove it, but it should be plausible
that the activations from a sigmoid layer won't in general form a
probability distribution. And so with a sigmoid output layer we
don't have such a simple interpretation of the output activations.

Exercise

Construct an example showing explicitly that in a network with
a sigmoid output layer, the output activations won't always
sum to .

We're starting to build up some feel for the softmax function and
the way softmax layers behave. Just to review where we're at: the
exponentials in Equation (78) ensure that all the output activations
are positive. And the sum in the denominator of Equation (78)
ensures that the softmax outputs sum to . So that particular form
no longer appears so mysterious: rather, it is a natural way to
ensure that the output activations form a probability distribution.
You can think of softmax as a way of rescaling the , and then
squishing them together to form a probability distribution.

Exercises

Monotonicity of softmax Show that is positive if
 and negative if . As a consequence, increasing is

guaranteed to increase the corresponding output activation, ,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 18/92

and will decrease all the other output activations. We already
saw this empirically with the sliders, but this is a rigorous
proof.

Non-locality of softmax A nice thing about sigmoid layers is
that the output is a function of the corresponding weighted
input, . Explain why this is not the case for a softmax
layer: any particular output activation depends on all the
weighted inputs.

Problem

Inverting the softmax layer Suppose we have a neural
network with a softmax output layer, and the activations are
known. Show that the corresponding weighted inputs have the
form , for some constant that is independent of
.

The learning slowdown problem: We've now built up
considerable familiarity with softmax layers of neurons. But we
haven't yet seen how a softmax layer lets us address the learning
slowdown problem. To understand that, let's define the log-
likelihood cost function. We'll use to denote a training input to the
network, and to denote the corresponding desired output. Then
the log-likelihood cost associated to this training input is

So, for instance, if we're training with MNIST images, and input an
image of a , then the log-likelihood cost is . To see that this
makes intuitive sense, consider the case when the network is doing
a good job, that is, it is confident the input is a . In that case it will
estimate a value for the corresponding probability which is close
to , and so the cost will be small. By contrast, when the
network isn't doing such a good job, the probability will be
smaller, and the cost will be larger. So the log-likelihood cost
behaves as we'd expect a cost function to behave.

What about the learning slowdown problem? To analyze that, recall
that the key to the learning slowdown is the behaviour of the
quantities and . I won't go through the derivation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 19/92

explicitly - I'll ask you to do in the problems, below - but with a little
algebra you can show that*

These equations are the same as the analogous expressions
obtained in our earlier analysis of the cross-entropy. Compare, for
example, Equation (82) to Equation (67). It's the same equation,
albeit in the latter I've averaged over training instances. And, just as
in the earlier analysis, these expressions ensure that we will not
encounter a learning slowdown. In fact, it's useful to think of a
softmax output layer with log-likelihood cost as being quite similar
to a sigmoid output layer with cross-entropy cost.

Given this similarity, should you use a sigmoid output layer and
cross-entropy, or a softmax output layer and log-likelihood? In fact,
in many situations both approaches work well. Through the
remainder of this chapter we'll use a sigmoid output layer, with the
cross-entropy cost. Later, in Chapter 6, we'll sometimes use a
softmax output layer, with log-likelihood cost. The reason for the
switch is to make some of our later networks more similar to
networks found in certain influential academic papers. As a more
general point of principle, softmax plus log-likelihood is worth
using whenever you want to interpret the output activations as
probabilities. That's not always a concern, but can be useful with
classification problems (like MNIST) involving disjoint classes.

Problems

Derive Equations (81) and (82).

Where does the "softmax" name come from? Suppose
we change the softmax function so the output activations are
given by

where is a positive constant. Note that corresponds to
the standard softmax function. But if we use a different value of
 we get a different function, which is nonetheless qualitatively

*Note that I'm abusing notation here, using in
a slightly different way to last paragraph. In the
last paragraph we used to denote the desired
output from the network - e.g., output a " " if an
image of a was input. But in the equations
which follow I'm using to denote the vector of
output activations which corresponds to , that
is, a vector which is all s, except for a in the

th location.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 20/92

rather similar to the softmax. In particular, show that the
output activations form a probability distribution, just as for
the usual softmax. Suppose we allow to become large, i.e.,

. What is the limiting value for the output activations ?
After solving this problem it should be clear to you why we
think of the function as a "softened" version of the
maximum function. This is the origin of the term "softmax".

Backpropagation with softmax and the log-likelihood
cost In the last chapter we derived the backpropagation
algorithm for a network containing sigmoid layers. To apply
the algorithm to a network with a softmax layer we need to
figure out an expression for the error in the final
layer. Show that a suitable expression is:

Using this expression we can apply the backpropagation
algorithm to a network using a softmax output layer and the
log-likelihood cost.

Overfitting and regularization
The Nobel prizewinning physicist Enrico Fermi was once asked his
opinion of a mathematical model some colleagues had proposed as
the solution to an important unsolved physics problem. The model
gave excellent agreement with experiment, but Fermi was skeptical.
He asked how many free parameters could be set in the model.
"Four" was the answer. Fermi replied*: "I remember my friend
Johnny von Neumann used to say, with four parameters I can fit an
elephant, and with five I can make him wiggle his trunk.".

The point, of course, is that models with a large number of free
parameters can describe an amazingly wide range of phenomena.
Even if such a model agrees well with the available data, that
doesn't make it a good model. It may just mean there's enough
freedom in the model that it can describe almost any data set of the
given size, without capturing any genuine insights into the
underlying phenomenon. When that happens the model will work
well for the existing data, but will fail to generalize to new
situations. The true test of a model is its ability to make predictions
in situations it hasn't been exposed to before.

*The quote comes from a charming article by
Freeman Dyson, who is one of the people who
proposed the flawed model. A four-parameter
elephant may be found here.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 21/92

Fermi and von Neumann were suspicious of models with four
parameters. Our 30 hidden neuron network for classifying MNIST
digits has nearly 24,000 parameters! That's a lot of parameters. Our
100 hidden neuron network has nearly 80,000 parameters, and
state-of-the-art deep neural nets sometimes contain millions or
even billions of parameters. Should we trust the results?

Let's sharpen this problem up by constructing a situation where our
network does a bad job generalizing to new situations. We'll use our
30 hidden neuron network, with its 23,860 parameters. But we
won't train the network using all 50,000 MNIST training images.
Instead, we'll use just the first 1,000 training images. Using that
restricted set will make the problem with generalization much more
evident. We'll train in a similar way to before, using the cross-
entropy cost function, with a learning rate of and a mini-
batch size of . However, we'll train for 400 epochs, a somewhat
larger number than before, because we're not using as many
training examples. Let's use network2 to look at the way the cost
function changes:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data[:1000], 400, 10, 0.5, evaluation_data=test_data,

... monitor_evaluation_accuracy=True, monitor_training_cost=True)

Using the results we can plot the way the cost changes as the
network learns* : *This and the next four graphs were generated

by the program overfitting.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 22/92

This looks encouraging, showing a smooth decrease in the cost, just
as we expect. Note that I've only shown training epochs 200
through 399. This gives us a nice up-close view of the later stages of
learning, which, as we'll see, turns out to be where the interesting
action is.

Let's now look at how the classification accuracy on the test data
changes over time:

Again, I've zoomed in quite a bit. In the first 200 epochs (not
shown) the accuracy rises to just under 82 percent. The learning
then gradually slows down. Finally, at around epoch 280 the
classification accuracy pretty much stops improving. Later epochs
merely see small stochastic fluctuations near the value of the
accuracy at epoch 280. Contrast this with the earlier graph, where
the cost associated to the training data continues to smoothly drop.
If we just look at that cost, it appears that our model is still getting
"better". But the test accuracy results show the improvement is an
illusion. Just like the model that Fermi disliked, what our network
learns after epoch 280 no longer generalizes to the test data. And so
it's not useful learning. We say the network is overfitting or
overtraining beyond epoch 280.

You might wonder if the problem here is that I'm looking at the cost
on the training data, as opposed to the classification accuracy on
the test data. In other words, maybe the problem is that we're
making an apples and oranges comparison. What would happen if
we compared the cost on the training data with the cost on the test
data, so we're comparing similar measures? Or perhaps we could

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 23/92

compare the classification accuracy on both the training data and
the test data? In fact, essentially the same phenomenon shows up
no matter how we do the comparison. The details do change,
however. For instance, let's look at the cost on the test data:

We can see that the cost on the test data improves until around
epoch 15, but after that it actually starts to get worse, even though
the cost on the training data is continuing to get better. This is
another sign that our model is overfitting. It poses a puzzle, though,
which is whether we should regard epoch 15 or epoch 280 as the
point at which overfitting is coming to dominate learning? From a
practical point of view, what we really care about is improving
classification accuracy on the test data, while the cost on the test
data is no more than a proxy for classification accuracy. And so it
makes most sense to regard epoch 280 as the point beyond which
overfitting is dominating learning in our neural network.

Another sign of overfitting may be seen in the classification
accuracy on the training data:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 24/92

The accuracy rises all the way up to percent. That is, our
network correctly classifies all training images! Meanwhile,
our test accuracy tops out at just percent. So our network
really is learning about peculiarities of the training set, not just
recognizing digits in general. It's almost as though our network is
merely memorizing the training set, without understanding digits
well enough to generalize to the test set.

Overfitting is a major problem in neural networks. This is especially
true in modern networks, which often have very large numbers of
weights and biases. To train effectively, we need a way of detecting
when overfitting is going on, so we don't overtrain. And we'd like to
have techniques for reducing the effects of overfitting.

The obvious way to detect overfitting is to use the approach above,
keeping track of accuracy on the test data as our network trains. If
we see that the accuracy on the test data is no longer improving,
then we should stop training. Of course, strictly speaking, this is not
necessarily a sign of overfitting. It might be that accuracy on the
test data and the training data both stop improving at the same
time. Still, adopting this strategy will prevent overfitting.

In fact, we'll use a variation on this strategy. Recall that when we
load in the MNIST data we load in three data sets:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 25/92

Up to now we've been using the training_data and test_data, and
ignoring the validation_data. The validation_data contains
images of digits, images which are different from the images
in the MNIST training set, and the images in the MNIST test
set. Instead of using the test_data to prevent overfitting, we will use
the validation_data. To do this, we'll use much the same strategy as
was described above for the test_data. That is, we'll compute the
classification accuracy on the validation_data at the end of each
epoch. Once the classification accuracy on the validation_data has
saturated, we stop training. This strategy is called early stopping.
Of course, in practice we won't immediately know when the
accuracy has saturated. Instead, we continue training until we're
confident that the accuracy has saturated*.

Why use the validation_data to prevent overfitting, rather than the
test_data? In fact, this is part of a more general strategy, which is
to use the validation_data to evaluate different trial choices of
hyper-parameters such as the number of epochs to train for, the
learning rate, the best network architecture, and so on. We use such
evaluations to find and set good values for the hyper-parameters.
Indeed, although I haven't mentioned it until now, that is, in part,
how I arrived at the hyper-parameter choices made earlier in this
book. (More on this later.)

Of course, that doesn't in any way answer the question of why we're
using the validation_data to prevent overfitting, rather than the
test_data. Instead, it replaces it with a more general question,
which is why we're using the validation_data rather than the
test_data to set good hyper-parameters? To understand why,
consider that when setting hyper-parameters we're likely to try
many different choices for the hyper-parameters. If we set the
hyper-parameters based on evaluations of the test_data it's
possible we'll end up overfitting our hyper-parameters to the
test_data. That is, we may end up finding hyper-parameters which
fit particular peculiarities of the test_data, but where the
performance of the network won't generalize to other data sets. We
guard against that by figuring out the hyper-parameters using the
validation_data. Then, once we've got the hyper-parameters we
want, we do a final evaluation of accuracy using the test_data. That
gives us confidence that our results on the test_data are a true
measure of how well our neural network generalizes. To put it

*It requires some judgment to determine when
to stop. In my earlier graphs I identified epoch
280 as the place at which accuracy saturated. It's
possible that was too pessimistic. Neural
networks sometimes plateau for a while in
training, before continuing to improve. I
wouldn't be surprised if more learning could
have occurred even after epoch 400, although
the magnitude of any further improvement
would likely be small. So it's possible to adopt
more or less aggressive strategies for early
stopping.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 26/92

another way, you can think of the validation data as a type of
training data that helps us learn good hyper-parameters. This
approach to finding good hyper-parameters is sometimes known as
the hold out method, since the validation_data is kept apart or
"held out" from the training_data.

Now, in practice, even after evaluating performance on the
test_data we may change our minds and want to try another
approach - perhaps a different network architecture - which will
involve finding a new set of hyper-parameters. If we do this, isn't
there a danger we'll end up overfitting to the test_data as well? Do
we need a potentially infinite regress of data sets, so we can be
confident our results will generalize? Addressing this concern fully
is a deep and difficult problem. But for our practical purposes, we're
not going to worry too much about this question. Instead, we'll
plunge ahead, using the basic hold out method, based on the
training_data, validation_data, and test_data, as described above.

We've been looking so far at overfitting when we're just using 1,000
training images. What happens when we use the full training set of
50,000 images? We'll keep all the other parameters the same (30
hidden neurons, learning rate 0.5, mini-batch size of 10), but train
using all 50,000 images for 30 epochs. Here's a graph showing the
results for the classification accuracy on both the training data and
the test data. Note that I've used the test data here, rather than the
validation data, in order to make the results more directly
comparable with the earlier graphs.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 27/92

As you can see, the accuracy on the test and training data remain
much closer together than when we were using 1,000 training
examples. In particular, the best classification accuracy of
percent on the training data is only percent higher than the

 percent on the test data. That's compared to the percent
gap we had earlier! Overfitting is still going on, but it's been greatly
reduced. Our network is generalizing much better from the training
data to the test data. In general, one of the best ways of reducing
overfitting is to increase the size of the training data. With enough
training data it is difficult for even a very large network to overfit.
Unfortunately, training data can be expensive or difficult to acquire,
so this is not always a practical option.

Regularization

Increasing the amount of training data is one way of reducing
overfitting. Are there other ways we can reduce the extent to which
overfitting occurs? One possible approach is to reduce the size of
our network. However, large networks have the potential to be
more powerful than small networks, and so this is an option we'd
only adopt reluctantly.

Fortunately, there are other techniques which can reduce
overfitting, even when we have a fixed network and fixed training
data. These are known as regularization techniques. In this section
I describe one of the most commonly used regularization
techniques, a technique sometimes known as weight decay or L2
regularization. The idea of L2 regularization is to add an extra term
to the cost function, a term called the regularization term. Here's
the regularized cross-entropy:

The first term is just the usual expression for the cross-entropy. But
we've added a second term, namely the sum of the squares of all the
weights in the network. This is scaled by a factor , where is
known as the regularization parameter, and is, as usual, the size
of our training set. I'll discuss later how is chosen. It's also worth
noting that the regularization term doesn't include the biases. I'll
also come back to that below.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 28/92

Of course, it's possible to regularize other cost functions, such as the
quadratic cost. This can be done in a similar way:

In both cases we can write the regularized cost function as

where is the original, unregularized cost function.

Intuitively, the effect of regularization is to make it so the network
prefers to learn small weights, all other things being equal. Large
weights will only be allowed if they considerably improve the first
part of the cost function. Put another way, regularization can be
viewed as a way of compromising between finding small weights
and minimizing the original cost function. The relative importance
of the two elements of the compromise depends on the value of :
when is small we prefer to minimize the original cost function, but
when is large we prefer small weights.

Now, it's really not at all obvious why making this kind of
compromise should help reduce overfitting! But it turns out that it
does. We'll address the question of why it helps in the next section.
But first, let's work through an example showing that regularization
really does reduce overfitting.

To construct such an example, we first need to figure out how to
apply our stochastic gradient descent learning algorithm in a
regularized neural network. In particular, we need to know how to
compute the partial derivatives and for all the weights
and biases in the network. Taking the partial derivatives of
Equation (87) gives

The and terms can be computed using
backpropagation, as described in the last chapter. And so we see
that it's easy to compute the gradient of the regularized cost
function: just use backpropagation, as usual, and then add to
the partial derivative of all the weight terms. The partial derivatives

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 29/92

with respect to the biases are unchanged, and so the gradient
descent learning rule for the biases doesn't change from the usual
rule:

The learning rule for the weights becomes:

This is exactly the same as the usual gradient descent learning rule,
except we first rescale the weight by a factor . This rescaling
is sometimes referred to as weight decay, since it makes the
weights smaller. At first glance it looks as though this means the
weights are being driven unstoppably toward zero. But that's not
right, since the other term may lead the weights to increase, if so
doing causes a decrease in the unregularized cost function.

Okay, that's how gradient descent works. What about stochastic
gradient descent? Well, just as in unregularized stochastic gradient
descent, we can estimate by averaging over a mini-batch of
training examples. Thus the regularized learning rule for stochastic
gradient descent becomes (c.f. Equation (20))

where the sum is over training examples in the mini-batch, and
is the (unregularized) cost for each training example. This is exactly
the same as the usual rule for stochastic gradient descent, except for
the weight decay factor. Finally, and for completeness, let me
state the regularized learning rule for the biases. This is, of course,
exactly the same as in the unregularized case (c.f. Equation (21)),

where the sum is over training examples in the mini-batch.

Let's see how regularization changes the performance of our neural
network. We'll use a network with hidden neurons, a mini-batch
size of , a learning rate of , and the cross-entropy cost function.
However, this time we'll use a regularization parameter of .

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 30/92

Note that in the code, we use the variable name lmbda, because
lambda is a reserved word in Python, with an unrelated meaning.
I've also used the test_data again, not the validation_data. Strictly
speaking, we should use the validation_data, for all the reasons we
discussed earlier. But I decided to use the test_data because it
makes the results more directly comparable with our earlier,
unregularized results. You can easily change the code to use the
validation_data instead, and you'll find that it gives similar results.

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data[:1000], 400, 10, 0.5,

... evaluation_data=test_data, lmbda = 0.1,

... monitor_evaluation_cost=True, monitor_evaluation_accuracy=True,

... monitor_training_cost=True, monitor_training_accuracy=True)

The cost on the training data decreases over the whole time, much
as it did in the earlier, unregularized case*:

But this time the accuracy on the test_data continues to increase
for the entire 400 epochs:

*This and the next two graphs were produced
with the program overfitting.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 31/92

Clearly, the use of regularization has suppressed overfitting. What's
more, the accuracy is considerably higher, with a peak classification
accuracy of percent, compared to the peak of percent
obtained in the unregularized case. Indeed, we could almost
certainly get considerably better results by continuing to train past
400 epochs. It seems that, empirically, regularization is causing our
network to generalize better, and considerably reducing the effects
of overfitting.

What happens if we move out of the artificial environment of just
having 1,000 training images, and return to the full 50,000 image
training set? Of course, we've seen already that overfitting is much
less of a problem with the full 50,000 images. Does regularization
help any further? Let's keep the hyper-parameters the same as
before - epochs, learning rate , mini-batch size of .
However, we need to modify the regularization parameter. The
reason is because the size of the training set has changed from

 to , and this changes the weight decay factor
. If we continued to use that would mean much less

weight decay, and thus much less of a regularization effect. We
compensate by changing to .

Okay, let's train our network, stopping first to re-initialize the
weights:

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.5,

... evaluation_data=test_data, lmbda = 5.0,

... monitor_evaluation_accuracy=True, monitor_training_accuracy=True)

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 32/92

We obtain the results:

There's lots of good news here. First, our classification accuracy on
the test data is up, from percent when running unregularized,
to percent. That's a big improvement. Second, we can see that
the gap between results on the training and test data is much
narrower than before, running at under a percent. That's still a
significant gap, but we've obviously made substantial progress
reducing overfitting.

Finally, let's see what test classification accuracy we get when we
use 100 hidden neurons and a regularization parameter of . I
won't go through a detailed analysis of overfitting here, this is
purely for fun, just to see how high an accuracy we can get when we
use our new tricks: the cross-entropy cost function and L2
regularization.

>>> net = network2.Network([784, 100, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.5, lmbda=5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True)

The final result is a classification accuracy of percent on the
validation data. That's a big jump from the 30 hidden neuron case.
In fact, tuning just a little more, to run for 60 epochs at and

 we break the percent barrier, achieving percent
classification accuracy on the validation data. Not bad for what
turns out to be 152 lines of code!

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 33/92

I've described regularization as a way to reduce overfitting and to
increase classification accuracies. In fact, that's not the only benefit.
Empirically, when doing multiple runs of our MNIST networks, but
with different (random) weight initializations, I've found that the
unregularized runs will occasionally get "stuck", apparently caught
in local minima of the cost function. The result is that different runs
sometimes provide quite different results. By contrast, the
regularized runs have provided much more easily replicable results.

Why is this going on? Heuristically, if the cost function is
unregularized, then the length of the weight vector is likely to grow,
all other things being equal. Over time this can lead to the weight
vector being very large indeed. This can cause the weight vector to
get stuck pointing in more or less the same direction, since changes
due to gradient descent only make tiny changes to the direction,
when the length is long. I believe this phenomenon is making it
hard for our learning algorithm to properly explore the weight
space, and consequently harder to find good minima of the cost
function.

Why does regularization help reduce
overfitting?

We've seen empirically that regularization helps reduce overfitting.
That's encouraging but, unfortunately, it's not obvious why
regularization helps! A standard story people tell to explain what's
going on is along the following lines: smaller weights are, in some
sense, lower complexity, and so provide a simpler and more
powerful explanation for the data, and should thus be preferred.
That's a pretty terse story, though, and contains several elements
that perhaps seem dubious or mystifying. Let's unpack the story
and examine it critically. To do that, let's suppose we have a simple
data set for which we wish to build a model:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 34/92

0 1 2 3 4 5

x

0

1

2

3

4

5

6

7

8

9

10

y

Implicitly, we're studying some real-world phenomenon here, with
and representing real-world data. Our goal is to build a model
which lets us predict as a function of . We could try using neural
networks to build such a model, but I'm going to do something even
simpler: I'll try to model as a polynomial in . I'm doing this
instead of using neural nets because using polynomials will make
things particularly transparent. Once we've understood the
polynomial case, we'll translate to neural networks. Now, there are
ten points in the graph above, which means we can find a unique

th-order polynomial which fits the data
exactly. Here's the graph of that polynomial*:

0 1 2 3 4 5

x

0

1

2

3

4

5

6

7

8

9

10

y

That provides an exact fit. But we can also get a good fit using the
linear model :

*I won't show the coefficients explicitly, although
they are easy to find using a routine such as
Numpy's polyfit. You can view the exact form
of the polynomial in the source code for the
graph if you're curious. It's the function p(x)
defined starting on line 14 of the program which
produces the graph.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 35/92

0 1 2 3 4 5

x

0

1

2

3

4

5

6

7

8

9

10

y

Which of these is the better model? Which is more likely to be true?
And which model is more likely to generalize well to other examples
of the same underlying real-world phenomenon?

These are difficult questions. In fact, we can't determine with
certainty the answer to any of the above questions, without much
more information about the underlying real-world phenomenon.
But let's consider two possibilities: (1) the th order polynomial is,
in fact, the model which truly describes the real-world
phenomenon, and the model will therefore generalize perfectly; (2)
the correct model is , but there's a little additional noise due
to, say, measurement error, and that's why the model isn't an exact
fit.

It's not a priori possible to say which of these two possibilities is
correct. (Or, indeed, if some third possibility holds). Logically,
either could be true. And it's not a trivial difference. It's true that on
the data provided there's only a small difference between the two
models. But suppose we want to predict the value of
corresponding to some large value of , much larger than any shown
on the graph above. If we try to do that there will be a dramatic
difference between the predictions of the two models, as the th
order polynomial model comes to be dominated by the term,
while the linear model remains, well, linear.

One point of view is to say that in science we should go with the
simpler explanation, unless compelled not to. When we find a
simple model that seems to explain many data points we are
tempted to shout "Eureka!" After all, it seems unlikely that a simple
explanation should occur merely by coincidence. Rather, we suspect

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 36/92

that the model must be expressing some underlying truth about the
phenomenon. In the case at hand, the model seems
much simpler than . It would be surprising if
that simplicity had occurred by chance, and so we suspect that

 expresses some underlying truth. In this point of
view, the 9th order model is really just learning the effects of local
noise. And so while the 9th order model works perfectly for these
particular data points, the model will fail to generalize to other data
points, and the noisy linear model will have greater predictive
power.

Let's see what this point of view means for neural networks.
Suppose our network mostly has small weights, as will tend to
happen in a regularized network. The smallness of the weights
means that the behaviour of the network won't change too much if
we change a few random inputs here and there. That makes it
difficult for a regularized network to learn the effects of local noise
in the data. Think of it as a way of making it so single pieces of
evidence don't matter too much to the output of the network.
Instead, a regularized network learns to respond to types of
evidence which are seen often across the training set. By contrast, a
network with large weights may change its behaviour quite a bit in
response to small changes in the input. And so an unregularized
network can use large weights to learn a complex model that carries
a lot of information about the noise in the training data. In a
nutshell, regularized networks are constrained to build relatively
simple models based on patterns seen often in the training data,
and are resistant to learning peculiarities of the noise in the training
data. The hope is that this will force our networks to do real
learning about the phenomenon at hand, and to generalize better
from what they learn.

With that said, this idea of preferring simpler explanation should
make you nervous. People sometimes refer to this idea as "Occam's
Razor", and will zealously apply it as though it has the status of
some general scientific principle. But, of course, it's not a general
scientific principle. There is no a priori logical reason to prefer
simple explanations over more complex explanations. Indeed,
sometimes the more complex explanation turns out to be correct.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 37/92

Let me describe two examples where more complex explanations
have turned out to be correct. In the 1940s the physicist Marcel
Schein announced the discovery of a new particle of nature. The
company he worked for, General Electric, was ecstatic, and
publicized the discovery widely. But the physicist Hans Bethe was
skeptical. Bethe visited Schein, and looked at the plates showing the
tracks of Schein's new particle. Schein showed Bethe plate after
plate, but on each plate Bethe identified some problem that
suggested the data should be discarded. Finally, Schein showed
Bethe a plate that looked good. Bethe said it might just be a
statistical fluke. Schein: "Yes, but the chance that this would be
statistics, even according to your own formula, is one in five."
Bethe: "But we have already looked at five plates." Finally, Schein
said: "But on my plates, each one of the good plates, each one of the
good pictures, you explain by a different theory, whereas I have one
hypothesis that explains all the plates, that they are [the new
particle]." Bethe replied: "The sole difference between your and my
explanations is that yours is wrong and all of mine are right. Your
single explanation is wrong, and all of my multiple explanations are
right." Subsequent work confirmed that Nature agreed with Bethe,
and Schein's particle is no more*.

As a second example, in 1859 the astronomer Urbain Le Verrier
observed that the orbit of the planet Mercury doesn't have quite the
shape that Newton's theory of gravitation says it should have. It was
a tiny, tiny deviation from Newton's theory, and several of the
explanations proferred at the time boiled down to saying that
Newton's theory was more or less right, but needed a tiny
alteration. In 1916, Einstein showed that the deviation could be
explained very well using his general theory of relativity, a theory
radically different to Newtonian gravitation, and based on much
more complex mathematics. Despite that additional complexity,
today it's accepted that Einstein's explanation is correct, and
Newtonian gravity, even in its modified forms, is wrong. This is in
part because we now know that Einstein's theory explains many
other phenomena which Newton's theory has difficulty with.
Furthermore, and even more impressively, Einstein's theory
accurately predicts several phenomena which aren't predicted by
Newtonian gravity at all. But these impressive qualities weren't
entirely obvious in the early days. If one had judged merely on the

*The story is related by the physicist Richard
Feynman in an interview with the historian
Charles Weiner.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 38/92

grounds of simplicity, then some modified form of Newton's theory
would arguably have been more attractive.

There are three morals to draw from these stories. First, it can be
quite a subtle business deciding which of two explanations is truly
"simpler". Second, even if we can make such a judgment, simplicity
is a guide that must be used with great caution! Third, the true test
of a model is not simplicity, but rather how well it does in
predicting new phenomena, in new regimes of behaviour.

With that said, and keeping the need for caution in mind, it's an
empirical fact that regularized neural networks usually generalize
better than unregularized networks. And so through the remainder
of the book we will make frequent use of regularization. I've
included the stories above merely to help convey why no-one has
yet developed an entirely convincing theoretical explanation for
why regularization helps networks generalize. Indeed, researchers
continue to write papers where they try different approaches to
regularization, compare them to see which works better, and
attempt to understand why different approaches work better or
worse. And so you can view regularization as something of a kludge.
While it often helps, we don't have an entirely satisfactory
systematic understanding of what's going on, merely incomplete
heuristics and rules of thumb.

There's a deeper set of issues here, issues which go to the heart of
science. It's the question of how we generalize. Regularization may
give us a computational magic wand that helps our networks
generalize better, but it doesn't give us a principled understanding
of how generalization works, nor of what the best approach is*.

This is particularly galling because in everyday life, we humans
generalize phenomenally well. Shown just a few images of an
elephant a child will quickly learn to recognize other elephants. Of
course, they may occasionally make mistakes, perhaps confusing a
rhinoceros for an elephant, but in general this process works
remarkably accurately. So we have a system - the human brain -
with a huge number of free parameters. And after being shown just
one or a few training images that system learns to generalize to
other images. Our brains are, in some sense, regularizing amazingly
well! How do we do it? At this point we don't know. I expect that in

*These issues go back to the problem of
induction, famously discussed by the Scottish
philosopher David Hume in "An Enquiry
Concerning Human Understanding" (1748). The
problem of induction has been given a modern
machine learning form in the no-free lunch
theorem (link) of David Wolpert and William
Macready (1997).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 39/92

years to come we will develop more powerful techniques for
regularization in artificial neural networks, techniques that will
ultimately enable neural nets to generalize well even from small
data sets.

In fact, our networks already generalize better than one might a
priori expect. A network with 100 hidden neurons has nearly
80,000 parameters. We have only 50,000 images in our training
data. It's like trying to fit an 80,000th degree polynomial to 50,000
data points. By all rights, our network should overfit terribly. And
yet, as we saw earlier, such a network actually does a pretty good
job generalizing. Why is that the case? It's not well understood. It
has been conjectured* that "the dynamics of gradient descent
learning in multilayer nets has a `self-regularization' effect". This is
exceptionally fortunate, but it's also somewhat disquieting that we
don't understand why it's the case. In the meantime, we will adopt
the pragmatic approach and use regularization whenever we can.
Our neural networks will be the better for it.

Let me conclude this section by returning to a detail which I left
unexplained earlier: the fact that L2 regularization doesn't
constrain the biases. Of course, it would be easy to modify the
regularization procedure to regularize the biases. Empirically, doing
this often doesn't change the results very much, so to some extent
it's merely a convention whether to regularize the biases or not.
However, it's worth noting that having a large bias doesn't make a
neuron sensitive to its inputs in the same way as having large
weights. And so we don't need to worry about large biases enabling
our network to learn the noise in our training data. At the same
time, allowing large biases gives our networks more flexibility in
behaviour - in particular, large biases make it easier for neurons to
saturate, which is sometimes desirable. For these reasons we don't
usually include bias terms when regularizing.

Other techniques for regularization

There are many regularization techniques other than L2
regularization. In fact, so many techniques have been developed
that I can't possibly summarize them all. In this section I briefly
describe three other approaches to reducing overfitting: L1
regularization, dropout, and artificially increasing the training set

*In Gradient-Based Learning Applied to
Document Recognition, by Yann LeCun, Léon
Bottou, Yoshua Bengio, and Patrick Haffner
(1998).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 40/92

size. We won't go into nearly as much depth studying these
techniques as we did earlier. Instead, the purpose is to get familiar
with the main ideas, and to appreciate something of the diversity of
regularization techniques available.

L1 regularization: In this approach we modify the unregularized
cost function by adding the sum of the absolute values of the
weights:

Intuitively, this is similar to L2 regularization, penalizing large
weights, and tending to make the network prefer small weights. Of
course, the L1 regularization term isn't the same as the L2
regularization term, and so we shouldn't expect to get exactly the
same behaviour. Let's try to understand how the behaviour of a
network trained using L1 regularization differs from a network
trained using L2 regularization.

To do that, we'll look at the partial derivatives of the cost function.
Differentiating (95) we obtain:

where is the sign of , that is, if is positive, and if
is negative. Using this expression, we can easily modify
backpropagation to do stochastic gradient descent using L1
regularization. The resulting update rule for an L1 regularized
network is

where, as per usual, we can estimate using a mini-batch
average, if we wish. Compare that to the update rule for L2
regularization (c.f. Equation (93)),

In both expressions the effect of regularization is to shrink the
weights. This accords with our intuition that both kinds of
regularization penalize large weights. But the way the weights
shrink is different. In L1 regularization, the weights shrink by a

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 41/92

constant amount toward . In L2 regularization, the weights shrink
by an amount which is proportional to . And so when a particular
weight has a large magnitude, , L1 regularization shrinks the
weight much less than L2 regularization does. By contrast, when
is small, L1 regularization shrinks the weight much more than L2
regularization. The net result is that L1 regularization tends to
concentrate the weight of the network in a relatively small number
of high-importance connections, while the other weights are driven
toward zero.

I've glossed over an issue in the above discussion, which is that the
partial derivative isn't defined when . The reason is that
the function has a sharp "corner" at , and so isn't
differentiable at that point. That's okay, though. What we'll do is
just apply the usual (unregularized) rule for stochastic gradient
descent when . That should be okay - intuitively, the effect of
regularization is to shrink weights, and obviously it can't shrink a
weight which is already . To put it more precisely, we'll use
Equations (96) and (97) with the convention that . That
gives a nice, compact rule for doing stochastic gradient descent with
L1 regularization.

Dropout: Dropout is a radically different technique for
regularization. Unlike L1 and L2 regularization, dropout doesn't
rely on modifying the cost function. Instead, in dropout we modify
the network itself. Let me describe the basic mechanics of how
dropout works, before getting into why it works, and what the
results are.

Suppose we're trying to train a network:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 42/92

In particular, suppose we have a training input and corresponding
desired output . Ordinarily, we'd train by forward-propagating
through the network, and then backpropagating to determine the
contribution to the gradient. With dropout, this process is modified.
We start by randomly (and temporarily) deleting half the hidden
neurons in the network, while leaving the input and output neurons
untouched. After doing this, we'll end up with a network along the
following lines. Note that the dropout neurons, i.e., the neurons
which have been temporarily deleted, are still ghosted in:

We forward-propagate the input through the modified network,
and then backpropagate the result, also through the modified
network. After doing this over a mini-batch of examples, we update
the appropriate weights and biases. We then repeat the process,
first restoring the dropout neurons, then choosing a new random
subset of hidden neurons to delete, estimating the gradient for a
different mini-batch, and updating the weights and biases in the
network.

By repeating this process over and over, our network will learn a set
of weights and biases. Of course, those weights and biases will have
been learnt under conditions in which half the hidden neurons were
dropped out. When we actually run the full network that means that
twice as many hidden neurons will be active. To compensate for
that, we halve the weights outgoing from the hidden neurons.

This dropout procedure may seem strange and ad hoc. Why would
we expect it to help with regularization? To explain what's going on,
I'd like you to briefly stop thinking about dropout, and instead
imagine training neural networks in the standard way (no dropout).
In particular, imagine we train several different neural networks, all

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 43/92

using the same training data. Of course, the networks may not start
out identical, and as a result after training they may sometimes give
different results. When that happens we could use some kind of
averaging or voting scheme to decide which output to accept. For
instance, if we have trained five networks, and three of them are
classifying a digit as a "3", then it probably really is a "3". The other
two networks are probably just making a mistake. This kind of
averaging scheme is often found to be a powerful (though
expensive) way of reducing overfitting. The reason is that the
different networks may overfit in different ways, and averaging may
help eliminate that kind of overfitting.

What's this got to do with dropout? Heuristically, when we dropout
different sets of neurons, it's rather like we're training different
neural networks. And so the dropout procedure is like averaging the
effects of a very large number of different networks. The different
networks will overfit in different ways, and so, hopefully, the net
effect of dropout will be to reduce overfitting.

A related heuristic explanation for dropout is given in one of the
earliest papers to use the technique*: "This technique reduces
complex co-adaptations of neurons, since a neuron cannot rely on
the presence of particular other neurons. It is, therefore, forced to
learn more robust features that are useful in conjunction with many
different random subsets of the other neurons." In other words, if
we think of our network as a model which is making predictions,
then we can think of dropout as a way of making sure that the
model is robust to the loss of any individual piece of evidence. In
this, it's somewhat similar to L1 and L2 regularization, which tend
to reduce weights, and thus make the network more robust to losing
any individual connection in the network.

Of course, the true measure of dropout is that it has been very
successful in improving the performance of neural networks. The
original paper* introducing the technique applied it to many
different tasks. For us, it's of particular interest that they applied
dropout to MNIST digit classification, using a vanilla feedforward
neural network along lines similar to those we've been considering.
The paper noted that the best result anyone had achieved up to that
point using such an architecture was percent classification
accuracy on the test set. They improved that to percent

*ImageNet Classification with Deep
Convolutional Neural Networks, by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
(2012).

*Improving neural networks by preventing co-
adaptation of feature detectors by Geoffrey
Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov (2012).
Note that the paper discusses a number of
subtleties that I have glossed over in this brief
introduction.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 44/92

accuracy using a combination of dropout and a modified form of L2
regularization. Similarly impressive results have been obtained for
many other tasks, including problems in image and speech
recognition, and natural language processing. Dropout has been
especially useful in training large, deep networks, where the
problem of overfitting is often acute.

Artificially expanding the training data: We saw earlier that
our MNIST classification accuracy dropped down to percentages in
the mid-80s when we used only 1,000 training images. It's not
surprising that this is the case, since less training data means our
network will be exposed to fewer variations in the way human
beings write digits. Let's try training our 30 hidden neuron network
with a variety of different training data set sizes, to see how
performance varies. We train using a mini-batch size of 10, a
learning rate , a regularization parameter , and the
cross-entropy cost function. We will train for 30 epochs when the
full training data set is used, and scale up the number of epochs
proportionally when smaller training sets are used. To ensure the
weight decay factor remains the same across training sets, we will
use a regularization parameter of when the full training data
set is used, and scale down proportionally when smaller training
sets are used*.

As you can see, the classification accuracies improve considerably
as we use more training data. Presumably this improvement would
continue still further if more data was available. Of course, looking
at the graph above it does appear that we're getting near saturation.

*This and the next two graph are produced with
the program more_data.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 45/92

Suppose, however, that we redo the graph with the training set size
plotted logarithmically:

It seems clear that the graph is still going up toward the end. This
suggests that if we used vastly more training data - say, millions or
even billions of handwriting samples, instead of just 50,000 - then
we'd likely get considerably better performance, even from this very
small network.

Obtaining more training data is a great idea. Unfortunately, it can
be expensive, and so is not always possible in practice. However,
there's another idea which can work nearly as well, and that's to
artificially expand the training data. Suppose, for example, that we
take an MNIST training image of a five,

and rotate it by a small amount, let's say 15 degrees:

It's still recognizably the same digit. And yet at the pixel level it's
quite different to any image currently in the MNIST training data.
It's conceivable that adding this image to the training data might
help our network learn more about how to classify digits. What's
more, obviously we're not limited to adding just this one image. We

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 46/92

can expand our training data by making many small rotations of all
the MNIST training images, and then using the expanded training
data to improve our network's performance.

This idea is very powerful and has been widely used. Let's look at
some of the results from a paper* which applied several variations
of the idea to MNIST. One of the neural network architectures they
considered was along similar lines to what we've been using, a
feedforward network with 800 hidden neurons and using the cross-
entropy cost function. Running the network with the standard
MNIST training data they achieved a classification accuracy of 98.4
percent on their test set. But then they expanded the training data,
using not just rotations, as I described above, but also translating
and skewing the images. By training on the expanded data set they
increased their network's accuracy to 98.9 percent. They also
experimented with what they called "elastic distortions", a special
type of image distortion intended to emulate the random
oscillations found in hand muscles. By using the elastic distortions
to expand the data they achieved an even higher accuracy, 99.3
percent. Effectively, they were broadening the experience of their
network by exposing it to the sort of variations that are found in
real handwriting.

Variations on this idea can be used to improve performance on
many learning tasks, not just handwriting recognition. The general
principle is to expand the training data by applying operations that
reflect real-world variation. It's not difficult to think of ways of
doing this. Suppose, for example, that you're building a neural
network to do speech recognition. We humans can recognize speech
even in the presence of distortions such as background noise. And
so you can expand your data by adding background noise. We can
also recognize speech if it's sped up or slowed down. So that's
another way we can expand the training data. These techniques are
not always used - for instance, instead of expanding the training
data by adding noise, it may well be more efficient to clean up the
input to the network by first applying a noise reduction filter. Still,
it's worth keeping the idea of expanding the training data in mind,
and looking for opportunities to apply it.

Exercise

*Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis,
by Patrice Simard, Dave Steinkraus, and John
Platt (2003).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 47/92

As discussed above, one way of expanding the MNIST training
data is to use small rotations of training images. What's a
problem that might occur if we allow arbitrarily large rotations
of training images?

An aside on big data and what it means to compare
classification accuracies: Let's look again at how our neural
network's accuracy varies with training set size:

Suppose that instead of using a neural network we use some other
machine learning technique to classify digits. For instance, let's try
using the support vector machines (SVM) which we met briefly
back in Chapter 1. As was the case in Chapter 1, don't worry if you're
not familiar with SVMs, we don't need to understand their details.
Instead, we'll use the SVM supplied by the scikit-learn library.
Here's how SVM performance varies as a function of training set
size. I've plotted the neural net results as well, to make comparison
easy*: *This graph was produced with the program

more_data.py (as were the last few graphs).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 48/92

Probably the first thing that strikes you about this graph is that our
neural network outperforms the SVM for every training set size.
That's nice, although you shouldn't read too much into it, since I
just used the out-of-the-box settings from scikit-learn's SVM, while
we've done a fair bit of work improving our neural network. A more
subtle but more interesting fact about the graph is that if we train
our SVM using 50,000 images then it actually has better
performance (94.48 percent accuracy) than our neural network
does when trained using 5,000 images (93.24 percent accuracy). In
other words, more training data can sometimes compensate for
differences in the machine learning algorithm used.

Something even more interesting can occur. Suppose we're trying to
solve a problem using two machine learning algorithms, algorithm
A and algorithm B. It sometimes happens that algorithm A will
outperform algorithm B with one set of training data, while
algorithm B will outperform algorithm A with a different set of
training data. We don't see that above - it would require the two
graphs to cross - but it does happen*. The correct response to the
question "Is algorithm A better than algorithm B?" is really: "What
training data set are you using?"

All this is a caution to keep in mind, both when doing development,
and when reading research papers. Many papers focus on finding
new tricks to wring out improved performance on standard
benchmark data sets. "Our whiz-bang technique gave us an
improvement of X percent on standard benchmark Y" is a canonical
form of research claim. Such claims are often genuinely interesting,

*Striking examples may be found in Scaling to
very very large corpora for natural language
disambiguation, by Michele Banko and Eric Brill
(2001).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 49/92

but they must be understood as applying only in the context of the
specific training data set used. Imagine an alternate history in
which the people who originally created the benchmark data set had
a larger research grant. They might have used the extra money to
collect more training data. It's entirely possible that the
"improvement" due to the whiz-bang technique would disappear on
a larger data set. In other words, the purported improvement might
be just an accident of history. The message to take away, especially
in practical applications, is that what we want is both better
algorithms and better training data. It's fine to look for better
algorithms, but make sure you're not focusing on better algorithms
to the exclusion of easy wins getting more or better training data.

Problem

(Research problem) How do our machine learning
algorithms perform in the limit of very large data sets? For any
given algorithm it's natural to attempt to define a notion of
asymptotic performance in the limit of truly big data. A quick-
and-dirty approach to this problem is to simply try fitting
curves to graphs like those shown above, and then to
extrapolate the fitted curves out to infinity. An objection to this
approach is that different approaches to curve fitting will give
different notions of asymptotic performance. Can you find a
principled justification for fitting to some particular class of
curves? If so, compare the asymptotic performance of several
different machine learning algorithms.

Summing up: We've now completed our dive into overfitting and
regularization. Of course, we'll return again to the issue. As I've
mentioned several times, overfitting is a major problem in neural
networks, especially as computers get more powerful, and we have
the ability to train larger networks. As a result there's a pressing
need to develop powerful regularization techniques to reduce
overfitting, and this is an extremely active area of current work.

Weight initialization
When we create our neural networks, we have to make choices for
the initial weights and biases. Up to now, we've been choosing them
according to a prescription which I discussed only briefly back in

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 50/92

Chapter 1. Just to remind you, that prescription was to choose both
the weights and biases using independent Gaussian random
variables, normalized to have mean and standard deviation .
While this approach has worked well, it was quite ad hoc, and it's
worth revisiting to see if we can find a better way of setting our
initial weights and biases, and perhaps help our neural networks
learn faster.

It turns out that we can do quite a bit better than initializing with
normalized Gaussians. To see why, suppose we're working with a
network with a large number - say - of input neurons. And
let's suppose we've used normalized Gaussians to initialize the
weights connecting to the first hidden layer. For now I'm going to
concentrate specifically on the weights connecting the input
neurons to the first neuron in the hidden layer, and ignore the rest
of the network:

We'll suppose for simplicity that we're trying to train using a
training input in which half the input neurons are on, i.e., set to ,
and half the input neurons are off, i.e., set to . The argument which
follows applies more generally, but you'll get the gist from this
special case. Let's consider the weighted sum of
inputs to our hidden neuron. terms in this sum vanish, because
the corresponding input is zero. And so is a sum over a total of

 normalized Gaussian random variables, accounting for the
weight terms and the extra bias term. Thus is itself distributed as
a Gaussian with mean zero and standard deviation .
That is, has a very broad Gaussian distribution, not sharply
peaked at all:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 51/92

-30 -20 -10 0 10 20 30

0.02

In particular, we can see from this graph that it's quite likely that
will be pretty large, i.e., either or . If that's the case
then the output from the hidden neuron will be very close to
either or . That means our hidden neuron will have saturated.
And when that happens, as we know, making small changes in the
weights will make only absolutely miniscule changes in the
activation of our hidden neuron. That miniscule change in the
activation of the hidden neuron will, in turn, barely affect the rest of
the neurons in the network at all, and we'll see a correspondingly
miniscule change in the cost function. As a result, those weights will
only learn very slowly when we use the gradient descent algorithm*.
It's similar to the problem we discussed earlier in this chapter, in
which output neurons which saturated on the wrong value caused
learning to slow down. We addressed that earlier problem with a
clever choice of cost function. Unfortunately, while that helped with
saturated output neurons, it does nothing at all for the problem
with saturated hidden neurons.

I've been talking about the weights input to the first hidden layer.
Of course, similar arguments apply also to later hidden layers: if the
weights in later hidden layers are initialized using normalized
Gaussians, then activations will often be very close to or , and
learning will proceed very slowly.

Is there some way we can choose better initializations for the
weights and biases, so that we don't get this kind of saturation, and
so avoid a learning slowdown? Suppose we have a neuron with
input weights. Then we shall initialize those weights as Gaussian
random variables with mean and standard deviation . That
is, we'll squash the Gaussians down, making it less likely that our
neuron will saturate. We'll continue to choose the bias as a
Gaussian with mean and standard deviation , for reasons I'll
return to in a moment. With these choices, the weighted sum

 will again be a Gaussian random variable with mean
, but it'll be much more sharply peaked than it was before.

Suppose, as we did earlier, that of the inputs are zero and

*We discussed this in more detail in Chapter 2,
where we used the equations of backpropagation
to show that weights input to saturated neurons
learned slowly.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 52/92

are . Then it's easy to show (see the exercise below) that has a
Gaussian distribution with mean and standard deviation

. This is much more sharply peaked than before, so
much so that even the graph below understates the situation, since
I've had to rescale the vertical axis, when compared to the earlier
graph:

-30 -20 -10 0 10 20 30

0.4

Such a neuron is much less likely to saturate, and correspondingly
much less likely to have problems with a learning slowdown.

Exercise

Verify that the standard deviation of in the
paragraph above is . It may help to know that: (a) the
variance of a sum of independent random variables is the sum
of the variances of the individual random variables; and (b) the
variance is the square of the standard deviation.

I stated above that we'll continue to initialize the biases as before, as
Gaussian random variables with a mean of and a standard
deviation of . This is okay, because it doesn't make it too much
more likely that our neurons will saturate. In fact, it doesn't much
matter how we initialize the biases, provided we avoid the problem
with saturation. Some people go so far as to initialize all the biases
to , and rely on gradient descent to learn appropriate biases. But
since it's unlikely to make much difference, we'll continue with the
same initialization procedure as before.

Let's compare the results for both our old and new approaches to
weight initialization, using the MNIST digit classification task. As

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 53/92

before, we'll use hidden neurons, a mini-batch size of , a
regularization parameter , and the cross-entropy cost
function. We will decrease the learning rate slightly from to

, since that makes the results a little more easily visible in the
graphs. We can train using the old method of weight initialization:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.large_weight_initializer()

>>> net.SGD(training_data, 30, 10, 0.1, lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True)

We can also train using the new approach to weight initialization.
This is actually even easier, since network2's default way of
initializing the weights is using this new approach. That means we
can omit the net.large_weight_initializer() call above:

>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.SGD(training_data, 30, 10, 0.1, lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True)

Plotting the results*, we obtain:

In both cases, we end up with a classification accuracy somewhat
over 96 percent. The final classification accuracy is almost exactly
the same in the two cases. But the new initialization technique
brings us there much, much faster. At the end of the first epoch of
training the old approach to weight initialization has a classification
accuracy under 87 percent, while the new approach is already
almost 93 percent. What appears to be going on is that our new

*The program used to generate this and the next
graph is weight_initialization.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 54/92

approach to weight initialization starts us off in a much better
regime, which lets us get good results much more quickly. The same
phenomenon is also seen if we plot results with hidden
neurons:

In this case, the two curves don't quite meet. However, my
experiments suggest that with just a few more epochs of training
(not shown) the accuracies become almost exactly the same. So on
the basis of these experiments it looks as though the improved
weight initialization only speeds up learning, it doesn't change the
final performance of our networks. However, in Chapter 4 we'll see
examples of neural networks where the long-run behaviour is
significantly better with the weight initialization. Thus it's
not only the speed of learning which is improved, it's sometimes
also the final performance.

The approach to weight initialization helps improve the way
our neural nets learn. Other techniques for weight initialization
have also been proposed, many building on this basic idea. I won't
review the other approaches here, since works well enough
for our purposes. If you're interested in looking further, I
recommend looking at the discussion on pages 14 and 15 of a 2012
paper by Yoshua Bengio*, as well as the references therein.

Problem

Connecting regularization and the improved method
of weight initialization L2 regularization sometimes
automatically gives us something similar to the new approach

*Practical Recommendations for Gradient-Based
Training of Deep Architectures, by Yoshua
Bengio (2012).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 55/92

to weight initialization. Suppose we are using the old approach
to weight initialization. Sketch a heuristic argument that: (1)
supposing is not too small, the first epochs of training will be
dominated almost entirely by weight decay; (2) provided
the weights will decay by a factor of per epoch; and
(3) supposing is not too large, the weight decay will tail off
when the weights are down to a size around , where is
the total number of weights in the network. Argue that these
conditions are all satisfied in the examples graphed in this
section.

Handwriting recognition revisited: the
code
Let's implement the ideas we've discussed in this chapter. We'll
develop a new program, network2.py, which is an improved version
of the program network.py we developed in Chapter 1. If you haven't
looked at network.py in a while then you may find it helpful to
spend a few minutes quickly reading over the earlier discussion. It's
only 74 lines of code, and is easily understood.

As was the case in network.py, the star of network2.py is the Network
class, which we use to represent our neural networks. We initialize
an instance of Network with a list of sizes for the respective layers in
the network, and a choice for the cost to use, defaulting to the
cross-entropy:

class Network(object):

 def __init__(self, sizes, cost=CrossEntropyCost):
 self.num_layers = len(sizes)

 self.sizes = sizes

 self.default_weight_initializer()

 self.cost=cost

The first couple of lines of the __init__ method are the same as in
network.py, and are pretty self-explanatory. But the next two lines
are new, and we need to understand what they're doing in detail.

Let's start by examining the default_weight_initializer method.
This makes use of our new and improved approach to weight
initialization. As we've seen, in that approach the weights input to a
neuron are initialized as Gaussian random variables with mean 0
and standard deviation divided by the square root of the number

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 56/92

of connections input to the neuron. Also in this method we'll
initialize the biases, using Gaussian random variables with mean
and standard deviation . Here's the code:

 def default_weight_initializer(self):
 self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
 self.weights = [np.random.randn(y, x)/np.sqrt(x)

 for x, y in zip(self.sizes[:-1], self.sizes[1:])]

To understand the code, it may help to recall that np is the Numpy
library for doing linear algebra. We'll import Numpy at the
beginning of our program. Also, notice that we don't initialize any
biases for the first layer of neurons. We avoid doing this because the
first layer is an input layer, and so any biases would not be used. We
did exactly the same thing in network.py.

Complementing the default_weight_initializer we'll also include a
large_weight_initializer method. This method initializes the
weights and biases using the old approach from Chapter 1, with
both weights and biases initialized as Gaussian random variables
with mean and standard deviation . The code is, of course, only a
tiny bit different from the default_weight_initializer:

 def large_weight_initializer(self):
 self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
 self.weights = [np.random.randn(y, x)

 for x, y in zip(self.sizes[:-1], self.sizes[1:])]

I've included the large_weight_initializer method mostly as a
convenience to make it easier to compare the results in this chapter
to those in Chapter 1. I can't think of many practical situations
where I would recommend using it!

The second new thing in Network's __init__ method is that we now
initialize a cost attribute. To understand how that works, let's look
at the class we use to represent the cross-entropy cost*:

class CrossEntropyCost(object):

 @staticmethod

 def fn(a, y):
 return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))

 @staticmethod

 def delta(z, a, y):
 return (a-y)

Let's break this down. The first thing to observe is that even though
the cross-entropy is, mathematically speaking, a function, we've
implemented it as a Python class, not a Python function. Why have

*If you're not familiar with Python's static
methods you can ignore the @staticmethod
decorators, and just treat fn and delta as
ordinary methods. If you're curious about
details, all @staticmethod does is tell the
Python interpreter that the method which
follows doesn't depend on the object in any way.
That's why self isn't passed as a parameter to
the fn and delta methods.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 57/92

I made that choice? The reason is that the cost plays two different
roles in our network. The obvious role is that it's a measure of how
well an output activation, a, matches the desired output, y. This role
is captured by the CrossEntropyCost.fn method. (Note, by the way,
that the np.nan_to_num call inside CrossEntropyCost.fn ensures that
Numpy deals correctly with the log of numbers very close to zero.)
But there's also a second way the cost function enters our network.
Recall from Chapter 2 that when running the backpropagation
algorithm we need to compute the network's output error, . The
form of the output error depends on the choice of cost function:
different cost function, different form for the output error. For the
cross-entropy the output error is, as we saw in Equation (66),

For this reason we define a second method,
CrossEntropyCost.delta, whose purpose is to tell our network how
to compute the output error. And then we bundle these two
methods up into a single class containing everything our networks
need to know about the cost function.

In a similar way, network2.py also contains a class to represent the
quadratic cost function. This is included for comparison with the
results of Chapter 1, since going forward we'll mostly use the cross
entropy. The code is just below. The QuadraticCost.fn method is a
straightforward computation of the quadratic cost associated to the
actual output, a, and the desired output, y. The value returned by
QuadraticCost.delta is based on the expression (30) for the output
error for the quadratic cost, which we derived back in Chapter 2.

class QuadraticCost(object):

 @staticmethod

 def fn(a, y):
 return 0.5*np.linalg.norm(a-y)**2

 @staticmethod

 def delta(z, a, y):
 return (a-y) * sigmoid_prime(z)

We've now understood the main differences between network2.py
and network.py. It's all pretty simple stuff. There are a number of
smaller changes, which I'll discuss below, including the
implementation of L2 regularization. Before getting to that, let's
look at the complete code for network2.py. You don't need to read
all the code in detail, but it is worth understanding the broad

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 58/92

structure, and in particular reading the documentation strings, so
you understand what each piece of the program is doing. Of course,
you're also welcome to delve as deeply as you wish! If you get lost,
you may wish to continue reading the prose below, and return to
the code later. Anyway, here's the code:

"""network2.py

~~~~~~~~~~~~~~

An improved version of network.py, implementing the stochastic

gradient descent learning algorithm for a feedforward neural network.

Improvements include the addition of the cross-entropy cost function,

regularization, and better initialization of network weights.  Note

that I have focused on making the code simple, easily readable, and

easily modifiable.  It is not optimized, and omits many desirable

features.

"""

#### Libraries

# Standard library

import json
import random
import sys

# Third-party libraries

import numpy as np

#### Define the quadratic and cross-entropy cost functions

class QuadraticCost(object):

    @staticmethod

    def fn(a, y):
        """Return the cost associated with an output ``a`` and desired output

        ``y``.

        """

        return 0.5*np.linalg.norm(a-y)**2

    @staticmethod

    def delta(z, a, y):
        """Return the error delta from the output layer."""

        return (a-y) * sigmoid_prime(z)

class CrossEntropyCost(object):

    @staticmethod

    def fn(a, y):
        """Return the cost associated with an output ``a`` and desired output

        ``y``.  Note that np.nan_to_num is used to ensure numerical

        stability.  In particular, if both ``a`` and ``y`` have a 1.0

        in the same slot, then the expression (1-y)*np.log(1-a)

        returns nan.  The np.nan_to_num ensures that that is converted

        to the correct value (0.0).

        """

        return np.sum(np.nan_to_num(-y*np.log(a)-(1-y)*np.log(1-a)))

    @staticmethod

    def delta(z, a, y):
        """Return the error delta from the output layer.  Note that the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 59/92

        parameter ``z`` is not used by the method.  It is included in

        the method's parameters in order to make the interface

        consistent with the delta method for other cost classes.

        """

        return (a-y)

#### Main Network class

class Network(object):

    def __init__(self, sizes, cost=CrossEntropyCost):
        """The list ``sizes`` contains the number of neurons in the respective

        layers of the network.  For example, if the list was [2, 3, 1]

        then it would be a three-layer network, with the first layer

        containing 2 neurons, the second layer 3 neurons, and the

        third layer 1 neuron.  The biases and weights for the network

        are initialized randomly, using

        ``self.default_weight_initializer`` (see docstring for that

        method).

        """

        self.num_layers = len(sizes)

        self.sizes = sizes

        self.default_weight_initializer()

        self.cost=cost

    def default_weight_initializer(self):
        """Initialize each weight using a Gaussian distribution with mean 0

        and standard deviation 1 over the square root of the number of

        weights connecting to the same neuron.  Initialize the biases

        using a Gaussian distribution with mean 0 and standard

        deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        """

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
        self.weights = [np.random.randn(y, x)/np.sqrt(x)

                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]

    def large_weight_initializer(self):
        """Initialize the weights using a Gaussian distribution with mean 0

        and standard deviation 1.  Initialize the biases using a

        Gaussian distribution with mean 0 and standard deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        This weight and bias initializer uses the same approach as in

        Chapter 1, and is included for purposes of comparison.  It

        will usually be better to use the default weight initializer

        instead.

        """

        self.biases = [np.random.randn(y, 1) for y in self.sizes[1:]]
        self.weights = [np.random.randn(y, x)

                        for x, y in zip(self.sizes[:-1], self.sizes[1:])]

    def feedforward(self, a):
        """Return the output of the network if ``a`` is input."""

        for b, w in zip(self.biases, self.weights):
            a = sigmoid(np.dot(w, a)+b)

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 60/92

        return a

    def SGD(self, training_data, epochs, mini_batch_size, eta,
            lmbda = 0.0,

            evaluation_data=None,

            monitor_evaluation_cost=False,

            monitor_evaluation_accuracy=False,

            monitor_training_cost=False,

            monitor_training_accuracy=False):

        """Train the neural network using mini-batch stochastic gradient

        descent.  The ``training_data`` is a list of tuples ``(x, y)``

        representing the training inputs and the desired outputs.  The

        other non-optional parameters are self-explanatory, as is the

        regularization parameter ``lmbda``.  The method also accepts

        ``evaluation_data``, usually either the validation or test

        data.  We can monitor the cost and accuracy on either the

        evaluation data or the training data, by setting the

        appropriate flags.  The method returns a tuple containing four

        lists: the (per-epoch) costs on the evaluation data, the

        accuracies on the evaluation data, the costs on the training

        data, and the accuracies on the training data.  All values are

        evaluated at the end of each training epoch.  So, for example,

        if we train for 30 epochs, then the first element of the tuple

        will be a 30-element list containing the cost on the

        evaluation data at the end of each epoch. Note that the lists

        are empty if the corresponding flag is not set.

        """

        if evaluation_data: n_data = len(evaluation_data)
        n = len(training_data)

        evaluation_cost, evaluation_accuracy = [], []

        training_cost, training_accuracy = [], []

        for j in xrange(epochs):
            random.shuffle(training_data)

            mini_batches = [

                training_data[k:k+mini_batch_size]

                for k in xrange(0, n, mini_batch_size)]
            for mini_batch in mini_batches:
                self.update_mini_batch(

                    mini_batch, eta, lmbda, len(training_data))

            print "Epoch %s training complete" % j
            if monitor_training_cost:
                cost = self.total_cost(training_data, lmbda)

                training_cost.append(cost)

                print "Cost on training data: {}".format(cost)
            if monitor_training_accuracy:
                accuracy = self.accuracy(training_data, convert=True)

                training_accuracy.append(accuracy)

                print "Accuracy on training data: {} / {}".format(
                    accuracy, n)

            if monitor_evaluation_cost:
                cost = self.total_cost(evaluation_data, lmbda, convert=True)

                evaluation_cost.append(cost)

                print "Cost on evaluation data: {}".format(cost)
            if monitor_evaluation_accuracy:
                accuracy = self.accuracy(evaluation_data)

                evaluation_accuracy.append(accuracy)

                print "Accuracy on evaluation data: {} / {}".format(
                    self.accuracy(evaluation_data), n_data)

            print
        return evaluation_cost, evaluation_accuracy, \
            training_cost, training_accuracy

    def update_mini_batch(self, mini_batch, eta, lmbda, n):
        """Update the network's weights and biases by applying gradient

        descent using backpropagation to a single mini batch.  The

        ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the

        learning rate, ``lmbda`` is the regularization parameter, and

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 61/92

        ``n`` is the total size of the training data set.

        """

        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        for x, y in mini_batch:
            delta_nabla_b, delta_nabla_w = self.backprop(x, y)

            nabla_b = [nb+dnb for nb, dnb in zip(nabla_b, delta_nabla_b)]
            nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
        self.weights = [(1-eta*(lmbda/n))*w-(eta/len(mini_batch))*nw

                        for w, nw in zip(self.weights, nabla_w)]
        self.biases = [b-(eta/len(mini_batch))*nb

                       for b, nb in zip(self.biases, nabla_b)]

    def backprop(self, x, y):
        """Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward

        activation = x

        activations = [x] # list to store all the activations, layer by layer

        zs = [] # list to store all the z vectors, layer by layer

        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b

            zs.append(z)

            activation = sigmoid(z)

            activations.append(activation)

        # backward pass

        delta = (self.cost).delta(zs[-1], activations[-1], y)

        nabla_b[-1] = delta

        nabla_w[-1] = np.dot(delta, activations[-2].transpose())

        # Note that the variable l in the loop below is used a little

        # differently to the notation in Chapter 2 of the book.  Here,

        # l = 1 means the last layer of neurons, l = 2 is the

        # second-last layer, and so on.  It's a renumbering of the

        # scheme in the book, used here to take advantage of the fact

        # that Python can use negative indices in lists.

        for l in xrange(2, self.num_layers):
            z = zs[-l]

            sp = sigmoid_prime(z)

            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp

            nabla_b[-l] = delta

            nabla_w[-l] = np.dot(delta, activations[-l-1].transpose())

        return (nabla_b, nabla_w)

    def accuracy(self, data, convert=False):
        """Return the number of inputs in ``data`` for which the neural

        network outputs the correct result. The neural network's

        output is assumed to be the index of whichever neuron in the

        final layer has the highest activation.

        The flag ``convert`` should be set to False if the data set is

        validation or test data (the usual case), and to True if the

        data set is the training data. The need for this flag arises

        due to differences in the way the results ``y`` are

        represented in the different data sets.  In particular, it

        flags whether we need to convert between the different

        representations.  It may seem strange to use different

        representations for the different data sets.  Why not use the

        same representation for all three data sets?  It's done for

        efficiency reasons -- the program usually evaluates the cost

        on the training data and the accuracy on other data sets.

        These are different types of computations, and using different

        representations speeds things up.  More details on the

        representations can be found in

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 62/92

        mnist_loader.load_data_wrapper.

        """

        if convert:
            results = [(np.argmax(self.feedforward(x)), np.argmax(y))

                       for (x, y) in data]
        else:
            results = [(np.argmax(self.feedforward(x)), y)

                        for (x, y) in data]
        return sum(int(x == y) for (x, y) in results)

    def total_cost(self, data, lmbda, convert=False):
        """Return the total cost for the data set ``data``.  The flag

        ``convert`` should be set to False if the data set is the

        training data (the usual case), and to True if the data set is

        the validation or test data.  See comments on the similar (but

        reversed) convention for the ``accuracy`` method, above.

        """

        cost = 0.0

        for x, y in data:
            a = self.feedforward(x)

            if convert: y = vectorized_result(y)
            cost += self.cost.fn(a, y)/len(data)

        cost += 0.5*(lmbda/len(data))*sum(

            np.linalg.norm(w)**2 for w in self.weights)
        return cost

    def save(self, filename):
        """Save the neural network to the file ``filename``."""

        data = {"sizes": self.sizes,

                "weights": [w.tolist() for w in self.weights],
                "biases": [b.tolist() for b in self.biases],
                "cost": str(self.cost.__name__)}

        f = open(filename, "w")

        json.dump(data, f)

        f.close()

#### Loading a Network

def load(filename):
    """Load a neural network from the file ``filename``.  Returns an

    instance of Network.

    """

    f = open(filename, "r")

    data = json.load(f)

    f.close()

    cost = getattr(sys.modules[__name__], data["cost"])

    net = Network(data["sizes"], cost=cost)

    net.weights = [np.array(w) for w in data["weights"]]
    net.biases = [np.array(b) for b in data["biases"]]
    return net

#### Miscellaneous functions

def vectorized_result(j):
    """Return a 10-dimensional unit vector with a 1.0 in the j'th position

    and zeroes elsewhere.  This is used to convert a digit (0...9)

    into a corresponding desired output from the neural network.

    """

    e = np.zeros((10, 1))

    e[j] = 1.0

    return e

def sigmoid(z):
    """The sigmoid function."""

    return 1.0/(1.0+np.exp(-z))

def sigmoid_prime(z):

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 63/92

    """Derivative of the sigmoid function."""

    return sigmoid(z)*(1-sigmoid(z))

One of the more interesting changes in the code is to include L2
regularization. Although this is a major conceptual change, it's so
trivial to implement that it's easy to miss in the code. For the most
part it just involves passing the parameter lmbda to various
methods, notably the Network.SGD method. The real work is done in
a single line of the program, the fourth-last line of the
Network.update_mini_batch method. That's where we modify the
gradient descent update rule to include weight decay. But although
the modification is tiny, it has a big impact on results!

This is, by the way, common when implementing new techniques in
neural networks. We've spent thousands of words discussing
regularization. It's conceptually quite subtle and difficult to
understand. And yet it was trivial to add to our program! It occurs
surprisingly often that sophisticated techniques can be
implemented with small changes to code.

Another small but important change to our code is the addition of
several optional flags to the stochastic gradient descent method,
Network.SGD. These flags make it possible to monitor the cost and
accuracy either on the training_data or on a set of evaluation_data
which can be passed to Network.SGD. We've used these flags often
earlier in the chapter, but let me give an example of how it works,
just to remind you:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10], cost=network2.CrossEntropyCost)

>>> net.SGD(training_data, 30, 10, 0.5,

... lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True,

... monitor_evaluation_cost=True,

... monitor_training_accuracy=True,

... monitor_training_cost=True)

Here, we're setting the evaluation_data to be the validation_data.
But we could also have monitored performance on the test_data or
any other data set. We also have four flags telling us to monitor the
cost and accuracy on both the evaluation_data and the
training_data. Those flags are False by default, but they've been
turned on here in order to monitor our Network's performance.
Furthermore, network2.py's Network.SGD method returns a four-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 64/92

element tuple representing the results of the monitoring. We can
use this as follows:

>>> evaluation_cost, evaluation_accuracy, 

... training_cost, training_accuracy = net.SGD(training_data, 30, 10, 0.5,

... lmbda = 5.0,

... evaluation_data=validation_data,

... monitor_evaluation_accuracy=True,

... monitor_evaluation_cost=True,

... monitor_training_accuracy=True,

... monitor_training_cost=True)

So, for example, evaluation_cost will be a 30-element list
containing the cost on the evaluation data at the end of each epoch.
This sort of information is extremely useful in understanding a
network's behaviour. It can, for example, be used to draw graphs
showing how the network learns over time. Indeed, that's exactly
how I constructed all the graphs earlier in the chapter. Note,
however, that if any of the monitoring flags are not set, then the
corresponding element in the tuple will be the empty list.

Other additions to the code include a Network.save method, to save
Network objects to disk, and a function to load them back in again
later. Note that the saving and loading is done using JSON, not
Python's pickle or cPickle modules, which are the usual way we
save and load objects to and from disk in Python. Using JSON
requires more code than pickle or cPickle would. To understand
why I've used JSON, imagine that at some time in the future we
decided to change our Network class to allow neurons other than
sigmoid neurons. To implement that change we'd most likely
change the attributes defined in the Network.__init__ method. If
we've simply pickled the objects that would cause our load function
to fail. Using JSON to do the serialization explicitly makes it easy to
ensure that old Networks will still load.

There are many other minor changes in the code for network2.py,
but they're all simple variations on network.py. The net result is to
expand our 74-line program to a far more capable 152 lines.

Problems

Modify the code above to implement L1 regularization, and use
L1 regularization to classify MNIST digits using a  hidden
neuron network. Can you find a regularization parameter that
enables you to do better than running unregularized?

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 65/92

Take a look at the Network.cost_derivative method in
network.py. That method was written for the quadratic cost.
How would you rewrite the method for the cross-entropy cost?
Can you think of a problem that might arise in the cross-
entropy version? In network2.py we've eliminated the
Network.cost_derivative method entirely, instead
incorporating its functionality into the CrossEntropyCost.delta
method. How does this solve the problem you've just
identified?

How to choose a neural network's
hyper-parameters?
Up until now I haven't explained how I've been choosing values for
hyper-parameters such as the learning rate, , the regularization
parameter, , and so on. I've just been supplying values which work
pretty well. In practice, when you're using neural nets to attack a
problem, it can be difficult to find good hyper-parameters. Imagine,
for example, that we've just been introduced to the MNIST
problem, and have begun working on it, knowing nothing at all
about what hyper-parameters to use. Let's suppose that by good
fortune in our first experiments we choose many of the hyper-
parameters in the same way as was done earlier this chapter: 30
hidden neurons, a mini-batch size of 10, training for 30 epochs
using the cross-entropy. But we choose a learning rate  and
regularization parameter . Here's what I saw on one such
run:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

>>> import network2
>>> net = network2.Network([784, 30, 10])

>>> net.SGD(training_data, 30, 10, 10.0, lmbda = 1000.0,

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 1030 / 10000

Epoch 1 training complete

Accuracy on evaluation data: 990 / 10000

Epoch 2 training complete

Accuracy on evaluation data: 1009 / 10000

...

Epoch 27 training complete

Accuracy on evaluation data: 1009 / 10000

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 66/92

Epoch 28 training complete

Accuracy on evaluation data: 983 / 10000

Epoch 29 training complete

Accuracy on evaluation data: 967 / 10000

Our classification accuracies are no better than chance! Our
network is acting as a random noise generator!

"Well, that's easy to fix," you might say, "just decrease the learning
rate and regularization hyper-parameters". Unfortunately, you
don't a priori know those are the hyper-parameters you need to
adjust. Maybe the real problem is that our 30 hidden neuron
network will never work well, no matter how the other hyper-
parameters are chosen? Maybe we really need at least 100 hidden
neurons? Or 300 hidden neurons? Or multiple hidden layers? Or a
different approach to encoding the output? Maybe our network is
learning, but we need to train for more epochs? Maybe the mini-
batches are too small? Maybe we'd do better switching back to the
quadratic cost function? Maybe we need to try a different approach
to weight initialization? And so on, on and on and on. It's easy to
feel lost in hyper-parameter space. This can be particularly
frustrating if your network is very large, or uses a lot of training
data, since you may train for hours or days or weeks, only to get no
result. If the situation persists, it damages your confidence. Maybe
neural networks are the wrong approach to your problem? Maybe
you should quit your job and take up beekeeping?

In this section I explain some heuristics which can be used to set
the hyper-parameters in a neural network. The goal is to help you
develop a workflow that enables you to do a pretty good job setting
hyper-parameters. Of course, I won't cover everything about hyper-
parameter optimization. That's a huge subject, and it's not, in any
case, a problem that is ever completely solved, nor is there universal
agreement amongst practitioners on the right strategies to use.
There's always one more trick you can try to eke out a bit more
performance from your network. But the heuristics in this section
should get you started.

Broad strategy: When using neural networks to attack a new
problem the first challenge is to get any non-trivial learning, i.e., for
the network to achieve results better than chance. This can be
surprisingly difficult, especially when confronting a new class of

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 67/92

problem. Let's look at some strategies you can use if you're having
this kind of trouble.

Suppose, for example, that you're attacking MNIST for the first
time. You start out enthusiastic, but are a little discouraged when
your first network fails completely, as in the example above. The
way to go is to strip the problem down. Get rid of all the training
and validation images except images which are 0s or 1s. Then try to
train a network to distinguish 0s from 1s. Not only is that an
inherently easier problem than distinguishing all ten digits, it also
reduces the amount of training data by 80 percent, speeding up
training by a factor of 5. That enables much more rapid
experimentation, and so gives you more rapid insight into how to
build a good network.

You can further speed up experimentation by stripping your
network down to the simplest network likely to do meaningful
learning. If you believe a [784, 10] network can likely do better-
than-chance classification of MNIST digits, then begin your
experimentation with such a network. It'll be much faster than
training a [784, 30, 10] network, and you can build back up to the
latter.

You can get another speed up in experimentation by increasing the
frequency of monitoring. In network2.py we monitor performance
at the end of each training epoch. With 50,000 images per epoch,
that means waiting a little while - about ten seconds per epoch, on
my laptop, when training a [784, 30, 10] network - before getting
feedback on how well the network is learning. Of course, ten
seconds isn't very long, but if you want to trial dozens of hyper-
parameter choices it's annoying, and if you want to trial hundreds
or thousands of choices it starts to get debilitating. We can get
feedback more quickly by monitoring the validation accuracy more
often, say, after every 1,000 training images. Furthermore, instead
of using the full 10,000 image validation set to monitor
performance, we can get a much faster estimate using just 100
validation images. All that matters is that the network sees enough
images to do real learning, and to get a pretty good rough estimate
of performance. Of course, our program network2.py doesn't
currently do this kind of monitoring. But as a kludge to achieve a
similar effect for the purposes of illustration, we'll strip down our

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 68/92

training data to just the first 1,000 MNIST training images. Let's try
it and see what happens. (To keep the code below simple I haven't
implemented the idea of using only 0 and 1 images. Of course, that
can be done with just a little more work.)

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 10.0, lmbda = 1000.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 10 / 100

Epoch 1 training complete

Accuracy on evaluation data: 10 / 100

Epoch 2 training complete

Accuracy on evaluation data: 10 / 100

...

We're still getting pure noise! But there's a big win: we're now
getting feedback in a fraction of a second, rather than once every
ten seconds or so. That means you can more quickly experiment
with other choices of hyper-parameter, or even conduct
experiments trialling many different choices of hyper-parameter
nearly simultaneously.

In the above example I left  as , as we used earlier. But
since we changed the number of training examples we should really
change  to keep the weight decay the same. That means changing 
to . If we do that then this is what happens:

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 10.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 12 / 100

Epoch 1 training complete

Accuracy on evaluation data: 14 / 100

Epoch 2 training complete

Accuracy on evaluation data: 25 / 100

Epoch 3 training complete

Accuracy on evaluation data: 18 / 100

...

Ahah! We have a signal. Not a terribly good signal, but a signal
nonetheless. That's something we can build on, modifying the
hyper-parameters to try to get further improvement. Maybe we
guess that our learning rate needs to be higher. (As you perhaps
realize, that's a silly guess, for reasons we'll discuss shortly, but

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 69/92

please bear with me.) So to test our guess we try dialing  up to 
:

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 100.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 10 / 100

Epoch 1 training complete

Accuracy on evaluation data: 10 / 100

Epoch 2 training complete

Accuracy on evaluation data: 10 / 100

Epoch 3 training complete

Accuracy on evaluation data: 10 / 100

...

That's no good! It suggests that our guess was wrong, and the
problem wasn't that the learning rate was too low. So instead we try
dialing  down to :

>>> net = network2.Network([784, 10])

>>> net.SGD(training_data[:1000], 30, 10, 1.0, lmbda = 20.0, \

... evaluation_data=validation_data[:100], \

... monitor_evaluation_accuracy=True)

Epoch 0 training complete

Accuracy on evaluation data: 62 / 100

Epoch 1 training complete

Accuracy on evaluation data: 42 / 100

Epoch 2 training complete

Accuracy on evaluation data: 43 / 100

Epoch 3 training complete

Accuracy on evaluation data: 61 / 100

...

That's better! And so we can continue, individually adjusting each
hyper-parameter, gradually improving performance. Once we've
explored to find an improved value for , then we move on to find a
good value for . Then experiment with a more complex
architecture, say a network with 10 hidden neurons. Then adjust the
values for  and  again. Then increase to 20 hidden neurons. And
then adjust other hyper-parameters some more. And so on, at each
stage evaluating performance using our held-out validation data,
and using those evaluations to find better and better hyper-
parameters. As we do so, it typically takes longer to witness the
impact due to modifications of the hyper-parameters, and so we can
gradually decrease the frequency of monitoring.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 70/92

This all looks very promising as a broad strategy. However, I want
to return to that initial stage of finding hyper-parameters that
enable a network to learn anything at all. In fact, even the above
discussion conveys too positive an outlook. It can be immensely
frustrating to work with a network that's learning nothing. You can
tweak hyper-parameters for days, and still get no meaningful
response. And so I'd like to re-emphasize that during the early
stages you should make sure you can get quick feedback from
experiments. Intuitively, it may seem as though simplifying the
problem and the architecture will merely slow you down. In fact, it
speeds things up, since you much more quickly find a network with
a meaningful signal. Once you've got such a signal, you can often get
rapid improvements by tweaking the hyper-parameters. As with
many things in life, getting started can be the hardest thing to do.

Okay, that's the broad strategy. Let's now look at some specific
recommendations for setting hyper-parameters. I will focus on the
learning rate, , the L2 regularization parameter, , and the mini-
batch size. However, many of the remarks apply also to other hyper-
parameters, including those associated to network architecture,
other forms of regularization, and some hyper-parameters we'll
meet later in the book, such as the momentum co-efficient.

Learning rate: Suppose we run three MNIST networks with three
different learning rates, ,  and ,
respectively. We'll set the other hyper-parameters as for the
experiments in earlier sections, running over 30 epochs, with a
mini-batch size of 10, and with . We'll also return to using
the full  training images. Here's a graph showing the
behaviour of the training cost as we train*: *The graph was generated by multiple_eta.py.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 71/92

With  the cost decreases smoothly until the final epoch.
With  the cost initially decreases, but after about  epochs
it is near saturation, and thereafter most of the changes are merely
small and apparently random oscillations. Finally, with  the
cost makes large oscillations right from the start. To understand the
reason for the oscillations, recall that stochastic gradient descent is
supposed to step us gradually down into a valley of the cost
function,

However, if  is too large then the steps will be so large that they
may actually overshoot the minimum, causing the algorithm to
climb up out of the valley instead. That's likely* what's causing the
cost to oscillate when . When we choose  the initial
steps do take us toward a minimum of the cost function, and it's
only once we get near that minimum that we start to suffer from the

*This picture is helpful, but it's intended as an
intuition-building illustration of what may go on,
not as a complete, exhaustive explanation.
Briefly, a more complete explanation is as
follows: gradient descent uses a first-order
approximation to the cost function as a guide to
how to decrease the cost. For large , higher-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 72/92

overshooting problem. And when we choose  we don't
suffer from this problem at all during the first  epochs. Of course,
choosing  so small creates another problem, namely, that it slows
down stochastic gradient descent. An even better approach would
be to start with , train for  epochs, and then switch to 

. We'll discuss such variable learning rate schedules later.
For now, though, let's stick to figuring out how to find a single good
value for the learning rate, .

With this picture in mind, we can set  as follows. First, we estimate
the threshold value for  at which the cost on the training data
immediately begins decreasing, instead of oscillating or increasing.
This estimate doesn't need to be too accurate. You can estimate the
order of magnitude by starting with . If the cost decreases
during the first few epochs, then you should successively try 

 until you find a value for  where the cost oscillates
or increases during the first few epochs. Alternately, if the cost
oscillates or increases during the first few epochs when ,
then try  until you find a value for  where the
cost decreases during the first few epochs. Following this procedure
will give us an order of magnitude estimate for the threshold value
of . You may optionally refine your estimate, to pick out the largest
value of  at which the cost decreases during the first few epochs,
say  or  (there's no need for this to be super-accurate).
This gives us an estimate for the threshold value of .

Obviously, the actual value of  that you use should be no larger
than the threshold value. In fact, if the value of  is to remain usable
over many epochs then you likely want to use a value for  that is
smaller, say, a factor of two below the threshold. Such a choice will
typically allow you to train for many epochs, without causing too
much of a slowdown in learning.

In the case of the MNIST data, following this strategy leads to an
estimate of  for the order of magnitude of the threshold value of 

. After some more refinement, we obtain a threshold value .
Following the prescription above, this suggests using  as
our value for the learning rate. In fact, I found that using 
worked well enough over  epochs that for the most part I didn't
worry about using a lower value of .

order terms in the cost function become more
important, and may dominate the behaviour,
causing gradient descent to break down. This is
especially likely as we approach minima and
quasi-minima of the cost function, since near
such points the gradient becomes small, making
it easier for higher-order terms to dominate
behaviour.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 73/92

This all seems quite straightforward. However, using the training
cost to pick  appears to contradict what I said earlier in this
section, namely, that we'd pick hyper-parameters by evaluating
performance using our held-out validation data. In fact, we'll use
validation accuracy to pick the regularization hyper-parameter, the
mini-batch size, and network parameters such as the number of
layers and hidden neurons, and so on. Why do things differently for
the learning rate? Frankly, this choice is my personal aesthetic
preference, and is perhaps somewhat idiosyncratic. The reasoning
is that the other hyper-parameters are intended to improve the final
classification accuracy on the test set, and so it makes sense to
select them on the basis of validation accuracy. However, the
learning rate is only incidentally meant to impact the final
classification accuracy. Its primary purpose is really to control the
step size in gradient descent, and monitoring the training cost is the
best way to detect if the step size is too big. With that said, this is a
personal aesthetic preference. Early on during learning the training
cost usually only decreases if the validation accuracy improves, and
so in practice it's unlikely to make much difference which criterion
you use.

Use early stopping to determine the number of training
epochs: As we discussed earlier in the chapter, early stopping
means that at the end of each epoch we should compute the
classification accuracy on the validation data. When that stops
improving, terminate. This makes setting the number of epochs
very simple. In particular, it means that we don't need to worry
about explicitly figuring out how the number of epochs depends on
the other hyper-parameters. Instead, that's taken care of
automatically. Furthermore, early stopping also automatically
prevents us from overfitting. This is, of course, a good thing,
although in the early stages of experimentation it can be helpful to
turn off early stopping, so you can see any signs of overfitting, and
use it to inform your approach to regularization.

To implement early stopping we need to say more precisely what it
means that the classification accuracy has stopped improving. As
we've seen, the accuracy can jump around quite a bit, even when the
overall trend is to improve. If we stop the first time the accuracy
decreases then we'll almost certainly stop when there are more
improvements to be had. A better rule is to terminate if the best

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 74/92

classification accuracy doesn't improve for quite some time.
Suppose, for example, that we're doing MNIST. Then we might elect
to terminate if the classification accuracy hasn't improved during
the last ten epochs. This ensures that we don't stop too soon, in
response to bad luck in training, but also that we're not waiting
around forever for an improvement that never comes.

This no-improvement-in-ten rule is good for initial exploration of
MNIST. However, networks can sometimes plateau near a
particular classification accuracy for quite some time, only to then
begin improving again. If you're trying to get really good
performance, the no-improvement-in-ten rule may be too
aggressive about stopping. In that case, I suggest using the no-
improvement-in-ten rule for initial experimentation, and gradually
adopting more lenient rules, as you better understand the way your
network trains: no-improvement-in-twenty, no-improvement-in-
fifty, and so on. Of course, this introduces a new hyper-parameter
to optimize! In practice, however, it's usually easy to set this hyper-
parameter to get pretty good results. Similarly, for problems other
than MNIST, the no-improvement-in-ten rule may be much too
aggressive or not nearly aggressive enough, depending on the
details of the problem. However, with a little experimentation it's
usually easy to find a pretty good strategy for early stopping.

We haven't used early stopping in our MNIST experiments to date.
The reason is that we've been doing a lot of comparisons between
different approaches to learning. For such comparisons it's helpful
to use the same number of epochs in each case. However, it's well
worth modifying network2.py to implement early stopping:

Problem

Modify network2.py so that it implements early stopping using
a no-improvement-in-  epochs strategy, where  is a parameter
that can be set.

Can you think of a rule for early stopping other than no-
improvement-in- ? Ideally, the rule should compromise
between getting high validation accuracies and not training too
long. Add your rule to network2.py, and run three experiments
comparing the validation accuracies and number of epochs of
training to no-improvement-in- .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 75/92

Learning rate schedule: We've been holding the learning rate 
constant. However, it's often advantageous to vary the learning rate.
Early on during the learning process it's likely that the weights are
badly wrong. And so it's best to use a large learning rate that causes
the weights to change quickly. Later, we can reduce the learning
rate as we make more fine-tuned adjustments to our weights.

How should we set our learning rate schedule? Many approaches
are possible. One natural approach is to use the same basic idea as
early stopping. The idea is to hold the learning rate constant until
the validation accuracy starts to get worse. Then decrease the
learning rate by some amount, say a factor of two or ten. We repeat
this many times, until, say, the learning rate is a factor of 1,024 (or
1,000) times lower than the initial value. Then we terminate.

A variable learning schedule can improve performance, but it also
opens up a world of possible choices for the learning schedule.
Those choices can be a headache - you can spend forever trying to
optimize your learning schedule. For first experiments my
suggestion is to use a single, constant value for the learning rate.
That'll get you a good first approximation. Later, if you want to
obtain the best performance from your network, it's worth
experimenting with a learning schedule, along the lines I've
described*.

Exercise

Modify network2.py so that it implements a learning schedule
that: halves the learning rate each time the validation accuracy
satisfies the no-improvement-in-  rule; and terminates when
the learning rate has dropped to  of its original value.

The regularization parameter,  : I suggest starting initially
with no regularization ( ), and determining a value for , as
above. Using that choice of , we can then use the validation data to
select a good value for . Start by trialling *, and then
increase or decrease by factors of , as needed to improve
performance on the validation data. Once you've found a good order
of magnitude, you can fine tune your value of . That done, you
should return and re-optimize  again.

Exercise

*A readable recent paper which demonstrates
the benefits of variable learning rates in
attacking MNIST is Deep, Big, Simple Neural
Nets Excel on Handwritten Digit Recognition, by
Dan Claudiu Cireșan, Ueli Meier, Luca Maria
Gambardella, and Jürgen Schmidhuber (2010).

*I don't have a good principled justification for
using this as a starting value. If anyone knows of
a good principled discussion of where to start
with , I'd appreciate hearing it
(mn@michaelnielsen.org).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 76/92

It's tempting to use gradient descent to try to learn good values
for hyper-parameters such as  and . Can you think of an
obstacle to using gradient descent to determine ? Can you
think of an obstacle to using gradient descent to determine ?

How I selected hyper-parameters earlier in this book: If
you use the recommendations in this section you'll find that you get
values for  and  which don't always exactly match the values I've
used earlier in the book. The reason is that the book has narrative
constraints that have sometimes made it impractical to optimize the
hyper-parameters. Think of all the comparisons we've made of
different approaches to learning, e.g., comparing the quadratic and
cross-entropy cost functions, comparing the old and new methods
of weight initialization, running with and without regularization,
and so on. To make such comparisons meaningful, I've usually tried
to keep hyper-parameters constant across the approaches being
compared (or to scale them in an appropriate way). Of course,
there's no reason for the same hyper-parameters to be optimal for
all the different approaches to learning, so the hyper-parameters
I've used are something of a compromise.

As an alternative to this compromise, I could have tried to optimize
the heck out of the hyper-parameters for every single approach to
learning. In principle that'd be a better, fairer approach, since then
we'd see the best from every approach to learning. However, we've
made dozens of comparisons along these lines, and in practice I
found it too computationally expensive. That's why I've adopted the
compromise of using pretty good (but not necessarily optimal)
choices for the hyper-parameters.

Mini-batch size: How should we set the mini-batch size? To
answer this question, let's first suppose that we're doing online
learning, i.e., that we're using a mini-batch size of .

The obvious worry about online learning is that using mini-batches
which contain just a single training example will cause significant
errors in our estimate of the gradient. In fact, though, the errors
turn out to not be such a problem. The reason is that the individual
gradient estimates don't need to be super-accurate. All we need is
an estimate accurate enough that our cost function tends to keep
decreasing. It's as though you are trying to get to the North

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 77/92

Magnetic Pole, but have a wonky compass that's 10-20 degrees off
each time you look at it. Provided you stop to check the compass
frequently, and the compass gets the direction right on average,
you'll end up at the North Magnetic Pole just fine.

Based on this argument, it sounds as though we should use online
learning. In fact, the situation turns out to be more complicated
than that. In a problem in the last chapter I pointed out that it's
possible to use matrix techniques to compute the gradient update
for all examples in a mini-batch simultaneously, rather than
looping over them. Depending on the details of your hardware and
linear algebra library this can make it quite a bit faster to compute
the gradient estimate for a mini-batch of (for example) size ,
rather than computing the mini-batch gradient estimate by looping
over the  training examples separately. It might take (say) only 

 times as long, rather than  times as long.

Now, at first it seems as though this doesn't help us that much.
With our mini-batch of size  the learning rule for the weights
looks like:

where the sum is over training examples in the mini-batch. This is
versus

for online learning. Even if it only takes  times as long to do the
mini-batch update, it still seems likely to be better to do online
learning, because we'd be updating so much more frequently.
Suppose, however, that in the mini-batch case we increase the
learning rate by a factor , so the update rule becomes

That's a lot like doing  separate instances of online learning with
a learning rate of . But it only takes  times as long as doing a
single instance of online learning. Of course, it's not truly the same
as  instances of online learning, since in the mini-batch the 

's are all evaluated for the same set of weights, as opposed to
the cumulative learning that occurs in the online case. Still, it seems

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 78/92

distinctly possible that using the larger mini-batch would speed
things up.

With these factors in mind, choosing the best mini-batch size is a
compromise. Too small, and you don't get to take full advantage of
the benefits of good matrix libraries optimized for fast hardware.
Too large and you're simply not updating your weights often
enough. What you need is to choose a compromise value which
maximizes the speed of learning. Fortunately, the choice of mini-
batch size at which the speed is maximized is relatively independent
of the other hyper-parameters (apart from the overall architecture),
so you don't need to have optimized those hyper-parameters in
order to find a good mini-batch size. The way to go is therefore to
use some acceptable (but not necessarily optimal) values for the
other hyper-parameters, and then trial a number of different mini-
batch sizes, scaling  as above. Plot the validation accuracy versus
time (as in, real elapsed time, not epoch!), and choose whichever
mini-batch size gives you the most rapid improvement in
performance. With the mini-batch size chosen you can then proceed
to optimize the other hyper-parameters.

Of course, as you've no doubt realized, I haven't done this
optimization in our work. Indeed, our implementation doesn't use
the faster approach to mini-batch updates at all. I've simply used a
mini-batch size of  without comment or explanation in nearly all
examples. Because of this, we could have sped up learning by
reducing the mini-batch size. I haven't done this, in part because I
wanted to illustrate the use of mini-batches beyond size , and in
part because my preliminary experiments suggested the speedup
would be rather modest. In practical implementations, however, we
would most certainly implement the faster approach to mini-batch
updates, and then make an effort to optimize the mini-batch size, in
order to maximize our overall speed.

Automated techniques: I've been describing these heuristics as
though you're optimizing your hyper-parameters by hand. Hand-
optimization is a good way to build up a feel for how neural
networks behave. However, and unsurprisingly, a great deal of work
has been done on automating the process. A common technique is
grid search, which systematically searches through a grid in hyper-
parameter space. A review of both the achievements and the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 79/92

limitations of grid search (with suggestions for easily-implemented
alternatives) may be found in a 2012 paper* by James Bergstra and
Yoshua Bengio. Many more sophisticated approaches have also
been proposed. I won't review all that work here, but do want to
mention a particularly promising 2012 paper which used a Bayesian
approach to automatically optimize hyper-parameters*. The code
from the paper is publicly available, and has been used with some
success by other researchers.

Summing up: Following the rules-of-thumb I've described won't
give you the absolute best possible results from your neural
network. But it will likely give you a good start and a basis for
further improvements. In particular, I've discussed the hyper-
parameters largely independently. In practice, there are
relationships between the hyper-parameters. You may experiment
with , feel that you've got it just right, then start to optimize for ,
only to find that it's messing up your optimization for . In practice,
it helps to bounce backward and forward, gradually closing in good
values. Above all, keep in mind that the heuristics I've described are
rules of thumb, not rules cast in stone. You should be on the
lookout for signs that things aren't working, and be willing to
experiment. In particular, this means carefully monitoring your
network's behaviour, especially the validation accuracy.

The difficulty of choosing hyper-parameters is exacerbated by the
fact that the lore about how to choose hyper-parameters is widely
spread, across many research papers and software programs, and
often is only available inside the heads of individual practitioners.
There are many, many papers setting out (sometimes
contradictory) recommendations for how to proceed. However,
there are a few particularly useful papers that synthesize and distill
out much of this lore. Yoshua Bengio has a 2012 paper* that gives
some practical recommendations for using backpropagation and
gradient descent to train neural networks, including deep neural
nets. Bengio discusses many issues in much more detail than I have,
including how to do more systematic hyper-parameter searches.
Another good paper is a 1998 paper* by Yann LeCun, Léon Bottou,
Genevieve Orr and Klaus-Robert Müller. Both these papers appear
in an extremely useful 2012 book that collects many tricks
commonly used in neural nets*. The book is expensive, but many of
the articles have been placed online by their respective authors

*Random search for hyper-parameter
optimization, by James Bergstra and Yoshua
Bengio (2012).

*Practical Bayesian optimization of machine
learning algorithms, by Jasper Snoek, Hugo
Larochelle, and Ryan Adams.

*Practical recommendations for gradient-based
training of deep architectures, by Yoshua Bengio
(2012).

*Efficient BackProp, by Yann LeCun, Léon
Bottou, Genevieve Orr and Klaus-Robert Müller
(1998)

*Neural Networks: Tricks of the Trade, edited by
Grégoire Montavon, Geneviève Orr, and Klaus-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 80/92

with, one presumes, the blessing of the publisher, and may be
located using a search engine.

One thing that becomes clear as you read these articles and,
especially, as you engage in your own experiments, is that hyper-
parameter optimization is not a problem that is ever completely
solved. There's always another trick you can try to improve
performance. There is a saying common among writers that books
are never finished, only abandoned. The same is also true of neural
network optimization: the space of hyper-parameters is so large
that one never really finishes optimizing, one only abandons the
network to posterity. So your goal should be to develop a workflow
that enables you to quickly do a pretty good job on the optimization,
while leaving you the flexibility to try more detailed optimizations,
if that's important.

The challenge of setting hyper-parameters has led some people to
complain that neural networks require a lot of work when
compared with other machine learning techniques. I've heard many
variations on the following complaint: "Yes, a well-tuned neural
network may get the best performance on the problem. On the
other hand, I can try a random forest [or SVM or  insert your own
favorite technique] and it just works. I don't have time to figure out
just the right neural network." Of course, from a practical point of
view it's good to have easy-to-apply techniques. This is particularly
true when you're just getting started on a problem, and it may not
be obvious whether machine learning can help solve the problem at
all. On the other hand, if getting optimal performance is important,
then you may need to try approaches that require more specialist
knowledge. While it would be nice if machine learning were always
easy, there is no a priori reason it should be trivially simple.

Other techniques
Each technique developed in this chapter is valuable to know in its
own right, but that's not the only reason I've explained them. The
larger point is to familiarize you with some of the problems which
can occur in neural networks, and with a style of analysis which can
help overcome those problems. In a sense, we've been learning how
to think about neural nets. Over the remainder of this chapter I
briefly sketch a handful of other techniques. These sketches are less

Robert Müller.
欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 81/92

in-depth than the earlier discussions, but should convey some
feeling for the diversity of techniques available for use in neural
networks.

Variations on stochastic gradient descent

Stochastic gradient descent by backpropagation has served us well
in attacking the MNIST digit classification problem. However, there
are many other approaches to optimizing the cost function, and
sometimes those other approaches offer performance superior to
mini-batch stochastic gradient descent. In this section I sketch two
such approaches, the Hessian and momentum techniques.

Hessian technique: To begin our discussion it helps to put
neural networks aside for a bit. Instead, we're just going to consider
the abstract problem of minimizing a cost function  which is a
function of many variables, , so . By Taylor's
theorem, the cost function can be approximated near a point  by

We can rewrite this more compactly as

where  is the usual gradient vector, and  is a matrix known as
the Hessian matrix, whose th entry is . Suppose we
approximate  by discarding the higher-order terms represented by

 above,

Using calculus we can show that the expression on the right-hand
side can be minimized* by choosing

Provided (105) is a good approximate expression for the cost
function, then we'd expect that moving from the point  to 

 should significantly decrease the cost

*Strictly speaking, for this to be a minimum, and
not merely an extremum, we need to assume
that the Hessian matrix is positive definite.
Intuitively, this means that the function  looks
like a valley locally, not a mountain or a saddle.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 82/92

function. That suggests a possible algorithm for minimizing the
cost:

Choose a starting point, .

Update  to a new point , where the Hessian 
and  are computed at .

Update  to a new point , where the
Hessian  and  are computed at .

In practice, (105) is only an approximation, and it's better to take
smaller steps. We do this by repeatedly changing  by an amount 

, where  is known as the learning rate.

This approach to minimizing a cost function is known as the
Hessian technique or Hessian optimization. There are theoretical
and empirical results showing that Hessian methods converge on a
minimum in fewer steps than standard gradient descent. In
particular, by incorporating information about second-order
changes in the cost function it's possible for the Hessian approach
to avoid many pathologies that can occur in gradient descent.
Furthermore, there are versions of the backpropagation algorithm
which can be used to compute the Hessian.

If Hessian optimization is so great, why aren't we using it in our
neural networks? Unfortunately, while it has many desirable
properties, it has one very undesirable property: it's very difficult to
apply in practice. Part of the problem is the sheer size of the
Hessian matrix. Suppose you have a neural network with 
weights and biases. Then the corresponding Hessian matrix will
contain  entries. That's a lot of entries! And that
makes computing  extremely difficult in practice. However,
that doesn't mean that it's not useful to understand. In fact, there
are many variations on gradient descent which are inspired by
Hessian optimization, but which avoid the problem with overly-
large matrices. Let's take a look at one such technique, momentum-
based gradient descent.

Momentum-based gradient descent: Intuitively, the
advantage Hessian optimization has is that it incorporates not just

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 83/92

information about the gradient, but also information about how the
gradient is changing. Momentum-based gradient descent is based
on a similar intuition, but avoids large matrices of second
derivatives. To understand the momentum technique, think back to
our original picture of gradient descent, in which we considered a
ball rolling down into a valley. At the time, we observed that
gradient descent is, despite its name, only loosely similar to a ball
falling to the bottom of a valley. The momentum technique modifies
gradient descent in two ways that make it more similar to the
physical picture. First, it introduces a notion of "velocity" for the
parameters we're trying to optimize. The gradient acts to change the
velocity, not (directly) the "position", in much the same way as
physical forces change the velocity, and only indirectly affect
position. Second, the momentum method introduces a kind of
friction term, which tends to gradually reduce the velocity.

Let's give a more precise mathematical description. We introduce
velocity variables , one for each corresponding 
variable*. Then we replace the gradient descent update rule 

 by

In these equations,  is a hyper-parameter which controls the
amount of damping or friction in the system. To understand the
meaning of the equations it's helpful to first consider the case where

, which corresponds to no friction. When that's the case,
inspection of the equations shows that the "force"  is now
modifying the velocity, , and the velocity is controlling the rate of
change of . Intuitively, we build up the velocity by repeatedly
adding gradient terms to it. That means that if the gradient is in
(roughly) the same direction through several rounds of learning, we
can build up quite a bit of steam moving in that direction. Think, for
example, of what happens if we're moving straight down a slope:

*In a neural net the  variables would, of
course, include all weights and biases.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 84/92

With each step the velocity gets larger down the slope, so we move
more and more quickly to the bottom of the valley. This can enable
the momentum technique to work much faster than standard
gradient descent. Of course, a problem is that once we reach the
bottom of the valley we will overshoot. Or, if the gradient should
change rapidly, then we could find ourselves moving in the wrong
direction. That's the reason for the  hyper-parameter in (107). I
said earlier that  controls the amount of friction in the system; to
be a little more precise, you should think of  as the amount of
friction in the system. When , as we've seen, there is no
friction, and the velocity is completely driven by the gradient .
By contrast, when  there's a lot of friction, the velocity can't
build up, and Equations (107) and (108) reduce to the usual
equation for gradient descent, . In practice, using
a value of  intermediate between  and  can give us much of the
benefit of being able to build up speed, but without causing
overshooting. We can choose such a value for  using the held-out
validation data, in much the same way as we select  and .

I've avoided naming the hyper-parameter  up to now. The reason
is that the standard name for  is badly chosen: it's called the
momentum co-efficient. This is potentially confusing, since  is not
at all the same as the notion of momentum from physics. Rather, it
is much more closely related to friction. However, the term
momentum co-efficient is widely used, so we will continue to use it.

A nice thing about the momentum technique is that it takes almost
no work to modify an implementation of gradient descent to

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 85/92

incorporate momentum. We can still use backpropagation to
compute the gradients, just as before, and use ideas such as
sampling stochastically chosen mini-batches. In this way, we can
get some of the advantages of the Hessian technique, using
information about how the gradient is changing. But it's done
without the disadvantages, and with only minor modifications to
our code. In practice, the momentum technique is commonly used,
and often speeds up learning.

Exercise

What would go wrong if we used  in the momentum
technique?

What would go wrong if we used  in the momentum
technique?

Problem

Add momentum-based stochastic gradient descent to
network2.py.

Other approaches to minimizing the cost function: Many
other approaches to minimizing the cost function have been
developed, and there isn't universal agreement on which is the best
approach. As you go deeper into neural networks it's worth digging
into the other techniques, understanding how they work, their
strengths and weaknesses, and how to apply them in practice. A
paper I mentioned earlier* introduces and compares several of
these techniques, including conjugate gradient descent and the
BFGS method (see also the closely related limited-memory BFGS
method, known as L-BFGS). Another technique which has recently
shown promising results* is Nesterov's accelerated gradient
technique, which improves on the momentum technique. However,
for many problems, plain stochastic gradient descent works well,
especially if momentum is used, and so we'll stick to stochastic
gradient descent through the remainder of this book.

Other models of artificial neuron

Up to now we've built our neural networks using sigmoid neurons.
In principle, a network built from sigmoid neurons can compute

*Efficient BackProp, by Yann LeCun, Léon
Bottou, Genevieve Orr and Klaus-Robert Müller
(1998).

*See, for example, On the importance of
initialization and momentum in deep learning,
by Ilya Sutskever, James Martens, George Dahl,
and Geoffrey Hinton (2012).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 86/92

any function. In practice, however, networks built using other
model neurons sometimes outperform sigmoid networks.
Depending on the application, networks based on such alternate
models may learn faster, generalize better to test data, or perhaps
do both. Let me mention a couple of alternate model neurons, to
give you the flavor of some variations in common use.

Perhaps the simplest variation is the tanh (pronounced "tanch")
neuron, which replaces the sigmoid function by the hyperbolic
tangent function. The output of a tanh neuron with input , weight
vector , and bias  is given by

where  is, of course, the hyperbolic tangent function. It turns
out that this is very closely related to the sigmoid neuron. To see
this, recall that the  function is defined by

With a little algebra it can easily be verified that

that is,  is just a rescaled version of the sigmoid function. We
can also see graphically that the  function has the same shape as
the sigmoid function,

-4 -3 -2 -1 0 1 2 3 4

-1.0

-0.5

0.0

0.5

1.0

z

tanh function

One difference between tanh neurons and sigmoid neurons is that
the output from tanh neurons ranges from -1 to 1, not 0 to 1. This
means that if you're going to build a network based on tanh neurons
you may need to normalize your outputs (and, depending on the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 87/92

details of the application, possibly your inputs) a little differently
than in sigmoid networks.

Similar to sigmoid neurons, a network of tanh neurons can, in
principle, compute any function* mapping inputs to the range -1 to
1. Furthermore, ideas such as backpropagation and stochastic
gradient descent are as easily applied to a network of tanh neurons
as to a network of sigmoid neurons.

Exercise

Prove the identity in Equation (111).

Which type of neuron should you use in your networks, the tanh or
sigmoid? A priori the answer is not obvious, to put it mildly!
However, there are theoretical arguments and some empirical
evidence to suggest that the tanh sometimes performs better*. Let
me briefly give you the flavor of one of the theoretical arguments for
tanh neurons. Suppose we're using sigmoid neurons, so all
activations in our network are positive. Let's consider the weights 

 input to the th neuron in the th layer. The rules for
backpropagation (see here) tell us that the associated gradient will
be . Because the activations are positive the sign of this
gradient will be the same as the sign of . What this means is that
if  is positive then all the weights  will decrease during
gradient descent, while if  is negative then all the weights 
will increase during gradient descent. In other words, all weights to
the same neuron must either increase together or decrease together.
That's a problem, since some of the weights may need to increase
while others need to decrease. That can only happen if some of the
input activations have different signs. That suggests replacing the
sigmoid by an activation function, such as , which allows both
positive and negative activations. Indeed, because  is symmetric
about zero, , we might even expect that, roughly
speaking, the activations in hidden layers would be equally
balanced between positive and negative. That would help ensure
that there is no systematic bias for the weight updates to be one way
or the other.

How seriously should we take this argument? While the argument
is suggestive, it's a heuristic, not a rigorous proof that tanh neurons
outperform sigmoid neurons. Perhaps there are other properties of

*There are some technical caveats to this
statement for both tanh and sigmoid neurons, as
well as for the rectified linear neurons discussed
below. However, informally it's usually fine to
think of neural networks as being able to
approximate any function to arbitrary accuracy.

*See, for example, Efficient BackProp, by Yann
LeCun, Léon Bottou, Genevieve Orr and Klaus-
Robert Müller (1998), and Understanding the
difficulty of training deep feedforward networks,
by Xavier Glorot and Yoshua Bengio (2010).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 88/92

the sigmoid neuron which compensate for this problem? Indeed, for
many tasks the tanh is found empirically to provide only a small or
no improvement in performance over sigmoid neurons.
Unfortunately, we don't yet have hard-and-fast rules to know which
neuron types will learn fastest, or give the best generalization
performance, for any particular application.

Another variation on the sigmoid neuron is the rectified linear
neuron or rectified linear unit. The output of a rectified linear unit
with input , weight vector , and bias  is given by

Graphically, the rectifying function  looks like this:

-4 -3 -2 -1 0 1 2 3 4 5

-4

-3

-2

-1

0

1

2

3

4

5

z

max(0, z)

Obviously such neurons are quite different from both sigmoid and
tanh neurons. However, like the sigmoid and tanh neurons,
rectified linear units can be used to compute any function, and they
can be trained using ideas such as backpropagation and stochastic
gradient descent.

When should you use rectified linear units instead of sigmoid or
tanh neurons? Some recent work on image recognition* has found
considerable benefit in using rectified linear units through much of
the network. However, as with tanh neurons, we do not yet have a
really deep understanding of when, exactly, rectified linear units are
preferable, nor why. To give you the flavor of some of the issues,
recall that sigmoid neurons stop learning when they saturate, i.e.,
when their output is near either  or . As we've seen repeatedly in
this chapter, the problem is that  terms reduce the gradient, and
that slows down learning. Tanh neurons suffer from a similar

*See, for example, What is the Best Multi-Stage
Architecture for Object Recognition?, by Kevin
Jarrett, Koray Kavukcuoglu, Marc'Aurelio
Ranzato and Yann LeCun (2009), Deep Sparse
Rectifier Neural Networks, by Xavier Glorot,
Antoine Bordes, and Yoshua Bengio (2011), and
ImageNet Classification with Deep
Convolutional Neural Networks, by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
(2012). Note that these papers fill in important
details about how to set up the output layer, cost
function, and regularization in networks using
rectified linear units. I've glossed over all these
details in this brief account. The papers also
discuss in more detail the benefits and
drawbacks of using rectified linear units.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 89/92

problem when they saturate. By contrast, increasing the weighted
input to a rectified linear unit will never cause it to saturate, and so
there is no corresponding learning slowdown. On the other hand,
when the weighted input to a rectified linear unit is negative, the
gradient vanishes, and so the neuron stops learning entirely. These
are just two of the many issues that make it non-trivial to
understand when and why rectified linear units perform better than
sigmoid or tanh neurons.

I've painted a picture of uncertainty here, stressing that we do not
yet have a solid theory of how activation functions should be
chosen. Indeed, the problem is harder even than I have described,
for there are infinitely many possible activation functions. Which is
the best for any given problem? Which will result in a network
which learns fastest? Which will give the highest test accuracies? I
am surprised how little really deep and systematic investigation has
been done of these questions. Ideally, we'd have a theory which tells
us, in detail, how to choose (and perhaps modify-on-the-fly) our
activation functions. On the other hand, we shouldn't let the lack of
a full theory stop us! We have powerful tools already at hand, and
can make a lot of progress with those tools. Through the remainder
of this book I'll continue to use sigmoid neurons as our go-to
neuron, since they're powerful and provide concrete illustrations of
the core ideas about neural nets. But keep in the back of your mind
that these same ideas can be applied to other types of neuron, and
that there are sometimes advantages in doing so.

On stories in neural networks

Question: How do you approach utilizing and
researching machine learning techniques that are

supported almost entirely empirically, as opposed to

mathematically? Also in what situations have you noticed

some of these techniques fail?

Answer: You have to realize that our theoretical tools are
very weak. Sometimes, we have good mathematical
intuitions for why a particular technique should work.
Sometimes our intuition ends up being wrong [...] The
questions become: how well does my method work on this

Another informative paper is Rectified Linear
Units Improve Restricted Boltzmann Machines,
by Vinod Nair and Geoffrey Hinton (2010),
which demonstrates the benefits of using
rectified linear units in a somewhat different
approach to neural networks.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 90/92

particular problem, and how large is the set of problems
on which it works well.

- Question and answer with neural networks researcher

Yann LeCun

Once, attending a conference on the foundations of quantum
mechanics, I noticed what seemed to me a most curious verbal
habit: when talks finished, questions from the audience often began
with "I'm very sympathetic to your point of view, but [...]".
Quantum foundations was not my usual field, and I noticed this
style of questioning because at other scientific conferences I'd rarely
or never heard a questioner express their sympathy for the point of
view of the speaker. At the time, I thought the prevalence of the
question suggested that little genuine progress was being made in
quantum foundations, and people were merely spinning their
wheels. Later, I realized that assessment was too harsh. The
speakers were wrestling with some of the hardest problems human
minds have ever confronted. Of course progress was slow! But there
was still value in hearing updates on how people were thinking,
even if they didn't always have unarguable new progress to report.

You may have noticed a verbal tic similar to "I'm very sympathetic
[...]" in the current book. To explain what we're seeing I've often
fallen back on saying "Heuristically, [...]", or "Roughly speaking,
[...]", following up with a story to explain some phenomenon or
other. These stories are plausible, but the empirical evidence I've
presented has often been pretty thin. If you look through the
research literature you'll see that stories in a similar style appear in
many research papers on neural nets, often with thin supporting
evidence. What should we think about such stories?

In many parts of science - especially those parts that deal with
simple phenomena - it's possible to obtain very solid, very reliable
evidence for quite general hypotheses. But in neural networks there
are large numbers of parameters and hyper-parameters, and
extremely complex interactions between them. In such
extraordinarily complex systems it's exceedingly difficult to
establish reliable general statements. Understanding neural
networks in their full generality is a problem that, like quantum
foundations, tests the limits of the human mind. Instead, we often

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 91/92

make do with evidence for or against a few specific instances of a
general statement. As a result those statements sometimes later
need to be modified or abandoned, when new evidence comes to
light.

One way of viewing this situation is that any heuristic story about
neural networks carries with it an implied challenge. For example,
consider the statement I quoted earlier, explaining why dropout
works*: "This technique reduces complex co-adaptations of
neurons, since a neuron cannot rely on the presence of particular
other neurons. It is, therefore, forced to learn more robust features
that are useful in conjunction with many different random subsets
of the other neurons." This is a rich, provocative statement, and one
could build a fruitful research program entirely around unpacking
the statement, figuring out what in it is true, what is false, what
needs variation and refinement. Indeed, there is now a small
industry of researchers who are investigating dropout (and many
variations), trying to understand how it works, and what its limits
are. And so it goes with many of the heuristics we've discussed.
Each heuristic is not just a (potential) explanation, it's also a
challenge to investigate and understand in more detail.

Of course, there is not time for any single person to investigate all
these heuristic explanations in depth. It's going to take decades (or
longer) for the community of neural networks researchers to
develop a really powerful, evidence-based theory of how neural
networks learn. Does this mean you should reject heuristic
explanations as unrigorous, and not sufficiently evidence-based?
No! In fact, we need such heuristics to inspire and guide our
thinking. It's like the great age of exploration: the early explorers
sometimes explored (and made new discoveries) on the basis of
beliefs which were wrong in important ways. Later, those mistakes
were corrected as we filled in our knowledge of geography. When
you understand something poorly - as the explorers understood
geography, and as we understand neural nets today - it's more
important to explore boldly than it is to be rigorously correct in
every step of your thinking. And so you should view these stories as
a useful guide to how to think about neural nets, while retaining a
healthy awareness of the limitations of such stories, and carefully
keeping track of just how strong the evidence is for any given line of
reasoning. Put another way, we need good stories to help motivate

*From ImageNet Classification with Deep
Convolutional Neural Networks by Alex
Krizhevsky, Ilya Sutskever, and Geoffrey Hinton
(2012).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap3.html 92/92

and inspire us, and rigorous in-depth investigation in order to
uncover the real facts of the matter.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015 

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016 

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 1/30

One of the most striking facts about neural networks is that they
can compute any function at all. That is, suppose someone hands
you some complicated, wiggly function, :

No matter what the function, there is guaranteed to be a neural
network so that for every possible input, , the value  (or some
close approximation) is output from the network, e.g.:

This result holds even if the function has many inputs, 
, and many outputs. For instance, here's a network

computing a function with  inputs and  outputs:

CHAPTER 4

A visual proof that neural nets can compute any function

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 2/30

This result tells us that neural networks have a kind of universality.
No matter what function we want to compute, we know that there is
a neural network which can do the job.

What's more, this universality theorem holds even if we restrict our
networks to have just a single layer intermediate between the input
and the output neurons - a so-called single hidden layer. So even
very simple network architectures can be extremely powerful.

The universality theorem is well known by people who use neural
networks. But why it's true is not so widely understood. Most of the
explanations available are quite technical. For instance, one of the
original papers proving the result* did so using the Hahn-Banach
theorem, the Riesz Representation theorem, and some Fourier
analysis. If you're a mathematician the argument is not difficult to
follow, but it's not so easy for most people. That's a pity, since the
underlying reasons for universality are simple and beautiful.

In this chapter I give a simple and mostly visual explanation of the
universality theorem. We'll go step by step through the underlying
ideas. You'll understand why it's true that neural networks can
compute any function. You'll understand some of the limitations of
the result. And you'll understand how the result relates to deep
neural networks.

To follow the material in the chapter, you do not need to have read
earlier chapters in this book. Instead, the chapter is structured to be
enjoyable as a self-contained essay. Provided you have just a little
basic familiarity with neural networks, you should be able to follow

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

*Approximation by superpositions of a sigmoidal
function, by George Cybenko (1989). The result
was very much in the air at the time, and several
groups proved closely related results. Cybenko's
paper contains a useful discussion of much of
that work. Another important early paper is
Multilayer feedforward networks are universal
approximators, by Kurt Hornik, Maxwell
Stinchcombe, and Halbert White (1989). This
paper uses the Stone-Weierstrass theorem to
arrive at similar results.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 3/30

the explanation. I will, however, provide occasional links to earlier
material, to help fill in any gaps in your knowledge.

Universality theorems are a commonplace in computer science, so
much so that we sometimes forget how astonishing they are. But it's
worth reminding ourselves: the ability to compute an arbitrary
function is truly remarkable. Almost any process you can imagine
can be thought of as function computation. Consider the problem of
naming a piece of music based on a short sample of the piece. That
can be thought of as computing a function. Or consider the problem
of translating a Chinese text into English. Again, that can be
thought of as computing a function*. Or consider the problem of
taking an mp4 movie file and generating a description of the plot of
the movie, and a discussion of the quality of the acting. Again, that
can be thought of as a kind of function computation*. Universality
means that, in principle, neural networks can do all these things
and many more.

Of course, just because we know a neural network exists that can
(say) translate Chinese text into English, that doesn't mean we have
good techniques for constructing or even recognizing such a
network. This limitation applies also to traditional universality
theorems for models such as Boolean circuits. But, as we've seen
earlier in the book, neural networks have powerful algorithms for
learning functions. That combination of learning algorithms +
universality is an attractive mix. Up to now, the book has focused
on the learning algorithms. In this chapter, we focus on
universality, and what it means.

Two caveats
Before explaining why the universality theorem is true, I want to
mention two caveats to the informal statement "a neural network
can compute any function".

First, this doesn't mean that a network can be used to exactly
compute any function. Rather, we can get an approximation that is
as good as we want. By increasing the number of hidden neurons
we can improve the approximation. For instance, earlier I
illustrated a network computing some function  using three
hidden neurons. For most functions only a low-quality

*Actually, computing one of many functions,
since there are often many acceptable
translations of a given piece of text.

*Ditto the remark about translation and there
being many possible functions.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 4/30

approximation will be possible using three hidden neurons. By
increasing the number of hidden neurons (say, to five) we can
typically get a better approximation:

And we can do still better by further increasing the number of
hidden neurons.

To make this statement more precise, suppose we're given a
function  which we'd like to compute to within some desired
accuracy . The guarantee is that by using enough hidden
neurons we can always find a neural network whose output 
satisfies , for all inputs . In other words, the
approximation will be good to within the desired accuracy for every
possible input.

The second caveat is that the class of functions which can be
approximated in the way described are the continuous functions. If
a function is discontinuous, i.e., makes sudden, sharp jumps, then it
won't in general be possible to approximate using a neural net. This
is not surprising, since our neural networks compute continuous
functions of their input. However, even if the function we'd really
like to compute is discontinuous, it's often the case that a
continuous approximation is good enough. If that's so, then we can
use a neural network. In practice, this is not usually an important
limitation.

Summing up, a more precise statement of the universality theorem
is that neural networks with a single hidden layer can be used to
approximate any continuous function to any desired precision. In

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 5/30

this chapter we'll actually prove a slightly weaker version of this
result, using two hidden layers instead of one. In the problems I'll
briefly outline how the explanation can, with a few tweaks, be
adapted to give a proof which uses only a single hidden layer.

Universality with one input and one
output
To understand why the universality theorem is true, let's start by
understanding how to construct a neural network which
approximates a function with just one input and one output:

It turns out that this is the core of the problem of universality. Once
we've understood this special case it's actually pretty easy to extend
to functions with many inputs and many outputs.

To build insight into how to construct a network to compute , let's
start with a network containing just a single hidden layer, with two
hidden neurons, and an output layer containing a single output
neuron:

To get a feel for how components in the network work, let's focus on
the top hidden neuron. In the diagram below, click on the weight, 

, and drag the mouse a little ways to the right to increase . You

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 6/30

can immediately see how the function computed by the top hidden
neuron changes:

As we learnt earlier in the book, what's being computed by the
hidden neuron is , where  is the sigmoid
function. Up to now, we've made frequent use of this algebraic
form. But for the proof of universality we will obtain more insight
by ignoring the algebra entirely, and instead manipulating and
observing the shape shown in the graph. This won't just give us a
better feel for what's going on, it will also give us a proof* of
universality that applies to activation functions other than the
sigmoid function.

To get started on this proof, try clicking on the bias, , in the
diagram above, and dragging to the right to increase it. You'll see
that as the bias increases the graph moves to the left, but its shape
doesn't change.

Next, click and drag to the left in order to decrease the bias. You'll
see that as the bias decreases the graph moves to the right, but,
again, its shape doesn't change.

Next, decrease the weight to around  or . You'll see that as you
decrease the weight, the curve broadens out. You might need to
change the bias as well, in order to keep the curve in-frame.

Finally, increase the weight up past . As you do, the curve
gets steeper, until eventually it begins to look like a step function.
Try to adjust the bias so the step occurs near . The following
short clip shows what your result should look like. Click on the play
button to play (or replay) the video:

*Strictly speaking, the visual approach I'm
taking isn't what's traditionally thought of as a
proof. But I believe the visual approach gives
more insight into why the result is true than a
traditional proof. And, of course, that kind of
insight is the real purpose behind a proof.
Occasionally, there will be small gaps in the
reasoning I present: places where I make a visual
argument that is plausible, but not quite
rigorous. If this bothers you, then consider it a
challenge to fill in the missing steps. But don't
lose sight of the real purpose: to understand why
the universality theorem is true.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 7/30

We can simplify our analysis quite a bit by increasing the weight so
much that the output really is a step function, to a very good
approximation. Below I've plotted the output from the top hidden
neuron when the weight is . Note that this plot is static, and
you can't change parameters such as the weight.

It's actually quite a bit easier to work with step functions than
general sigmoid functions. The reason is that in the output layer we
add up contributions from all the hidden neurons. It's easy to
analyze the sum of a bunch of step functions, but rather more
difficult to reason about what happens when you add up a bunch of
sigmoid shaped curves. And so it makes things much easier to
assume that our hidden neurons are outputting step functions.
More concretely, we do this by fixing the weight  to be some very
large value, and then setting the position of the step by modifying
the bias. Of course, treating the output as a step function is an
approximation, but it's a very good approximation, and for now
we'll treat it as exact. I'll come back later to discuss the impact of
deviations from this approximation.

At what value of  does the step occur? Put another way, how does
the position of the step depend upon the weight and bias?

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 8/30

To answer this question, try modifying the weight and bias in the
diagram above (you may need to scroll back a bit). Can you figure
out how the position of the step depends on  and ? With a little
work you should be able to convince yourself that the position of the
step is proportional to , and inversely proportional to .

In fact, the step is at position , as you can see by modifying
the weight and bias in the following diagram:

It will greatly simplify our lives to describe hidden neurons using
just a single parameter, , which is the step position, . Try
modifying  in the following diagram, in order to get used to the
new parameterization:

As noted above, we've implicitly set the weight  on the input to be
some large value - big enough that the step function is a very good
approximation. We can easily convert a neuron parameterized in
this way back into the conventional model, by choosing the bias 

.

Up to now we've been focusing on the output from just the top
hidden neuron. Let's take a look at the behavior of the entire
network. In particular, we'll suppose the hidden neurons are

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 9/30

computing step functions parameterized by step points  (top
neuron) and  (bottom neuron). And they'll have respective output
weights  and . Here's the network:

What's being plotted on the right is the weighted output 
from the hidden layer. Here,  and  are the outputs from the top
and bottom hidden neurons, respectively*. These outputs are
denoted with s because they're often known as the neurons'
activations.

Try increasing and decreasing the step point  of the top hidden
neuron. Get a feel for how this changes the weighted output from
the hidden layer. It's particularly worth understanding what
happens when  goes past . You'll see that the graph changes
shape when this happens, since we have moved from a situation
where the top hidden neuron is the first to be activated to a
situation where the bottom hidden neuron is the first to be
activated.

Similarly, try manipulating the step point  of the bottom hidden
neuron, and get a feel for how this changes the combined output
from the hidden neurons.

Try increasing and decreasing each of the output weights. Notice
how this rescales the contribution from the respective hidden
neurons. What happens when one of the weights is zero?

Finally, try setting  to be  and  to be . You get a "bump"
function, which starts at point , ends at point , and has height 

. For instance, the weighted output might look like this:

*Note, by the way, that the output from the
whole network is , where  is
the bias on the output neuron. Obviously, this
isn't the same as the weighted output from the
hidden layer, which is what we're plotting here.
We're going to focus on the weighted output
from the hidden layer right now, and only later
will we think about how that relates to the
output from the whole network.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 10/30

Of course, we can rescale the bump to have any height at all. Let's
use a single parameter, , to denote the height. To reduce clutter I'll
also remove the " " and " " notations.

Try changing the value of  up and down, to see how the height of
the bump changes. Try changing the height so it's negative, and
observe what happens. And try changing the step points to see how
that changes the shape of the bump.

You'll notice, by the way, that we're using our neurons in a way that
can be thought of not just in graphical terms, but in more
conventional programming terms, as a kind of if-then-else
statement, e.g.:

    if input >= step point:
        add 1 to the weighted output

    else:
        add 0 to the weighted output

For the most part I'm going to stick with the graphical point of view.
But in what follows you may sometimes find it helpful to switch
points of view, and think about things in terms of if-then-else.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 11/30

We can use our bump-making trick to get two bumps, by gluing two
pairs of hidden neurons together into the same network:

I've suppressed the weights here, simply writing the  values for
each pair of hidden neurons. Try increasing and decreasing both 
values, and observe how it changes the graph. Move the bumps
around by changing the step points.

More generally, we can use this idea to get as many peaks as we
want, of any height. In particular, we can divide the interval 
up into a large number, , of subintervals, and use  pairs of
hidden neurons to set up peaks of any desired height. Let's see how
this works for . That's quite a few neurons, so I'm going to
pack things in a bit. Apologies for the complexity of the diagram: I
could hide the complexity by abstracting away further, but I think
it's worth putting up with a little complexity, for the sake of getting
a more concrete feel for how these networks work.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 12/30

You can see that there are five pairs of hidden neurons. The step
points for the respective pairs of neurons are , then ,
and so on, out to . These values are fixed - they make it so we
get five evenly spaced bumps on the graph.

Each pair of neurons has a value of  associated to it. Remember,
the connections output from the neurons have weights  and 
(not marked). Click on one of the  values, and drag the mouse to
the right or left to change the value. As you do so, watch the
function change. By changing the output weights we're actually
designing the function!

Contrariwise, try clicking on the graph, and dragging up or down to
change the height of any of the bump functions. As you change the
heights, you can see the corresponding change in  values. And,
although it's not shown, there is also a change in the corresponding
output weights, which are  and .

In other words, we can directly manipulate the function appearing
in the graph on the right, and see that reflected in the  values on
the left. A fun thing to do is to hold the mouse button down and
drag the mouse from one side of the graph to the other. As you do

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 13/30

this you draw out a function, and get to watch the parameters in the
neural network adapt.

Time for a challenge.

Let's think back to the function I plotted at the beginning of the
chapter:

I didn't say it at the time, but what I plotted is actually the function

plotted over  from  to , and with the  axis taking values from  to
.

That's obviously not a trivial function.

You're going to figure out how to compute it using a neural
network.

In our networks above we've been analyzing the weighted
combination  output from the hidden neurons. We now
know how to get a lot of control over this quantity. But, as I noted
earlier, this quantity is not what's output from the network. What's
output from the network is  where  is the bias on the
output neuron. Is there some way we can achieve control over the
actual output from the network?

The solution is to design a neural network whose hidden layer has a
weighted output given by , where  is just the inverse of
the  function. That is, we want the weighted output from the
hidden layer to be:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 14/30

If we can do this, then the output from the network as a whole will
be a good approximation to *.

Your challenge, then, is to design a neural network to approximate
the goal function shown just above. To learn as much as possible, I
want you to solve the problem twice. The first time, please click on
the graph, directly adjusting the heights of the different bump
functions. You should find it fairly easy to get a good match to the
goal function. How well you're doing is measured by the average
deviation between the goal function and the function the network is
actually computing. Your challenge is to drive the average deviation
as low as possible. You complete the challenge when you drive the
average deviation to  or below.

Once you've done that, click on "Reset" to randomly re-initialize the
bumps. The second time you solve the problem, resist the urge to
click on the graph. Instead, modify the  values on the left-hand
side, and again attempt to drive the average deviation to  or
below.

*Note that I have set the bias on the output
neuron to .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 15/30

You've now figured out all the elements necessary for the network
to approximately compute the function ! It's only a coarse
approximation, but we could easily do much better, merely by
increasing the number of pairs of hidden neurons, allowing more
bumps.

In particular, it's easy to convert all the data we have found back
into the standard parameterization used for neural networks. Let
me just recap quickly how that works.

The first layer of weights all have some large, constant value, say 
.

The biases on the hidden neurons are just . So, for instance,
for the second hidden neuron  becomes 

.

The final layer of weights are determined by the  values. So, for
instance, the value you've chosen above for the first ,  ,

means that the output weights from the top two hidden neurons are
 and , respectively. And so on, for the entire layer of output

weights.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 16/30

Finally, the bias on the output neuron is .

That's everything: we now have a complete description of a neural
network which does a pretty good job computing our original goal
function. And we understand how to improve the quality of the
approximation by improving the number of hidden neurons.

What's more, there was nothing special about our original goal
function, . We could
have used this procedure for any continuous function from  to 

. In essence, we're using our single-layer neural networks to
build a lookup table for the function. And we'll be able to build on
this idea to provide a general proof of universality.

Many input variables
Let's extend our results to the case of many input variables. This
sounds complicated, but all the ideas we need can be understood in
the case of just two inputs. So let's address the two-input case.

We'll start by considering what happens when we have two inputs
to a neuron:

Here, we have inputs  and , with corresponding weights  and 
, and a bias  on the neuron. Let's set the weight  to , and then

play around with the first weight, , and the bias, , to see how
they affect the output from the neuron:

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 17/30

As you can see, with  the input  makes no difference to the
output from the neuron. It's as though  is the only input.

Given this, what do you think happens when we increase the weight 
 to , with  remaining ? If you don't immediately see

the answer, ponder the question for a bit, and see if you can figure
out what happens. Then try it out and see if you're right. I've shown
what happens in the following movie:

Just as in our earlier discussion, as the input weight gets larger the
output approaches a step function. The difference is that now the
step function is in three dimensions. Also as before, we can move
the location of the step point around by modifying the bias. The
actual location of the step point is .

Let's redo the above using the position of the step as the parameter:

Here, we assume the weight on the  input has some large value -
I've used  - and the weight . The number on the
neuron is the step point, and the little  above the number reminds
us that the step is in the  direction. Of course, it's also possible to
get a step function in the  direction, by making the weight on the 
input very large (say, ), and the weight on the  equal to ,
i.e., :

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 18/30

The number on the neuron is again the step point, and in this case
the little  above the number reminds us that the step is in the 
direction. I could have explicitly marked the weights on the  and 
inputs, but decided not to, since it would make the diagram rather
cluttered. But do keep in mind that the little  marker implicitly
tells us that the  weight is large, and the  weight is .

We can use the step functions we've just constructed to compute a
three-dimensional bump function. To do this, we use two neurons,
each computing a step function in the  direction. Then we combine
those step functions with weight  and , respectively, where  is
the desired height of the bump. It's all illustrated in the following
diagram:

Try changing the value of the height, . Observe how it relates to the
weights in the network. And see how it changes the height of the
bump function on the right.

Also, try changing the step point  associated to the top hidden
neuron. Witness how it changes the shape of the bump. What
happens when you move it past the step point  associated to the
bottom hidden neuron?

We've figured out how to make a bump function in the  direction.
Of course, we can easily make a bump function in the  direction, by
using two step functions in the  direction. Recall that we do this by

=

=

Output

=

=

Weighted output from hidden layer

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 19/30

making the weight large on the  input, and the weight  on the 
input. Here's the result:

This looks nearly identical to the earlier network! The only thing
explicitly shown as changing is that there's now little  markers on
our hidden neurons. That reminds us that they're producing  step
functions, not  step functions, and so the weight is very large on
the  input, and zero on the  input, not vice versa. As before, I
decided not to show this explicitly, in order to avoid clutter.

Let's consider what happens when we add up two bump functions,
one in the  direction, the other in the  direction, both of height :

To simplify the diagram I've dropped the connections with zero
weight. For now, I've left in the little  and  markers on the hidden
neurons, to remind you in what directions the bump functions are
being computed. We'll drop even those markers later, since they're
implied by the input variable.

Try varying the parameter . As you can see, this causes the output
weights to change, and also the heights of both the  and  bump
functions.

What we've built looks a little like a tower function:

=

=

Weighted output from hidden layer

=

=

Weighted output from hidden layer

Tower function

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 20/30

If we could build such tower functions, then we could use them to
approximate arbitrary functions, just by adding up many towers of
different heights, and in different locations:

Of course, we haven't yet figured out how to build a tower function.
What we have constructed looks like a central tower, of height ,
with a surrounding plateau, of height .

But we can make a tower function. Remember that earlier we saw
neurons can be used to implement a type of if-then-else
statement:

    if input >= threshold: 
        output 1

    else:
        output 0

That was for a neuron with just a single input. What we want is to
apply a similar idea to the combined output from the hidden
neurons:

    if combined output from hidden neurons >= threshold:
        output 1

    else:
        output 0

If we choose the threshold appropriately - say, a value of ,
which is sandwiched between the height of the plateau and the
height of the central tower - we could squash the plateau down to
zero, and leave just the tower standing.

Can you see how to do this? Try experimenting with the following
network to figure it out. Note that we're now plotting the output

=

=

=

=

Many towers

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 21/30

from the entire network, not just the weighted output from the
hidden layer. This means we add a bias term to the weighted output
from the hidden layer, and apply the sigma function. Can you find
values for  and  which produce a tower? This is a bit tricky, so if
you think about this for a while and remain stuck, here's two hints:
(1) To get the output neuron to show the right kind of if-then-else
behaviour, we need the input weights (all  or ) to be large; and
(2) the value of  determines the scale of the if-then-else
threshold.

With our initial parameters, the output looks like a flattened
version of the earlier diagram, with its tower and plateau. To get the
desired behaviour, we increase the parameter  until it becomes
large. That gives the if-then-else thresholding behaviour. Second,
to get the threshold right, we'll choose . Try it, and see
how it works!

Here's what it looks like, when we use :

Even for this relatively modest value of , we get a pretty good tower
function. And, of course, we can make it as good as we want by
increasing  still further, and keeping the bias as .

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 22/30

Let's try gluing two such networks together, in order to compute
two different tower functions. To make the respective roles of the
two sub-networks clear I've put them in separate boxes, below: each
box computes a tower function, using the technique described
above. The graph on the right shows the weighted output from the
second hidden layer, that is, it's a weighted combination of tower
functions.

In particular, you can see that by modifying the weights in the final
layer you can change the height of the output towers.

The same idea can be used to compute as many towers as we like.
We can also make them as thin as we like, and whatever height we
like. As a result, we can ensure that the weighted output from the
second hidden layer approximates any desired function of two
variables:

=

=

Weighted output

=

=

Many towers

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 23/30

In particular, by making the weighted output from the second
hidden layer a good approximation to , we ensure the output
from our network will be a good approximation to any desired
function, .

What about functions of more than two variables?

Let's try three variables . The following network can be used
to compute a tower function in four dimensions:

Here, the  denote inputs to the network. The  and so on
are step points for neurons - that is, all the weights in the first layer
are large, and the biases are set to give the step points .
The weights in the second layer alternate , where  is some
very large number. And the output bias is .

This network computes a function which is  provided three
conditions are met:  is between  and ;  is between  and ;
and  is between  and . The network is  everywhere else. That
is, it's a kind of tower which is  in a little region of input space, and 

 everywhere else.

By gluing together many such networks we can get as many towers
as we want, and so approximate an arbitrary function of three
variables. Exactly the same idea works in  dimensions. The only
change needed is to make the output bias , in order to
get the right kind of sandwiching behavior to level the plateau.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 24/30

Okay, so we now know how to use neural networks to approximate
a real-valued function of many variables. What about vector-valued
functions ? Of course, such a function can be
regarded as just  separate real-valued functions, 

, and so on. So we create a network
approximating , another network for , and so on. And then we
simply glue all the networks together. So that's also easy to cope
with.

Problem

We've seen how to use networks with two hidden layers to
approximate an arbitrary function. Can you find a proof
showing that it's possible with just a single hidden layer? As a
hint, try working in the case of just two input variables, and
showing that: (a) it's possible to get step functions not just in
the  or  directions, but in an arbitrary direction; (b) by adding
up many of the constructions from part (a) it's possible to
approximate a tower function which is circular in shape, rather
than rectangular; (c) using these circular towers, it's possible to
approximate an arbitrary function. To do part (c) it may help to
use ideas from a bit later in this chapter.

Extension beyond sigmoid neurons
We've proved that networks made up of sigmoid neurons can
compute any function. Recall that in a sigmoid neuron the inputs 

 result in the output , where  are the
weights,  is the bias, and  is the sigmoid function:

What if we consider a different type of neuron, one using some
other activation function, :

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 25/30

That is, we'll assume that if our neurons has inputs ,
weights  and bias , then the output is .

We can use this activation function to get a step function, just as we
did with the sigmoid. Try ramping up the weight in the following,
say to :

Just as with the sigmoid, this causes the activation function to
contract, and ultimately it becomes a very good approximation to a
step function. Try changing the bias, and you'll see that we can set
the position of the step to be wherever we choose. And so we can
use all the same tricks as before to compute any desired function.

What properties does  need to satisfy in order for this to work?
We do need to assume that  is well-defined as  and 

. These two limits are the two values taken on by our step
function. We also need to assume that these limits are different
from one another. If they weren't, there'd be no step, simply a flat
graph! But provided the activation function  satisfies these
properties, neurons based on such an activation function are
universal for computation.

Problems

Earlier in the book we met another type of neuron known as a
rectified linear unit. Explain why such neurons don't satisfy the
conditions just given for universality. Find a proof of

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 26/30

universality showing that rectified linear units are universal for
computation.

Suppose we consider linear neurons, i.e., neurons with the
activation function . Explain why linear neurons don't
satisfy the conditions just given for universality. Show that
such neurons can't be used to do universal computation.

Fixing up the step functions
Up to now, we've been assuming that our neurons can produce step
functions exactly. That's a pretty good approximation, but it is only
an approximation. In fact, there will be a narrow window of failure,
illustrated in the following graph, in which the function behaves
very differently from a step function:

In these windows of failure the explanation I've given for
universality will fail.

Now, it's not a terrible failure. By making the weights input to the
neurons big enough we can make these windows of failure as small
as we like. Certainly, we can make the window much narrower than
I've shown above - narrower, indeed, than our eye could see. So
perhaps we might not worry too much about this problem.

Nonetheless, it'd be nice to have some way of addressing the
problem.

In fact, the problem turns out to be easy to fix. Let's look at the fix
for neural networks computing functions with just one input and
one output. The same ideas work also to address the problem when
there are more inputs and outputs.

In particular, suppose we want our network to compute some
function, . As before, we do this by trying to design our network so

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 27/30

that the weighted output from our hidden layer of neurons is 
:

If we were to do this using the technique described earlier, we'd use
the hidden neurons to produce a sequence of bump functions:

Again, I've exaggerated the size of the windows of failure, in order
to make them easier to see. It should be pretty clear that if we add
all these bump functions up we'll end up with a reasonable
approximation to , except within the windows of failure.

Suppose that instead of using the approximation just described, we
use a set of hidden neurons to compute an approximation to half
our original goal function, i.e., to . Of course, this looks
just like a scaled down version of the last graph:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 28/30

And suppose we use another set of hidden neurons to compute an
approximation to , but with the bases of the bumps
shifted by half the width of a bump:

Now we have two different approximations to . If we add
up the two approximations we'll get an overall approximation to 

. That overall approximation will still have failures in small
windows. But the problem will be much less than before. The
reason is that points in a failure window for one approximation
won't be in a failure window for the other. And so the
approximation will be a factor roughly  better in those windows.

We could do even better by adding up a large number, , of
overlapping approximations to the function . Provided
the windows of failure are narrow enough, a point will only ever be
in one window of failure. And provided we're using a large enough
number  of overlapping approximations, the result will be an
excellent overall approximation.

Conclusion

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 29/30

The explanation for universality we've discussed is certainly not a
practical prescription for how to compute using neural networks! In
this, it's much like proofs of universality for NAND gates and the like.
For this reason, I've focused mostly on trying to make the
construction clear and easy to follow, and not on optimizing the
details of the construction. However, you may find it a fun and
instructive exercise to see if you can improve the construction.

Although the result isn't directly useful in constructing networks,
it's important because it takes off the table the question of whether
any particular function is computable using a neural network. The
answer to that question is always "yes". So the right question to ask
is not whether any particular function is computable, but rather
what's a good way to compute the function.

The universality construction we've developed uses just two hidden
layers to compute an arbitrary function. Furthermore, as we've
discussed, it's possible to get the same result with just a single
hidden layer. Given this, you might wonder why we would ever be
interested in deep networks, i.e., networks with many hidden
layers. Can't we simply replace those networks with shallow, single
hidden layer networks?

While in principle that's possible, there are good practical reasons
to use deep networks. As argued in Chapter 1, deep networks have a
hierarchical structure which makes them particularly well adapted
to learn the hierarchies of knowledge that seem to be useful in
solving real-world problems. Put more concretely, when attacking
problems such as image recognition, it helps to use a system that
understands not just individual pixels, but also increasingly more
complex concepts: from edges to simple geometric shapes, all the
way up through complex, multi-object scenes. In later chapters,
we'll see evidence suggesting that deep networks do a better job
than shallow networks at learning such hierarchies of knowledge.
To sum up: universality tells us that neural networks can compute
any function; and empirical evidence suggests that deep networks
are the networks best adapted to learn the functions useful in
solving many real-world problems.

.

Chapter acknowledgments: Thanks to Jen
Dodd and Chris Olah for many discussions about
universality in neural networks. My thanks, in
particular, to Chris for suggesting the use of a
lookup table to prove universality. The
interactive visual form of the chapter is inspired
by the work of people such as Mike Bostock,
Amit Patel, Bret Victor, and Steven Wittens.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning", Last update: Fri Jan 22 14:09:50 2016 

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap4.html 30/30

Determination Press, 2015 

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 1/19

Imagine you're an engineer who has been asked to design a
computer from scratch. One day you're working away in your office,
designing logical circuits, setting out AND gates, OR gates, and so on,

when your boss walks in with bad news. The customer has just
added a surprising design requirement: the circuit for the entire
computer must be just two layers deep:

You're dumbfounded, and tell your boss: "The customer is crazy!"

Your boss replies: "I think they're crazy, too. But what the customer
wants, they get."

In fact, there's a limited sense in which the customer isn't crazy.
Suppose you're allowed to use a special logical gate which lets you
AND together as many inputs as you want. And you're also allowed a

many-input NAND gate, that is, a gate which can AND multiple

inputs and then negate the output. With these special gates it turns
out to be possible to compute any function at all using a circuit
that's just two layers deep.

But just because something is possible doesn't make it a good idea.
In practice, when solving circuit design problems (or most any kind
of algorithmic problem), we usually start by figuring out how to
solve sub-problems, and then gradually integrate the solutions. In
other words, we build up to a solution through multiple layers of
abstraction.

CHAPTER 5

Why are deep neural networks hard to train?

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 2/19

For instance, suppose we're designing a logical circuit to multiply
two numbers. Chances are we want to build it up out of sub-circuits
doing operations like adding two numbers. The sub-circuits for
adding two numbers will, in turn, be built up out of sub-sub-circuits
for adding two bits. Very roughly speaking our circuit will look like:

That is, our final circuit contains at least three layers of circuit
elements. In fact, it'll probably contain more than three layers, as
we break the sub-tasks down into smaller units than I've described.
But you get the general idea.

So deep circuits make the process of design easier. But they're not
just helpful for design. There are, in fact, mathematical proofs
showing that for some functions very shallow circuits require
exponentially more circuit elements to compute than do deep
circuits. For instance, a famous series of papers in the early 1980s*
showed that computing the parity of a set of bits requires
exponentially many gates, if done with a shallow circuit. On the
other hand, if you use deeper circuits it's easy to compute the parity
using a small circuit: you just compute the parity of pairs of bits,
then use those results to compute the parity of pairs of pairs of bits,
and so on, building up quickly to the overall parity. Deep circuits
thus can be intrinsically much more powerful than shallow circuits.

Up to now, this book has approached neural networks like the crazy
customer. Almost all the networks we've worked with have just a
single hidden layer of neurons (plus the input and output layers):

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

*The history is somewhat complex, so I won't
give detailed references. See Johan Håstad's
2012 paper On the correlation of parity and
small-depth circuits for an account of the early
history and references.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 3/19

These simple networks have been remarkably useful: in earlier
chapters we used networks like this to classify handwritten digits
with better than 98 percent accuracy! Nonetheless, intuitively we'd
expect networks with many more hidden layers to be more
powerful:

Such networks could use the intermediate layers to build up
multiple layers of abstraction, just as we do in Boolean circuits. For
instance, if we're doing visual pattern recognition, then the neurons
in the first layer might learn to recognize edges, the neurons in the
second layer could learn to recognize more complex shapes, say
triangle or rectangles, built up from edges. The third layer would
then recognize still more complex shapes. And so on. These
multiple layers of abstraction seem likely to give deep networks a
compelling advantage in learning to solve complex pattern
recognition problems. Moreover, just as in the case of circuits, there
are theoretical results suggesting that deep networks are
intrinsically more powerful than shallow networks*.

How can we train such deep networks? In this chapter, we'll try
training deep networks using our workhorse learning algorithm -
stochastic gradient descent by backpropagation. But we'll run into

*For certain problems and network architectures
this is proved in On the number of response
regions of deep feed forward networks with
piece-wise linear activations, by Razvan
Pascanu, Guido Montúfar, and Yoshua Bengio
(2014). See also the more informal discussion in
section 2 of Learning deep architectures for AI,
by Yoshua Bengio (2009).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 4/19

trouble, with our deep networks not performing much (if at all)
better than shallow networks.

That failure seems surprising in the light of the discussion above.
Rather than give up on deep networks, we'll dig down and try to
understand what's making our deep networks hard to train. When
we look closely, we'll discover that the different layers in our deep
network are learning at vastly different speeds. In particular, when
later layers in the network are learning well, early layers often get
stuck during training, learning almost nothing at all. This stuckness
isn't simply due to bad luck. Rather, we'll discover there are
fundamental reasons the learning slowdown occurs, connected to
our use of gradient-based learning techniques.

As we delve into the problem more deeply, we'll learn that the
opposite phenomenon can also occur: the early layers may be
learning well, but later layers can become stuck. In fact, we'll find
that there's an intrinsic instability associated to learning by
gradient descent in deep, many-layer neural networks. This
instability tends to result in either the early or the later layers
getting stuck during training.

This all sounds like bad news. But by delving into these difficulties,
we can begin to gain insight into what's required to train deep
networks effectively. And so these investigations are good
preparation for the next chapter, where we'll use deep learning to
attack image recognition problems.

The vanishing gradient problem
So, what goes wrong when we try to train a deep network?

To answer that question, let's first revisit the case of a network with
just a single hidden layer. As per usual, we'll use the MNIST digit
classification problem as our playground for learning and
experimentation*.

If you wish, you can follow along by training networks on your
computer. It is also, of course, fine to just read along. If you do wish
to follow live, then you'll need Python 2.7, Numpy, and a copy of the
code, which you can get by cloning the relevant repository from the
command line:

*I introduced the MNIST problem and data here
and here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 5/19

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git

If you don't use git then you can download the data and code here.
You'll need to change into the src subdirectory.

Then, from a Python shell we load the MNIST data:

>>> import mnist_loader
>>> training_data, validation_data, test_data = \

... mnist_loader.load_data_wrapper()

We set up our network:

>>> import network2
>>> net = network2.Network([784, 30, 10])

This network has 784 neurons in the input layer, corresponding to
the  pixels in the input image. We use 30 hidden
neurons, as well as 10 output neurons, corresponding to the 10
possible classifications for the MNIST digits ('0', '1', '2', , '9').

Let's try training our network for 30 complete epochs, using mini-
batches of 10 training examples at a time, a learning rate ,
and regularization parameter . As we train we'll monitor the
classification accuracy on the validation_data*:

>>> net.SGD(training_data, 30, 10, 0.1, lmbda=5.0, 

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

We get a classification accuracy of 96.48 percent (or thereabouts -
it'll vary a bit from run to run), comparable to our earlier results
with a similar configuration.

Now, let's add another hidden layer, also with 30 neurons in it, and
try training with the same hyper-parameters:

>>> net = network2.Network([784, 30, 30, 10])

>>> net.SGD(training_data, 30, 10, 0.1, lmbda=5.0, 

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

This gives an improved classification accuracy, 96.90 percent.
That's encouraging: a little more depth is helping. Let's add another
30-neuron hidden layer:

>>> net = network2.Network([784, 30, 30, 30, 10])

>>> net.SGD(training_data, 30, 10, 0.1, lmbda=5.0, 

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

That doesn't help at all. In fact, the result drops back down to 96.57
percent, close to our original shallow network. And suppose we
insert one further hidden layer:

*Note that the networks is likely to take some
minutes to train, depending on the speed of your
machine. So if you're running the code you may
wish to continue reading and return later, not
wait for the code to finish executing.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 6/19

>>> net = network2.Network([784, 30, 30, 30, 30, 10])

>>> net.SGD(training_data, 30, 10, 0.1, lmbda=5.0, 

... evaluation_data=validation_data, monitor_evaluation_accuracy=True)

The classification accuracy drops again, to 96.53 percent. That's
probably not a statistically significant drop, but it's not
encouraging, either.

This behaviour seems strange. Intuitively, extra hidden layers ought
to make the network able to learn more complex classification
functions, and thus do a better job classifying. Certainly, things
shouldn't get worse, since the extra layers can, in the worst case,
simply do nothing*. But that's not what's going on.

So what is going on? Let's assume that the extra hidden layers really
could help in principle, and the problem is that our learning
algorithm isn't finding the right weights and biases. We'd like to
figure out what's going wrong in our learning algorithm, and how to
do better.

To get some insight into what's going wrong, let's visualize how the
network learns. Below, I've plotted part of a 
network, i.e., a network with two hidden layers, each containing 
hidden neurons. Each neuron in the diagram has a little bar on it,
representing how quickly that neuron is changing as the network
learns. A big bar means the neuron's weights and bias are changing
rapidly, while a small bar means the weights and bias are changing
slowly. More precisely, the bars denote the gradient  for each
neuron, i.e., the rate of change of the cost with respect to the
neuron's bias. Back in Chapter 2 we saw that this gradient quantity
controlled not just how rapidly the bias changes during learning,
but also how rapidly the weights input to the neuron change, too.
Don't worry if you don't recall the details: the thing to keep in mind
is simply that these bars show how quickly each neuron's weights
and bias are changing as the network learns.

To keep the diagram simple, I've shown just the top six neurons in
the two hidden layers. I've omitted the input neurons, since they've
got no weights or biases to learn. I've also omitted the output
neurons, since we're doing layer-wise comparisons, and it makes
most sense to compare layers with the same number of neurons.
The results are plotted at the very beginning of training, i.e.,
immediately after the network is initialized. Here they are*:

*See this later problem to understand how to
build a hidden layer that does nothing.

*The data plotted is generated using the program
generate_gradient.py. The same program is also

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 7/19

The network was initialized randomly, and so it's not surprising
that there's a lot of variation in how rapidly the neurons learn. Still,
one thing that jumps out is that the bars in the second hidden layer
are mostly much larger than the bars in the first hidden layer. As a
result, the neurons in the second hidden layer will learn quite a bit
faster than the neurons in the first hidden layer. Is this merely a
coincidence, or are the neurons in the second hidden layer likely to
learn faster than neurons in the first hidden layer in general?

To determine whether this is the case, it helps to have a global way
of comparing the speed of learning in the first and second hidden
layers. To do this, let's denote the gradient as , i.e., the
gradient for the th neuron in the th layer*. We can think of the
gradient  as a vector whose entries determine how quickly the
first hidden layer learns, and  as a vector whose entries determine
how quickly the second hidden layer learns. We'll then use the
lengths of these vectors as (rough!) global measures of the speed at
which the layers are learning. So, for instance, the length 
measures the speed at which the first hidden layer is learning, while
the length  measures the speed at which the second hidden
layer is learning.

used to generate the results quoted later in this
section.

*Back in Chapter 2 we referred to this as the
error, but here we'll adopt the informal term
"gradient". I say "informal" because of course
this doesn't explicitly include the partial
derivatives of the cost with respect to the
weights, .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 8/19

With these definitions, and in the same configuration as was plotted
above, we find  and . So this confirms
our earlier suspicion: the neurons in the second hidden layer really
are learning much faster than the neurons in the first hidden layer.

What happens if we add more hidden layers? If we have three
hidden layers, in a  network, then the respective
speeds of learning turn out to be 0.012, 0.060, and 0.283. Again,
earlier hidden layers are learning much slower than later hidden
layers. Suppose we add yet another layer with  hidden neurons.
In that case, the respective speeds of learning are 0.003, 0.017,
0.070, and 0.285. The pattern holds: early layers learn slower than
later layers.

We've been looking at the speed of learning at the start of training,
that is, just after the networks are initialized. How does the speed of
learning change as we train our networks? Let's return to look at the
network with just two hidden layers. The speed of learning changes
as follows:

To generate these results, I used batch gradient descent with just
1,000 training images, trained over 500 epochs. This is a bit
different than the way we usually train - I've used no mini-batches,
and just 1,000 training images, rather than the full 50,000 image
training set. I'm not trying to do anything sneaky, or pull the wool
over your eyes, but it turns out that using mini-batch stochastic
gradient descent gives much noisier (albeit very similar, when you
average away the noise) results. Using the parameters I've chosen is

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 9/19

an easy way of smoothing the results out, so we can see what's going
on.

In any case, as you can see the two layers start out learning at very
different speeds (as we already know). The speed in both layers
then drops very quickly, before rebounding. But through it all, the
first hidden layer learns much more slowly than the second hidden
layer.

What about more complex networks? Here's the results of a similar
experiment, but this time with three hidden layers (a 

 network):

Again, early hidden layers learn much more slowly than later
hidden layers. Finally, let's add a fourth hidden layer (a 

 network), and see what happens when we
train:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 10/19

Again, early hidden layers learn much more slowly than later
hidden layers. In this case, the first hidden layer is learning roughly
100 times slower than the final hidden layer. No wonder we were
having trouble training these networks earlier!

We have here an important observation: in at least some deep
neural networks, the gradient tends to get smaller as we move
backward through the hidden layers. This means that neurons in
the earlier layers learn much more slowly than neurons in later
layers. And while we've seen this in just a single network, there are
fundamental reasons why this happens in many neural networks.
The phenomenon is known as the vanishing gradient problem*.

Why does the vanishing gradient problem occur? Are there ways we
can avoid it? And how should we deal with it in training deep neural
networks? In fact, we'll learn shortly that it's not inevitable,
although the alternative is not very attractive, either: sometimes the
gradient gets much larger in earlier layers! This is the exploding
gradient problem, and it's not much better news than the vanishing
gradient problem. More generally, it turns out that the gradient in
deep neural networks is unstable, tending to either explode or
vanish in earlier layers. This instability is a fundamental problem
for gradient-based learning in deep neural networks. It's something
we need to understand, and, if possible, take steps to address.

One response to vanishing (or unstable) gradients is to wonder if
they're really such a problem. Momentarily stepping away from
neural nets, imagine we were trying to numerically minimize a
function  of a single variable. Wouldn't it be good news if the
derivative  was small? Wouldn't that mean we were already
near an extremum? In a similar way, might the small gradient in
early layers of a deep network mean that we don't need to do much
adjustment of the weights and biases?

Of course, this isn't the case. Recall that we randomly initialized the
weight and biases in the network. It is extremely unlikely our initial
weights and biases will do a good job at whatever it is we want our
network to do. To be concrete, consider the first layer of weights in
a  network for the MNIST problem. The random
initialization means the first layer throws away most information
about the input image. Even if later layers have been extensively

*See Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies, by
Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi,
and Jürgen Schmidhuber (2001). This paper
studied recurrent neural nets, but the essential
phenomenon is the same as in the feedforward
networks we are studying. See also Sepp
Hochreiter's earlier Diploma Thesis,
Untersuchungen zu dynamischen neuronalen
Netzen (1991, in German).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 11/19

trained, they will still find it extremely difficult to identify the input
image, simply because they don't have enough information. And so
it can't possibly be the case that not much learning needs to be done
in the first layer. If we're going to train deep networks, we need to
figure out how to address the vanishing gradient problem.

What's causing the vanishing gradient
problem? Unstable gradients in deep
neural nets
To get insight into why the vanishing gradient problem occurs, let's
consider the simplest deep neural network: one with just a single
neuron in each layer. Here's a network with three hidden layers:

Here,  are the weights,  are the biases, and  is
some cost function. Just to remind you how this works, the output 
from the th neuron is , where  is the usual sigmoid activation
function, and  is the weighted input to the neuron.
I've drawn the cost  at the end to emphasize that the cost is a
function of the network's output, : if the actual output from the
network is close to the desired output, then the cost will be low,
while if it's far away, the cost will be high.

We're going to study the gradient  associated to the first
hidden neuron. We'll figure out an expression for , and by
studying that expression we'll understand why the vanishing
gradient problem occurs.

I'll start by simply showing you the expression for . It looks
forbidding, but it's actually got a simple structure, which I'll
describe in a moment. Here's the expression (ignore the network,
for now, and note that  is just the derivative of the  function):

The structure in the expression is as follows: there is a  term in
the product for each neuron in the network; a weight  term for

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 12/19

each weight in the network; and a final  term, corresponding
to the cost function at the end. Notice that I've placed each term in
the expression above the corresponding part of the network. So the
network itself is a mnemonic for the expression.

You're welcome to take this expression for granted, and skip to the
discussion of how it relates to the vanishing gradient problem.
There's no harm in doing this, since the expression is a special case
of our earlier discussion of backpropagation. But there's also a
simple explanation of why the expression is true, and so it's fun
(and perhaps enlightening) to take a look at that explanation.

Imagine we make a small change  in the bias . That will set off
a cascading series of changes in the rest of the network. First, it
causes a change  in the output from the first hidden neuron.
That, in turn, will cause a change  in the weighted input to the
second hidden neuron. Then a change  in the output from the
second hidden neuron. And so on, all the way through to a change 

 in the cost at the output. We have

This suggests that we can figure out an expression for the gradient 
 by carefully tracking the effect of each step in this cascade.

To do this, let's think about how  causes the output  from the
first hidden neuron to change. We have ,
so

That  term should look familiar: it's the first term in our
claimed expression for the gradient . Intuitively, this term
converts a change  in the bias into a change  in the output
activation. That change  in turn causes a change in the weighted
input  to the second hidden neuron:

Combining our expressions for  and , we see how the change
in the bias  propagates along the network to affect :

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 13/19

Again, that should look familiar: we've now got the first two terms
in our claimed expression for the gradient .

We can keep going in this fashion, tracking the way changes
propagate through the rest of the network. At each neuron we pick
up a  term, and through each weight we pick up a  term. The
end result is an expression relating the final change  in cost to
the initial change  in the bias:

Dividing by  we do indeed get the desired expression for the
gradient:

Why the vanishing gradient problem occurs: To understand
why the vanishing gradient problem occurs, let's explicitly write out
the entire expression for the gradient:

Excepting the very last term, this expression is a product of terms of
the form . To understand how each of those terms behave,
let's look at a plot of the function :

-4 -3 -2 -1 0 1 2 3 4

0.00

0.05

0.10

0.15

0.20

0.25

z

Derivative of sigmoid function

The derivative reaches a maximum at . Now, if we use
our standard approach to initializing the weights in the network,
then we'll choose the weights using a Gaussian with mean  and
standard deviation . So the weights will usually satisfy .
Putting these observations together, we see that the terms 

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 14/19

will usually satisfy . And when we take a product of
many such terms, the product will tend to exponentially decrease:
the more terms, the smaller the product will be. This is starting to
smell like a possible explanation for the vanishing gradient
problem.

To make this all a bit more explicit, let's compare the expression for 
 to an expression for the gradient with respect to a later bias,

say . Of course, we haven't explicitly worked out an
expression for , but it follows the same pattern described
above for . Here's the comparison of the two expressions:

The two expressions share many terms. But the gradient 
includes two extra terms each of the form . As we've seen,
such terms are typically less than  in magnitude. And so the
gradient  will usually be a factor of  (or more) smaller than 

. This is the essential origin of the vanishing gradient
problem.

Of course, this is an informal argument, not a rigorous proof that
the vanishing gradient problem will occur. There are several
possible escape clauses. In particular, we might wonder whether the
weights  could grow during training. If they do, it's possible the
terms  in the product will no longer satisfy .
Indeed, if the terms get large enough - greater than  - then we will
no longer have a vanishing gradient problem. Instead, the gradient
will actually grow exponentially as we move backward through the
layers. Instead of a vanishing gradient problem, we'll have an
exploding gradient problem.

The exploding gradient problem: Let's look at an explicit
example where exploding gradients occur. The example is
somewhat contrived: I'm going to fix parameters in the network in
just the right way to ensure we get an exploding gradient. But even

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 15/19

though the example is contrived, it has the virtue of firmly
establishing that exploding gradients aren't merely a hypothetical
possibility, they really can happen.

There are two steps to getting an exploding gradient. First, we
choose all the weights in the network to be large, say 

. Second, we'll choose the biases so that
the  terms are not too small. That's actually pretty easy to do:
all we need do is choose the biases to ensure that the weighted input
to each neuron is  (and so ). So, for instance, we
want . We can achieve this by setting 

. We can use the same idea to select the other biases.
When we do this, we see that all the terms  are equal to 

. With these choices we get an exploding gradient.

The unstable gradient problem: The fundamental problem
here isn't so much the vanishing gradient problem or the exploding
gradient problem. It's that the gradient in early layers is the product
of terms from all the later layers. When there are many layers, that's
an intrinsically unstable situation. The only way all layers can learn
at close to the same speed is if all those products of terms come
close to balancing out. Without some mechanism or underlying
reason for that balancing to occur, it's highly unlikely to happen
simply by chance. In short, the real problem here is that neural
networks suffer from an unstable gradient problem. As a result, if
we use standard gradient-based learning techniques, different
layers in the network will tend to learn at wildly different speeds.

Exercise

In our discussion of the vanishing gradient problem, we made
use of the fact that . Suppose we used a different
activation function, one whose derivative could be much larger.
Would that help us avoid the unstable gradient problem?

The prevalence of the vanishing gradient problem: We've
seen that the gradient can either vanish or explode in the early
layers of a deep network. In fact, when using sigmoid neurons the
gradient will usually vanish. To see why, consider again the
expression . To avoid the vanishing gradient problem we
need . You might think this could happen easily if  is
very large. However, it's more difficult than it looks. The reason is

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 16/19

that the  term also depends on : , where  is
the input activation. So when we make  large, we need to be
careful that we're not simultaneously making  small. That
turns out to be a considerable constraint. The reason is that when
we make  large we tend to make  very large. Looking at the
graph of  you can see that this puts us off in the "wings" of the 
function, where it takes very small values. The only way to avoid
this is if the input activation falls within a fairly narrow range of
values (this qualitative explanation is made quantitative in the first
problem below). Sometimes that will chance to happen. More often,
though, it does not happen. And so in the generic case we have
vanishing gradients.

Problems

Consider the product . Suppose .
(1) Argue that this can only ever occur if . (2) Supposing
that , consider the set of input activations  for which 

. Show that the set of  satisfying that
constraint can range over an interval no greater in width than

(3) Show numerically that the above expression bounding the
width of the range is greatest at , where it takes a value

. And so even given that everything lines up just
perfectly, we still have a fairly narrow range of input activations
which can avoid the vanishing gradient problem.

Identity neuron: Consider a neuron with a single input, , a
corresponding weight, , a bias , and a weight  on the
output. Show that by choosing the weights and bias
appropriately, we can ensure  for .
Such a neuron can thus be used as a kind of identity neuron,
that is, a neuron whose output is the same (up to rescaling by a
weight factor) as its input. Hint: It helps to rewrite 

, to assume   is small, and to use a Taylor series

expansion in  .

Unstable gradients in more complex
networks

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 17/19

We've been studying toy networks, with just one neuron in each
hidden layer. What about more complex deep networks, with many
neurons in each hidden layer?

In fact, much the same behaviour occurs in such networks. In the
earlier chapter on backpropagation we saw that the gradient in the 
th layer of an  layer network is given by:

Here,  is a diagonal matrix whose entries are the  values
for the weighted inputs to the th layer. The  are the weight
matrices for the different layers. And  is the vector of partial
derivatives of  with respect to the output activations.

This is a much more complicated expression than in the single-
neuron case. Still, if you look closely, the essential form is very
similar, with lots of pairs of the form . What's more, the
matrices  have small entries on the diagonal, none larger than 

. Provided the weight matrices  aren't too large, each additional
term  tends to make the gradient vector smaller, leading
to a vanishing gradient. More generally, the large number of terms
in the product tends to lead to an unstable gradient, just as in our
earlier example. In practice, empirically it is typically found in
sigmoid networks that gradients vanish exponentially quickly in
earlier layers. As a result, learning slows down in those layers. This
slowdown isn't merely an accident or an inconvenience: it's a
fundamental consequence of the approach we're taking to learning.

Other obstacles to deep learning

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 18/19

In this chapter we've focused on vanishing gradients - and, more
generally, unstable gradients - as an obstacle to deep learning. In
fact, unstable gradients are just one obstacle to deep learning, albeit
an important fundamental obstacle. Much ongoing research aims to
better understand the challenges that can occur when training deep
networks. I won't comprehensively summarize that work here, but
just want to briefly mention a couple of papers, to give you the
flavor of some of the questions people are asking.

As a first example, in 2010 Glorot and Bengio* found evidence
suggesting that the use of sigmoid activation functions can cause
problems training deep networks. In particular, they found
evidence that the use of sigmoids will cause the activations in the
final hidden layer to saturate near  early in training, substantially
slowing down learning. They suggested some alternative activation
functions, which appear not to suffer as much from this saturation
problem.

As a second example, in 2013 Sutskever, Martens, Dahl and
Hinton* studied the impact on deep learning of both the random
weight initialization and the momentum schedule in momentum-
based stochastic gradient descent. In both cases, making good
choices made a substantial difference in the ability to train deep
networks.

These examples suggest that "What makes deep networks hard to
train?" is a complex question. In this chapter, we've focused on the
instabilities associated to gradient-based learning in deep networks.
The results in the last two paragraphs suggest that there is also a
role played by the choice of activation function, the way weights are
initialized, and even details of how learning by gradient descent is
implemented. And, of course, choice of network architecture and
other hyper-parameters is also important. Thus, many factors can
play a role in making deep networks hard to train, and
understanding all those factors is still a subject of ongoing research.
This all seems rather downbeat and pessimism-inducing. But the
good news is that in the next chapter we'll turn that around, and
develop several approaches to deep learning that to some extent
manage to overcome or route around all these challenges.

*Understanding the difficulty of training deep
feedforward neural networks, by Xavier Glorot
and Yoshua Bengio (2010). See also the earlier
discussion of the use of sigmoids in Efficient
BackProp, by Yann LeCun, Léon Bottou,
Genevieve Orr and Klaus-Robert Müller (1998).

*On the importance of initialization and
momentum in deep learning, by Ilya Sutskever,
James Martens, George Dahl and Geoffrey
Hinton (2013).

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015 

Last update: Fri Jan 22 14:09:50 2016 

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap5.html 19/19

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1/57

In the last chapter we learned that deep neural networks are often
much harder to train than shallow neural networks. That's
unfortunate, since we have good reason to believe that if we could
train deep nets they'd be much more powerful than shallow nets.
But while the news from the last chapter is discouraging, we won't
let it stop us. In this chapter, we'll develop techniques which can be
used to train deep networks, and apply them in practice. We'll also
look at the broader picture, briefly reviewing recent progress on
using deep nets for image recognition, speech recognition, and
other applications. And we'll take a brief, speculative look at what
the future may hold for neural nets, and for artificial intelligence.

The chapter is a long one. To help you navigate, let's take a tour.
The sections are only loosely coupled, so provided you have some
basic familiarity with neural nets, you can jump to whatever most
interests you.

The main part of the chapter is an introduction to one of the most
widely used types of deep network: deep convolutional networks.
We'll work through a detailed example - code and all - of using
convolutional nets to solve the problem of classifying handwritten
digits from the MNIST data set:

We'll start our account of convolutional networks with the shallow
networks used to attack this problem earlier in the book. Through
many iterations we'll build up more and more powerful networks.
As we go we'll explore many powerful techniques: convolutions,
pooling, the use of GPUs to do far more training than we did with
our shallow networks, the algorithmic expansion of our training
data (to reduce overfitting), the use of the dropout technique (also
to reduce overfitting), the use of ensembles of networks, and others.
The result will be a system that offers near-human performance. Of
the 10,000 MNIST test images - images not seen during training! -
our system will classify 9,967 correctly. Here's a peek at the 33
images which are misclassified. Note that the correct classification

CHAPTER 6

Deep learning

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2/57

is in the top right; our program's classification is in the bottom
right:

Many of these are tough even for a human to classify. Consider, for
example, the third image in the top row. To me it looks more like a
"9" than an "8", which is the official classification. Our network also
thinks it's a "9". This kind of "error" is at the very least
understandable, and perhaps even commendable. We conclude our
discussion of image recognition with a survey of some of the
spectacular recent progress using networks (particularly
convolutional nets) to do image recognition.

The remainder of the chapter discusses deep learning from a
broader and less detailed perspective. We'll briefly survey other
models of neural networks, such as recurrent neural nets and long
short-term memory units, and how such models can be applied to
problems in speech recognition, natural language processing, and
other areas. And we'll speculate about the future of neural networks
and deep learning, ranging from ideas like intention-driven user
interfaces, to the role of deep learning in artificial intelligence.

The chapter builds on the earlier chapters in the book, making use
of and integrating ideas such as backpropagation, regularization,
the softmax function, and so on. However, to read the chapter you
don't need to have worked in detail through all the earlier chapters.
It will, however, help to have read Chapter 1, on the basics of neural

Goodfellow, and Aaron Courville

By Michael Nielsen / Jan 2016

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 3/57

networks. When I use concepts from Chapters 2 to 5, I provide links
so you can familiarize yourself, if necessary.

It's worth noting what the chapter is not. It's not a tutorial on the
latest and greatest neural networks libraries. Nor are we going to be
training deep networks with dozens of layers to solve problems at
the very leading edge. Rather, the focus is on understanding some
of the core principles behind deep neural networks, and applying
them in the simple, easy-to-understand context of the MNIST
problem. Put another way: the chapter is not going to bring you
right up to the frontier. Rather, the intent of this and earlier
chapters is to focus on fundamentals, and so to prepare you to
understand a wide range of current work.

The chapter is currently in beta. I welcome notification of typos,
bugs, minor errors, and major misconceptions. Please drop me a
line at mn@michaelnielsen.org if you spot such an error.

Introducing convolutional networks
In earlier chapters, we taught our neural networks to do a pretty
good job recognizing images of handwritten digits:

We did this using networks in which adjacent network layers are
fully connected to one another. That is, every neuron in the network
is connected to every neuron in adjacent layers:

In particular, for each pixel in the input image, we encoded the
pixel's intensity as the value for a corresponding neuron in the
input layer. For the  pixel images we've been using, this
means our network has  ( ) input neurons. We then

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 4/57

trained the network's weights and biases so that the network's
output would - we hope! - correctly identify the input image: '0', '1',
'2', ..., '8', or '9'.

Our earlier networks work pretty well: we've obtained a
classification accuracy better than 98 percent, using training and
test data from the MNIST handwritten digit data set. But upon
reflection, it's strange to use networks with fully-connected layers to
classify images. The reason is that such a network architecture does
not take into account the spatial structure of the images. For
instance, it treats input pixels which are far apart and close together
on exactly the same footing. Such concepts of spatial structure must
instead be inferred from the training data. But what if, instead of
starting with a network architecture which is tabula rasa, we used
an architecture which tries to take advantage of the spatial
structure? In this section I describe convolutional neural
networks*. These networks use a special architecture which is
particularly well-adapted to classify images. Using this architecture
makes convolutional networks fast to train. This, in turns, helps us
train deep, many-layer networks, which are very good at classifying
images. Today, deep convolutional networks or some close variant
are used in most neural networks for image recognition.

Convolutional neural networks use three basic ideas: local receptive
fields, shared weights, and pooling. Let's look at each of these ideas
in turn.

Local receptive fields: In the fully-connected layers shown
earlier, the inputs were depicted as a vertical line of neurons. In a
convolutional net, it'll help to think instead of the inputs as a 
square of neurons, whose values correspond to the  pixel
intensities we're using as inputs:

*The origins of convolutional neural networks go
back to the 1970s. But the seminal paper
establishing the modern subject of convolutional
networks was a 1998 paper, "Gradient-based
learning applied to document recognition", by
Yann LeCun, Léon Bottou, Yoshua Bengio, and
Patrick Haffner. LeCun has since made an
interesting remark on the terminology for
convolutional nets: "The [biological] neural
inspiration in models like convolutional nets is
very tenuous. That's why I call them
'convolutional nets' not 'convolutional neural
nets', and why we call the nodes 'units' and not
'neurons' ". Despite this remark, convolutional
nets use many of the same ideas as the neural
networks we've studied up to now: ideas such as
backpropagation, gradient descent,
regularization, non-linear activation functions,
and so on. And so we will follow common
practice, and consider them a type of neural
network. I will use the terms "convolutional
neural network" and "convolutional net(work)"
interchangeably. I will also use the terms "
[artificial] neuron" and "unit" interchangeably.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 5/57

As per usual, we'll connect the input pixels to a layer of hidden
neurons. But we won't connect every input pixel to every hidden
neuron. Instead, we only make connections in small, localized
regions of the input image.

To be more precise, each neuron in the first hidden layer will be
connected to a small region of the input neurons, say, for example,
a  region, corresponding to  input pixels. So, for a particular
hidden neuron, we might have connections that look like this:

That region in the input image is called the local receptive field for
the hidden neuron. It's a little window on the input pixels. Each
connection learns a weight. And the hidden neuron learns an
overall bias as well. You can think of that particular hidden neuron
as learning to analyze its particular local receptive field.

We then slide the local receptive field across the entire input image.
For each local receptive field, there is a different hidden neuron in
the first hidden layer. To illustrate this concretely, let's start with a
local receptive field in the top-left corner:

Then we slide the local receptive field over by one pixel to the right
(i.e., by one neuron), to connect to a second hidden neuron:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 6/57

And so on, building up the first hidden layer. Note that if we have a 
 input image, and  local receptive fields, then there will

be  neurons in the hidden layer. This is because we can only
move the local receptive field  neurons across (or  neurons
down), before colliding with the right-hand side (or bottom) of the
input image.

I've shown the local receptive field being moved by one pixel at a
time. In fact, sometimes a different stride length is used. For
instance, we might move the local receptive field  pixels to the
right (or down), in which case we'd say a stride length of  is used.
In this chapter we'll mostly stick with stride length , but it's worth
knowing that people sometimes experiment with different stride
lengths*.

Shared weights and biases: I've said that each hidden neuron
has a bias and  weights connected to its local receptive field.
What I did not yet mention is that we're going to use the same
weights and bias for each of the  hidden neurons. In other
words, for the th hidden neuron, the output is:

Here,  is the neural activation function - perhaps the sigmoid
function we used in earlier chapters.  is the shared value for the
bias.  is a  array of shared weights. And, finally, we use 
to denote the input activation at position .

This means that all the neurons in the first hidden layer detect
exactly the same feature*, just at different locations in the input
image. To see why this makes sense, suppose the weights and bias
are such that the hidden neuron can pick out, say, a vertical edge in

*As was done in earlier chapters, if we're
interested in trying different stride lengths then
we can use validation data to pick out the stride
length which gives the best performance. For
more details, see the earlier discussion of how to
choose hyper-parameters in a neural network.
The same approach may also be used to choose
the size of the local receptive field - there is, of
course, nothing special about using a  local
receptive field. In general, larger local receptive
fields tend to be helpful when the input images
are significantly larger than the  pixel
MNIST images.

*I haven't precisely defined the notion of a
feature. Informally, think of the feature detected
by a hidden neuron as the kind of input pattern
that will cause the neuron to activate: it might be
an edge in the image, for instance, or maybe
some other type of shape.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 7/57

a particular local receptive field. That ability is also likely to be
useful at other places in the image. And so it is useful to apply the
same feature detector everywhere in the image. To put it in slightly
more abstract terms, convolutional networks are well adapted to
the translation invariance of images: move a picture of a cat (say) a
little ways, and it's still an image of a cat*.

For this reason, we sometimes call the map from the input layer to
the hidden layer a feature map. We call the weights defining the
feature map the shared weights. And we call the bias defining the
feature map in this way the shared bias. The shared weights and
bias are often said to define a kernel or filter. In the literature,
people sometimes use these terms in slightly different ways, and for
that reason I'm not going to be more precise; rather, in a moment,
we'll look at some concrete examples.

The network structure I've described so far can detect just a single
kind of localized feature. To do image recognition we'll need more
than one feature map. And so a complete convolutional layer
consists of several different feature maps:

In the example shown, there are  feature maps. Each feature map
is defined by a set of  shared weights, and a single shared bias.
The result is that the network can detect  different kinds of
features, with each feature being detectable across the entire image.

I've shown just  feature maps, to keep the diagram above simple.
However, in practice convolutional networks may use more (and
perhaps many more) feature maps. One of the early convolutional
networks, LeNet-5, used  feature maps, each associated to a 
local receptive field, to recognize MNIST digits. So the example
illustrated above is actually pretty close to LeNet-5. In the examples
we develop later in the chapter we'll use convolutional layers with 

*In fact, for the MNIST digit classification
problem we've been studying, the images are
centered and size-normalized. So MNIST has
less translation invariance than images found "in
the wild", so to speak. Still, features like edges
and corners are likely to be useful across much of
the input space.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 8/57

and  feature maps. Let's take a quick peek at some of the features
which are learned*:

The  images correspond to  different feature maps (or filters, or
kernels). Each map is represented as a  block image,
corresponding to the  weights in the local receptive field.
Whiter blocks mean a smaller (typically, more negative) weight, so
the feature map responds less to corresponding input pixels. Darker
blocks mean a larger weight, so the feature map responds more to
the corresponding input pixels. Very roughly speaking, the images
above show the type of features the convolutional layer responds to.

So what can we conclude from these feature maps? It's clear there is
spatial structure here beyond what we'd expect at random: many of
the features have clear sub-regions of light and dark. That shows
our network really is learning things related to the spatial structure.
However, beyond that, it's difficult to see what these feature
detectors are learning. Certainly, we're not learning (say) the Gabor
filters which have been used in many traditional approaches to
image recognition. In fact, there's now a lot of work on better
understanding the features learnt by convolutional networks. If
you're interested in following up on that work, I suggest starting
with the paper Visualizing and Understanding Convolutional
Networks by Matthew Zeiler and Rob Fergus (2013).

A big advantage of sharing weights and biases is that it greatly
reduces the number of parameters involved in a convolutional
network. For each feature map we need  shared weights,
plus a single shared bias. So each feature map requires 
parameters. If we have  feature maps that's a total of 

 parameters defining the convolutional layer. By

*The feature maps illustrated come from the
final convolutional network we train, see here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 9/57

comparison, suppose we had a fully connected first layer, with 
 input neurons, and a relatively modest  hidden

neurons, as we used in many of the examples earlier in the book.
That's a total of  weights, plus an extra  biases, for a total
of  parameters. In other words, the fully-connected layer
would have more than  times as many parameters as the
convolutional layer.

Of course, we can't really do a direct comparison between the
number of parameters, since the two models are different in
essential ways. But, intuitively, it seems likely that the use of
translation invariance by the convolutional layer will reduce the
number of parameters it needs to get the same performance as the
fully-connected model. That, in turn, will result in faster training
for the convolutional model, and, ultimately, will help us build deep
networks using convolutional layers.

Incidentally, the name convolutional comes from the fact that the
operation in Equation (125) is sometimes known as a convolution.
A little more precisely, people sometimes write that equation as 

, where  denotes the set of output activations
from one feature map,  is the set of input activations, and  is
called a convolution operation. We're not going to make any deep
use of the mathematics of convolutions, so you don't need to worry
too much about this connection. But it's worth at least knowing
where the name comes from.

Pooling layers: In addition to the convolutional layers just
described, convolutional neural networks also contain pooling
layers. Pooling layers are usually used immediately after
convolutional layers. What the pooling layers do is simplify the
information in the output from the convolutional layer.

In detail, a pooling layer takes each feature map* output from the
convolutional layer and prepares a condensed feature map. For
instance, each unit in the pooling layer may summarize a region of
(say)  neurons in the previous layer. As a concrete example,
one common procedure for pooling is known as max-pooling. In
max-pooling, a pooling unit simply outputs the maximum
activation in the  input region, as illustrated in the following
diagram:

*The nomenclature is being used loosely here. In
particular, I'm using "feature map" to mean not
the function computed by the convolutional
layer, but rather the activation of the hidden
neurons output from the layer. This kind of mild
abuse of nomenclature is pretty common in the
research literature.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 10/57

Note that since we have  neurons output from the
convolutional layer, after pooling we have  neurons.

As mentioned above, the convolutional layer usually involves more
than a single feature map. We apply max-pooling to each feature
map separately. So if there were three feature maps, the combined
convolutional and max-pooling layers would look like:

We can think of max-pooling as a way for the network to ask
whether a given feature is found anywhere in a region of the image.
It then throws away the exact positional information. The intuition
is that once a feature has been found, its exact location isn't as
important as its rough location relative to other features. A big
benefit is that there are many fewer pooled features, and so this
helps reduce the number of parameters needed in later layers.

Max-pooling isn't the only technique used for pooling. Another
common approach is known as L2 pooling. Here, instead of taking
the maximum activation of a  region of neurons, we take the
square root of the sum of the squares of the activations in the 
region. While the details are different, the intuition is similar to
max-pooling: L2 pooling is a way of condensing information from
the convolutional layer. In practice, both techniques have been
widely used. And sometimes people use other types of pooling
operation. If you're really trying to optimize performance, you may
use validation data to compare several different approaches to

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 11/57

pooling, and choose the approach which works best. But we're not
going to worry about that kind of detailed optimization.

Putting it all together: We can now put all these ideas together
to form a complete convolutional neural network. It's similar to the
architecture we were just looking at, but has the addition of a layer
of  output neurons, corresponding to the  possible values for
MNIST digits ('0', '1', '2', etc):

The network begins with  input neurons, which are used to
encode the pixel intensities for the MNIST image. This is then
followed by a convolutional layer using a  local receptive field
and  feature maps. The result is a layer of  hidden
feature neurons. The next step is a max-pooling layer, applied to 

 regions, across each of the  feature maps. The result is a layer
of  hidden feature neurons.

The final layer of connections in the network is a fully-connected
layer. That is, this layer connects every neuron from the max-
pooled layer to every one of the  output neurons. This fully-
connected architecture is the same as we used in earlier chapters.
Note, however, that in the diagram above, I've used a single arrow,
for simplicity, rather than showing all the connections. Of course,
you can easily imagine the connections.

This convolutional architecture is quite different to the
architectures used in earlier chapters. But the overall picture is
similar: a network made of many simple units, whose behaviors are
determined by their weights and biases. And the overall goal is still
the same: to use training data to train the network's weights and
biases so that the network does a good job classifying input digits.

In particular, just as earlier in the book, we will train our network
using stochastic gradient descent and backpropagation. This mostly

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 12/57

proceeds in exactly the same way as in earlier chapters. However,
we do need to make few modifications to the backpropagation
procedure. The reason is that our earlier derivation of
backpropagation was for networks with fully-connected layers.
Fortunately, it's straightforward to modify the derivation for
convolutional and max-pooling layers. If you'd like to understand
the details, then I invite you to work through the following problem.
Be warned that the problem will take some time to work through,
unless you've really internalized the earlier derivation of
backpropagation (in which case it's easy).

Problem

Backpropagation in a convolutional network The core
equations of backpropagation in a network with fully-
connected layers are (BP1)-(BP4) (link). Suppose we have a
network containing a convolutional layer, a max-pooling layer,
and a fully-connected output layer, as in the network discussed
above. How are the equations of backpropagation modified?

Convolutional neural networks in
practice
We've now seen the core ideas behind convolutional neural
networks. Let's look at how they work in practice, by implementing
some convolutional networks, and applying them to the MNIST
digit classification problem. The program we'll use to do this is
called network3.py, and it's an improved version of the programs
network.py and network2.py developed in earlier chapters*. If you
wish to follow along, the code is available on GitHub. Note that we'll
work through the code for network3.py itself in the next section. In
this section, we'll use network3.py as a library to build convolutional
networks.

The programs network.py and network2.py were implemented using
Python and the matrix library Numpy. Those programs worked
from first principles, and got right down into the details of
backpropagation, stochastic gradient descent, and so on. But now
that we understand those details, for network3.py we're going to use
a machine learning library known as Theano*. Using Theano makes
it easy to implement backpropagation for convolutional neural

*Note also that network3.py incorporates
ideas from the Theano library's documentation
on convolutional neural nets (notably the
implementation of LeNet-5), from Misha Denil's
implementation of dropout, and from Chris
Olah.

*See Theano: A CPU and GPU Math Expression
Compiler in Python, by James Bergstra, Olivier
Breuleux, Frederic Bastien, Pascal Lamblin,

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 13/57

networks, since it automatically computes all the mappings
involved. Theano is also quite a bit faster than our earlier code
(which was written to be easy to understand, not fast), and this
makes it practical to train more complex networks. In particular,
one great feature of Theano is that it can run code on either a CPU
or, if available, a GPU. Running on a GPU provides a substantial
speedup and, again, helps make it practical to train more complex
networks.

If you wish to follow along, then you'll need to get Theano running
on your system. To install Theano, follow the instructions at the
project's homepage. The examples which follow were run using
Theano 0.6*. Some were run under Mac OS X Yosemite, with no
GPU. Some were run on Ubuntu 14.04, with an NVIDIA GPU. And
some of the experiments were run under both. To get network3.py
running you'll need to set the GPU flag to either True or False (as
appropriate) in the network3.py source. Beyond that, to get Theano
up and running on a GPU you may find the instructions here
helpful. There are also tutorials on the web, easily found using
Google, which can help you get things working. If you don't have a
GPU available locally, then you may wish to look into Amazon Web
Services EC2 G2 spot instances. Note that even with a GPU the code
will take some time to execute. Many of the experiments take from
minutes to hours to run. On a CPU it may take days to run the most
complex of the experiments. As in earlier chapters, I suggest setting
things running, and continuing to read, occasionally coming back to
check the output from the code. If you're using a CPU, you may
wish to reduce the number of training epochs for the more complex
experiments, or perhaps omit them entirely.

To get a baseline, we'll start with a shallow architecture using just a
single hidden layer, containing  hidden neurons. We'll train for 

 epochs, using a learning rate of , a mini-batch size of ,
and no regularization. Here we go*:

>>> import network3
>>> from network3 import Network
>>> from network3 import ConvPoolLayer, FullyConnectedLayer, SoftmaxLayer
>>> training_data, validation_data, test_data = network3.load_data_shared()

>>> mini_batch_size = 10

>>> net = Network([

        FullyConnectedLayer(n_in=784, n_out=100),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(training_data, 60, mini_batch_size, 0.1, 

            validation_data, test_data)

Ravzan Pascanu, Guillaume Desjardins, Joseph
Turian, David Warde-Farley, and Yoshua Bengio
(2010). Theano is also the basis for the popular
Pylearn2 and Keras neural networks libraries.
Other popular neural nets libraries at the time of
this writing include Caffe and Torch.

*As I release this chapter, the current version of
Theano has changed to version 0.7. I've actually
rerun the examples under Theano 0.7 and get
extremely similar results to those reported in the
text.

*Code for the experiments in this section may be
found in this script. Note that the code in the
script simply duplicates and parallels the
discussion in this section.

Note also that throughout the section I've
explicitly specified the number of training
epochs. I've done this for clarity about how we're
training. In practice, it's worth using early
stopping, that is, tracking accuracy on the
validation set, and stopping training when we
are confident the validation accuracy has
stopped improving.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 14/57

I obtained a best classification accuracy of  percent. This is the
classification accuracy on the test_data, evaluated at the training
epoch where we get the best classification accuracy on the
validation_data. Using the validation data to decide when to
evaluate the test accuracy helps avoid overfitting to the test data
(see this earlier discussion of the use of validation data). We will
follow this practice below. Your results may vary slightly, since the
network's weights and biases are randomly initialized*.

This  percent accuracy is close to the  percent accuracy
obtained back in Chapter 3, using a similar network architecture
and learning hyper-parameters. In particular, both examples used a
shallow network, with a single hidden layer containing  hidden
neurons. Both also trained for  epochs, used a mini-batch size of 

, and a learning rate of .

There were, however, two differences in the earlier network. First,
we regularized the earlier network, to help reduce the effects of
overfitting. Regularizing the current network does improve the
accuracies, but the gain is only small, and so we'll hold off worrying
about regularization until later. Second, while the final layer in the
earlier network used sigmoid activations and the cross-entropy cost
function, the current network uses a softmax final layer, and the
log-likelihood cost function. As explained in Chapter 3 this isn't a
big change. I haven't made this switch for any particularly deep
reason - mostly, I've done it because softmax plus log-likelihood
cost is more common in modern image classification networks.

Can we do better than these results using a deeper network
architecture?

Let's begin by inserting a convolutional layer, right at the beginning
of the network. We'll use  by  local receptive fields, a stride length
of , and  feature maps. We'll also insert a max-pooling layer,
which combines the features using  by  pooling windows. So the
overall network architecture looks much like the architecture
discussed in the last section, but with an extra fully-connected
layer:

*In fact, in this experiment I actually did three
separate runs training a network with this
architecture. I then reported the test accuracy
which corresponded to the best validation
accuracy from any of the three runs. Using
multiple runs helps reduce variation in results,
which is useful when comparing many
architectures, as we are doing. I've followed this
procedure below, except where noted. In
practice, it made little difference to the results
obtained.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 15/57

In this architecture, we can think of the convolutional and pooling
layers as learning about local spatial structure in the input training
image, while the later, fully-connected layer learns at a more
abstract level, integrating global information from across the entire
image. This is a common pattern in convolutional neural networks.

Let's train such a network, and see how it performs*:

>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2)),

        FullyConnectedLayer(n_in=20*12*12, n_out=100),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(training_data, 60, mini_batch_size, 0.1, 

            validation_data, test_data)   

That gets us to  percent accuracy, which is a considerable
improvement over any of our previous results. Indeed, we've
reduced our error rate by better than a third, which is a great
improvement.

In specifying the network structure, I've treated the convolutional
and pooling layers as a single layer. Whether they're regarded as
separate layers or as a single layer is to some extent a matter of
taste. network3.py treats them as a single layer because it makes the
code for network3.py a little more compact. However, it is easy to
modify network3.py so the layers can be specified separately, if
desired.

Exercise

What classification accuracy do you get if you omit the fully-
connected layer, and just use the convolutional-pooling layer
and softmax layer? Does the inclusion of the fully-connected
layer help?

Can we improve on the  percent classification accuracy?

*I've continued to use a mini-batch size of 
here. In fact, as we discussed earlier it may be
possible to speed up training using larger mini-
batches. I've continued to use the same mini-
batch size mostly for consistency with the
experiments in earlier chapters.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 16/57

Let's try inserting a second convolutional-pooling layer. We'll make
the insertion between the existing convolutional-pooling layer and
the fully-connected hidden layer. Again, we'll use a  local
receptive field, and pool over  regions. Let's see what happens
when we train using similar hyper-parameters to before:

>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2)),

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 

                      filter_shape=(40, 20, 5, 5), 

                      poolsize=(2, 2)),

        FullyConnectedLayer(n_in=40*4*4, n_out=100),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(training_data, 60, mini_batch_size, 0.1, 

            validation_data, test_data)        

Once again, we get an improvement: we're now at  percent
classification accuracy!

There's two natural questions to ask at this point. The first question
is: what does it even mean to apply a second convolutional-pooling
layer? In fact, you can think of the second convolutional-pooling
layer as having as input  "images", whose "pixels" represent
the presence (or absence) of particular localized features in the
original input image. So you can think of this layer as having as
input a version of the original input image. That version is
abstracted and condensed, but still has a lot of spatial structure,
and so it makes sense to use a second convolutional-pooling layer.

That's a satisfying point of view, but gives rise to a second question.
The output from the previous layer involves  separate feature
maps, and so there are  inputs to the second
convolutional-pooling layer. It's as though we've got  separate
images input to the convolutional-pooling layer, not a single image,
as was the case for the first convolutional-pooling layer. How
should neurons in the second convolutional-pooling layer respond
to these multiple input images? In fact, we'll allow each neuron in
this layer to learn from all  input neurons in its local
receptive field. More informally: the feature detectors in the second
convolutional-pooling layer have access to all the features from the
previous layer, but only within their particular local receptive field*.

Problem

*This issue would have arisen in the first layer if
the input images were in color. In that case we'd
have 3 input features for each pixel,
corresponding to red, green and blue channels in
the input image. So we'd allow the feature
detectors to have access to all color information,
but only within a given local receptive field.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 17/57

Using the tanh activation function Several times earlier in
the book I've mentioned arguments that the tanh function may
be a better activation function than the sigmoid function.
We've never acted on those suggestions, since we were already
making plenty of progress with the sigmoid. But now let's try
some experiments with tanh as our activation function. Try
training the network with tanh activations in the convolutional
and fully-connected layers*. Begin with the same hyper-
parameters as for the sigmoid network, but train for  epochs
instead of . How well does your network perform? What if
you continue out to  epochs? Try plotting the per-epoch
validation accuracies for both tanh- and sigmoid-based
networks, all the way out to  epochs. If your results are
similar to mine, you'll find the tanh networks train a little
faster, but the final accuracies are very similar. Can you explain
why the tanh network might train faster? Can you get a similar
training speed with the sigmoid, perhaps by changing the
learning rate, or doing some rescaling*? Try a half-dozen
iterations on the learning hyper-parameters or network
architecture, searching for ways that tanh may be superior to
the sigmoid. Note: This is an open-ended problem. Personally,
I did not find much advantage in switching to tanh, although I

haven't experimented exhaustively, and perhaps you may find

a way. In any case, in a moment we will find an advantage in

switching to the rectified linear activation function, and so we

won't go any deeper into the use of tanh.

Using rectified linear units: The network we've developed at
this point is actually a variant of one of the networks used in the
seminal 1998 paper* introducing the MNIST problem, a network
known as LeNet-5. It's a good foundation for further
experimentation, and for building up understanding and intuition.
In particular, there are many ways we can vary the network in an
attempt to improve our results.

As a beginning, let's change our neurons so that instead of using a
sigmoid activation function, we use rectified linear units. That is,
we'll use the activation function . We'll train for 
epochs, with a learning rate of . I also found that it helps a
little to use some l2 regularization, with regularization parameter 

:

*Note that you can pass activation_fn=tanh
as a parameter to the ConvPoolLayer and
FullyConnectedLayer classes.

*You may perhaps find inspiration in recalling
that .

*"Gradient-based learning applied to document
recognition", by Yann LeCun, Léon Bottou,
Yoshua Bengio, and Patrick Haffner (1998).
There are many differences of detail, but broadly
speaking our network is quite similar to the
networks described in the paper.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 18/57

>>> from network3 import ReLU
>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 

                      filter_shape=(40, 20, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(training_data, 60, mini_batch_size, 0.03, 

            validation_data, test_data, lmbda=0.1)

I obtained a classification accuracy of  percent. It's a modest
improvement over the sigmoid results ( ). However, across all
my experiments I found that networks based on rectified linear
units consistently outperformed networks based on sigmoid
activation functions. There appears to be a real gain in moving to
rectified linear units for this problem.

What makes the rectified linear activation function better than the
sigmoid or tanh functions? At present, we have a poor
understanding of the answer to this question. Indeed, rectified
linear units have only begun to be widely used in the past few years.
The reason for that recent adoption is empirical: a few people tried
rectified linear units, often on the basis of hunches or heuristic
arguments*. They got good results classifying benchmark data sets,
and the practice has spread. In an ideal world we'd have a theory
telling us which activation function to pick for which application.
But at present we're a long way from such a world. I should not be
at all surprised if further major improvements can be obtained by
an even better choice of activation function. And I also expect that
in coming decades a powerful theory of activation functions will be
developed. Today, we still have to rely on poorly understood rules of
thumb and experience.

Expanding the training data: Another way we may hope to
improve our results is by algorithmically expanding the training
data. A simple way of expanding the training data is to displace
each training image by a single pixel, either up one pixel, down one
pixel, left one pixel, or right one pixel. We can do this by running
the program expand_mnist.py from the shell prompt*:

 

$ python expand_mnist.py

*A common justification is that  doesn't
saturate in the limit of large , unlike sigmoid
neurons, and this helps rectified linear units
continue learning. The argument is fine, as far it
goes, but it's hardly a detailed justification, more
of a just-so story. Note that we discussed the
problems with saturation back in Chapter 2.

*The code for expand_mnist.py is available
here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 19/57

Running this program takes the  MNIST training images,
and prepares an expanded training set, with  training
images. We can then use those training images to train our
network. We'll use the same network as above, with rectified linear
units. In my initial experiments I reduced the number of training
epochs - this made sense, since we're training with  times as much
data. But, in fact, expanding the data turned out to considerably
reduce the effect of overfitting. And so, after some experimentation,
I eventually went back to training for  epochs. In any case, let's
train:

>>> expanded_training_data, _, _ = network3.load_data_shared(

        "../data/mnist_expanded.pkl.gz")

>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 

                      filter_shape=(40, 20, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(expanded_training_data, 60, mini_batch_size, 0.03, 

            validation_data, test_data, lmbda=0.1)

Using the expanded training data I obtained a  percent
training accuracy. So this almost trivial change gives a substantial
improvement in classification accuracy. Indeed, as we discussed
earlier this idea of algorithmically expanding the data can be taken
further. Just to remind you of the flavour of some of the results in
that earlier discussion: in 2003 Simard, Steinkraus and Platt*
improved their MNIST performance to  percent using a neural
network otherwise very similar to ours, using two convolutional-
pooling layers, followed by a hidden fully-connected layer with 
neurons. There were a few differences of detail in their architecture
- they didn't have the advantage of using rectified linear units, for
instance - but the key to their improved performance was
expanding the training data. They did this by rotating, translating,
and skewing the MNIST training images. They also developed a
process of "elastic distortion", a way of emulating the random
oscillations hand muscles undergo when a person is writing. By
combining all these processes they substantially increased the
effective size of their training data, and that's how they achieved 

 percent accuracy.

*Best Practices for Convolutional Neural
Networks Applied to Visual Document Analysis,
by Patrice Simard, Dave Steinkraus, and John
Platt (2003).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 20/57

Problem

The idea of convolutional layers is to behave in an invariant
way across images. It may seem surprising, then, that our
network can learn more when all we've done is translate the
input data. Can you explain why this is actually quite
reasonable?

Inserting an extra fully-connected layer: Can we do even
better? One possibility is to use exactly the same procedure as
above, but to expand the size of the fully-connected layer. I tried
with  and  neurons, obtaining results of  and 
percent, respectively. That's interesting, but not really a convincing
win over the earlier result (  percent).

What about adding an extra fully-connected layer? Let's try
inserting an extra fully-connected layer, so that we have two -
hidden neuron fully-connected layers:

>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 

                      filter_shape=(40, 20, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        FullyConnectedLayer(n_in=40*4*4, n_out=100, activation_fn=ReLU),

        FullyConnectedLayer(n_in=100, n_out=100, activation_fn=ReLU),

        SoftmaxLayer(n_in=100, n_out=10)], mini_batch_size)

>>> net.SGD(expanded_training_data, 60, mini_batch_size, 0.03, 

            validation_data, test_data, lmbda=0.1)

Doing this, I obtained a test accuracy of  percent. Again, the
expanded net isn't helping so much. Running similar experiments
with fully-connected layers containing  and  neurons yields
results of  and  percent. That's encouraging, but still falls
short of a really decisive win.

What's going on here? Is it that the expanded or extra fully-
connected layers really don't help with MNIST? Or might it be that
our network has the capacity to do better, but we're going about
learning the wrong way? For instance, maybe we could use stronger
regularization techniques to reduce the tendency to overfit. One
possibility is the dropout technique introduced back in Chapter 3.
Recall that the basic idea of dropout is to remove individual
activations at random while training the network. This makes the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 21/57

model more robust to the loss of individual pieces of evidence, and
thus less likely to rely on particular idiosyncracies of the training
data. Let's try applying dropout to the final fully-connected layers:

>>> net = Network([

        ConvPoolLayer(image_shape=(mini_batch_size, 1, 28, 28), 

                      filter_shape=(20, 1, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        ConvPoolLayer(image_shape=(mini_batch_size, 20, 12, 12), 

                      filter_shape=(40, 20, 5, 5), 

                      poolsize=(2, 2), 

                      activation_fn=ReLU),

        FullyConnectedLayer(

            n_in=40*4*4, n_out=1000, activation_fn=ReLU, p_dropout=0.5),

        FullyConnectedLayer(

            n_in=1000, n_out=1000, activation_fn=ReLU, p_dropout=0.5),

        SoftmaxLayer(n_in=1000, n_out=10, p_dropout=0.5)], 

        mini_batch_size)

>>> net.SGD(expanded_training_data, 40, mini_batch_size, 0.03, 

            validation_data, test_data)

Using this, we obtain an accuracy of  percent, which is a
substantial improvement over our earlier results, especially our
main benchmark, the network with  hidden neurons, where we
achieved  percent.

There are two changes worth noting.

First, I reduced the number of training epochs to : dropout
reduced overfitting, and so we learned faster.

Second, the fully-connected hidden layers have  neurons, not
the  used earlier. Of course, dropout effectively omits many of
the neurons while training, so some expansion is to be expected. In
fact, I tried experiments with both  and  hidden neurons,
and obtained (very slightly) better validation performance with 

 hidden neurons.

Using an ensemble of networks: An easy way to improve
performance still further is to create several neural networks, and
then get them to vote to determine the best classification. Suppose,
for example, that we trained  different neural networks using the
prescription above, with each achieving accuracies near to 
percent. Even though the networks would all have similar
accuracies, they might well make different errors, due to the
different random initializations. It's plausible that taking a vote
amongst our  networks might yield a classification better than any
individual network.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 22/57

This sounds too good to be true, but this kind of ensembling is a
common trick with both neural networks and other machine
learning techniques. And it does in fact yield further improvements:
we end up with  percent accuracy. In other words, our
ensemble of networks classifies all but  of the  test images
correctly.

The remaining errors in the test set are shown below. The label in
the top right is the correct classification, according to the MNIST
data, while in the bottom right is the label output by our ensemble
of nets:

It's worth looking through these in detail. The first two digits, a 6
and a 5, are genuine errors by our ensemble. However, they're also
understandable errors, the kind a human could plausibly make.
That 6 really does look a lot like a 0, and the 5 looks a lot like a 3.
The third image, supposedly an 8, actually looks to me more like a
9. So I'm siding with the network ensemble here: I think it's done a
better job than whoever originally drew the digit. On the other
hand, the fourth image, the 6, really does seem to be classified badly
by our networks.

And so on. In most cases our networks' choices seem at least
plausible, and in some cases they've done a better job classifying
than the original person did writing the digit. Overall, our networks
offer exceptional performance, especially when you consider that
they correctly classified 9,967 images which aren't shown. In that

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 23/57

context, the few clear errors here seem quite understandable. Even
a careful human makes the occasional mistake. And so I expect that
only an extremely careful and methodical human would do much
better. Our network is getting near to human performance.

Why we only applied dropout to the fully-connected
layers: If you look carefully at the code above, you'll notice that we
applied dropout only to the fully-connected section of the network,
not to the convolutional layers. In principle we could apply a similar
procedure to the convolutional layers. But, in fact, there's no need:
the convolutional layers have considerable inbuilt resistance to
overfitting. The reason is that the shared weights mean that
convolutional filters are forced to learn from across the entire
image. This makes them less likely to pick up on local idiosyncracies
in the training data. And so there is less need to apply other
regularizers, such as dropout.

Going further: It's possible to improve performance on MNIST
still further. Rodrigo Benenson has compiled an informative
summary page, showing progress over the years, with links to
papers. Many of these papers use deep convolutional networks
along lines similar to the networks we've been using. If you dig
through the papers you'll find many interesting techniques, and you
may enjoy implementing some of them. If you do so it's wise to start
implementation with a simple network that can be trained quickly,
which will help you more rapidly understand what is going on.

For the most part, I won't try to survey this recent work. But I can't
resist making one exception. It's a 2010 paper by Cireșan, Meier,
Gambardella, and Schmidhuber*. What I like about this paper is
how simple it is. The network is a many-layer neural network, using
only fully-connected layers (no convolutions). Their most successful
network had hidden layers containing , , , ,
and  neurons, respectively. They used ideas similar to Simard et
al to expand their training data. But apart from that, they used few
other tricks, including no convolutional layers: it was a plain,
vanilla network, of the kind that, with enough patience, could have
been trained in the 1980s (if the MNIST data set had existed), given
enough computing power(!) They achieved a classification accuracy
of  percent, more or less the same as ours. The key was to use a
very large, very deep network, and to use a GPU to speed up

*Deep, Big, Simple Neural Nets Excel on
Handwritten Digit Recognition, by Dan Claudiu
Cireșan, Ueli Meier, Luca Maria Gambardella,
and Jürgen Schmidhuber (2010).

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 24/57

training. This let them train for many epochs. They also took
advantage of their long training times to gradually decrease the
learning rate from  to . It's a fun exercise to try to match
these results using an architecture like theirs.

Why are we able to train? We saw in the last chapter that there
are fundamental obstructions to training in deep, many-layer
neural networks. In particular, we saw that the gradient tends to be
quite unstable: as we move from the output layer to earlier layers
the gradient tends to either vanish (the vanishing gradient problem)
or explode (the exploding gradient problem). Since the gradient is
the signal we use to train, this causes problems.

How have we avoided those results?

Of course, the answer is that we haven't avoided these results.
Instead, we've done a few things that help us proceed anyway. In
particular: (1) Using convolutional layers greatly reduces the
number of parameters in those layers, making the learning problem
much easier; (2) Using more powerful regularization techniques
(notably dropout and convolutional layers) to reduce overfitting,
which is otherwise more of a problem in more complex networks;
(3) Using rectified linear units instead of sigmoid neurons, to speed
up training - empirically, often by a factor of - ; (4) Using GPUs
and being willing to train for a long period of time. In particular, in
our final experiments we trained for  epochs using a data set 
times larger than the raw MNIST training data. Earlier in the book
we mostly trained for  epochs using just the raw training data.
Combining factors (3) and (4) it's as though we've trained a factor
perhaps  times longer than before.

Your response may be "Is that it? Is that all we had to do to train
deep networks? What's all the fuss about?"

Of course, we've used other ideas, too: making use of sufficiently
large data sets (to help avoid overfitting); using the right cost
function (to avoid a learning slowdown); using good weight
initializations (also to avoid a learning slowdown, due to neuron
saturation); algorithmically expanding the training data. We
discussed these and other ideas in earlier chapters, and have for the
most part been able to reuse these ideas with little comment in this
chapter.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 25/57

With that said, this really is a rather simple set of ideas. Simple, but
powerful, when used in concert. Getting started with deep learning
has turned out to be pretty easy!

How deep are these networks, anyway? Counting the
convolutional-pooling layers as single layers, our final architecture
has  hidden layers. Does such a network really deserve to be called
a deep network? Of course,  hidden layers is many more than in
the shallow networks we studied earlier. Most of those networks
only had a single hidden layer, or occasionally  hidden layers. On
the other hand, as of 2015 state-of-the-art deep networks
sometimes have dozens of hidden layers. I've occasionally heard
people adopt a deeper-than-thou attitude, holding that if you're not
keeping-up-with-the-Joneses in terms of number of hidden layers,
then you're not really doing deep learning. I'm not sympathetic to
this attitude, in part because it makes the definition of deep
learning into something which depends upon the result-of-the-
moment. The real breakthrough in deep learning was to realize that
it's practical to go beyond the shallow - and -hidden layer
networks that dominated work until the mid-2000s. That really was
a significant breakthrough, opening up the exploration of much
more expressive models. But beyond that, the number of layers is
not of primary fundamental interest. Rather, the use of deeper
networks is a tool to use to help achieve other goals - like better
classification accuracies.

A word on procedure: In this section, we've smoothly moved
from single hidden-layer shallow networks to many-layer
convolutional networks. It's all seemed so easy! We make a change
and, for the most part, we get an improvement. If you start
experimenting, I can guarantee things won't always be so smooth.
The reason is that I've presented a cleaned-up narrative, omitting
many experiments - including many failed experiments. This
cleaned-up narrative will hopefully help you get clear on the basic
ideas. But it also runs the risk of conveying an incomplete
impression. Getting a good, working network can involve a lot of
trial and error, and occasional frustration. In practice, you should
expect to engage in quite a bit of experimentation. To speed that
process up you may find it helpful to revisit Chapter 3's discussion
of how to choose a neural network's hyper-parameters, and perhaps
also to look at some of the further reading suggested in that section.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 26/57

The code for our convolutional
networks
Alright, let's take a look at the code for our program, network3.py.
Structurally, it's similar to network2.py, the program we developed
in Chapter 3, although the details differ, due to the use of Theano.
We'll start by looking at the FullyConnectedLayer class, which is
similar to the layers studied earlier in the book. Here's the code
(discussion below):

class FullyConnectedLayer(object):

 def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
 self.n_in = n_in

 self.n_out = n_out

 self.activation_fn = activation_fn

 self.p_dropout = p_dropout

 # Initialize weights and biases

 self.w = theano.shared(

 np.asarray(

 np.random.normal(

 loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),

 dtype=theano.config.floatX),

   name='w', borrow=True)

 self.b = theano.shared(

 np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),

 dtype=theano.config.floatX),

   name='b', borrow=True)

 self.params = [self.w, self.b]

 def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
 self.inpt = inpt.reshape((mini_batch_size, self.n_in))

 self.output = self.activation_fn(

   (1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)

 self.y_out = T.argmax(self.output, axis=1)

 self.inpt_dropout = dropout_layer(

   inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)

 self.output_dropout = self.activation_fn(

T.dot(self.inpt_dropout, self.w) + self.b)

 def accuracy(self, y):
 "Return the accuracy for the mini-batch."

 return T.mean(T.eq(y, self.y_out))

Much of the __init__ method is self-explanatory, but a few remarks
may help clarify the code. As per usual, we randomly initialize the
weights and biases as normal random variables with suitable
standard deviations. The lines doing this look a little forbidding.
However, most of the complication is just loading the weights and
biases into what Theano calls shared variables. This ensures that
these variables can be processed on the GPU, if one is available. We
won't get too much into the details of this. If you're interested, you
can dig into the Theano documentation. Note also that this weight
and bias initialization are designed for the sigmoid activation

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 27/57

function (as discussed earlier). Ideally, we'd initialize the weights
and biases somewhat differently for activation functions such as the
tanh and rectified linear function. This is discussed further in
problems below. The __init__ method finishes with self.params =
[self.W, self.b]. This is a handy way to bundle up all the learnable
parameters associated to the layer. Later on, the Network.SGD
method will use params attributes to figure out what variables in a
Network instance can learn.

The set_inpt method is used to set the input to the layer, and to
compute the corresponding output. I use the name inpt rather than
input because input is a built-in function in Python, and messing
with built-ins tends to cause unpredictable behavior and difficult-
to-diagnose bugs. Note that we actually set the input in two
separate ways: as self.inpt and self.inpt_dropout. This is done
because during training we may want to use dropout. If that's the
case then we want to remove a fraction self.p_dropout of the
neurons. That's what the function dropout_layer in the second-last
line of the set_inpt method is doing. So self.inpt_dropout and
self.output_dropout are used during training, while self.inpt and
self.output are used for all other purposes, e.g., evaluating
accuracy on the validation and test data.

The ConvPoolLayer and SoftmaxLayer class definitions are similar to
FullyConnectedLayer. Indeed, they're so close that I won't excerpt
the code here. If you're interested you can look at the full listing for
network3.py, later in this section.

However, a couple of minor differences of detail are worth
mentioning. Most obviously, in both ConvPoolLayer and
SoftmaxLayer we compute the output activations in the way
appropriate to that layer type. Fortunately, Theano makes that easy,
providing built-in operations to compute convolutions, max-
pooling, and the softmax function.

Less obviously, when we introduced the softmax layer, we never
discussed how to initialize the weights and biases. Elsewhere we've
argued that for sigmoid layers we should initialize the weights using
suitably parameterized normal random variables. But that heuristic
argument was specific to sigmoid neurons (and, with some
amendment, to tanh neurons). However, there's no particular

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 28/57

reason the argument should apply to softmax layers. So there's no a
priori reason to apply that initialization again. Rather than do that,
I shall initialize all the weights and biases to be . This is a rather ad
hoc procedure, but works well enough in practice.

Okay, we've looked at all the layer classes. What about the Network
class? Let's start by looking at the __init__ method:

class Network(object):

 def __init__(self, layers, mini_batch_size):
 """Takes a list of `layers`, describing the network architecture, and

 a value for the `mini_batch_size` to be used during training

 by stochastic gradient descent.

 """

 self.layers = layers

 self.mini_batch_size = mini_batch_size

 self.params = [param for layer in self.layers for param in layer.params]
 self.x = T.matrix("x")  

 self.y = T.ivector("y")

 init_layer = self.layers[0]

 init_layer.set_inpt(self.x, self.x, self.mini_batch_size)

 for j in xrange(1, len(self.layers)):
 prev_layer, layer  = self.layers[j-1], self.layers[j]

 layer.set_inpt(

   prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)

 self.output = self.layers[-1].output

 self.output_dropout = self.layers[-1].output_dropout

Most of this is self-explanatory, or nearly so. The line self.params =
[param for layer in ...] bundles up the parameters for each layer
into a single list. As anticipated above, the Network.SGD method will
use self.params to figure out what variables in the Network can
learn. The lines self.x = T.matrix("x") and self.y =
T.ivector("y") define Theano symbolic variables named x and y.
These will be used to represent the input and desired output from
the network.

Now, this isn't a Theano tutorial, and so we won't get too deeply
into what it means that these are symbolic variables*. But the rough
idea is that these represent mathematical variables, not explicit
values. We can do all the usual things one would do with such
variables: add, subtract, and multiply them, apply functions, and so
on. Indeed, Theano provides many ways of manipulating such
symbolic variables, doing things like convolutions, max-pooling,
and so on. But the big win is the ability to do fast symbolic
differentiation, using a very general form of the backpropagation
algorithm. This is extremely useful for applying stochastic gradient
descent to a wide variety of network architectures. In particular, the

*The Theano documentation provides a good
introduction to Theano. And if you get stuck, you
may find it helpful to look at one of the other
tutorials available online. For instance, this
tutorial covers many basics.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 29/57

next few lines of code define symbolic outputs from the network.
We start by setting the input to the initial layer, with the line

        init_layer.set_inpt(self.x, self.x, self.mini_batch_size)

Note that the inputs are set one mini-batch at a time, which is why
the mini-batch size is there. Note also that we pass the input self.x
in twice: this is because we may use the network in two different
ways (with or without dropout). The for loop then propagates the
symbolic variable self.x forward through the layers of the Network.
This allows us to define the final output and output_dropout
attributes, which symbolically represent the output from the
Network.

Now that we've understood how a Network is initialized, let's look at
how it is trained, using the SGD method. The code looks lengthy, but
its structure is actually rather simple. Explanatory comments after
the code.

    def SGD(self, training_data, epochs, mini_batch_size, eta, 
            validation_data, test_data, lmbda=0.0):

        """Train the network using mini-batch stochastic gradient descent."""

        training_x, training_y = training_data

        validation_x, validation_y = validation_data

        test_x, test_y = test_data

        # compute number of minibatches for training, validation and testing

        num_training_batches = size(training_data)/mini_batch_size

        num_validation_batches = size(validation_data)/mini_batch_size

        num_test_batches = size(test_data)/mini_batch_size

        # define the (regularized) cost function, symbolic gradients, and updates

        l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
        cost = self.layers[-1].cost(self)+\

               0.5*lmbda*l2_norm_squared/num_training_batches

        grads = T.grad(cost, self.params)

        updates = [(param, param-eta*grad) 

                   for param, grad in zip(self.params, grads)]

        # define functions to train a mini-batch, and to compute the

        # accuracy in validation and test mini-batches.

        i = T.lscalar() # mini-batch index

        train_mb = theano.function(

            [i], cost, updates=updates,

            givens={

                self.x:

                training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

                self.y: 

                training_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

            })

        validate_mb_accuracy = theano.function(

            [i], self.layers[-1].accuracy(self.y),

            givens={

                self.x: 

                validation_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

                self.y: 

                validation_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

            })

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 30/57

 test_mb_accuracy = theano.function(

 [i], self.layers[-1].accuracy(self.y),

 givens={

 self.x: 

 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

 self.y: 

 test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

   })

 self.test_mb_predictions = theano.function(

 [i], self.layers[-1].y_out,

 givens={

 self.x: 

 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

   })

 # Do the actual training

 best_validation_accuracy = 0.0

 for epoch in xrange(epochs):
 for minibatch_index in xrange(num_training_batches):

 iteration = num_training_batches*epoch+minibatch_index

 if iteration 
    print("Training mini-batch number {0}".format(iteration))
 cost_ij = train_mb(minibatch_index)

 if (iteration+1) 
 validation_accuracy = np.mean(

    [validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
 print("Epoch {0}: validation accuracy {1:.2

   epoch, validation_accuracy))

 if validation_accuracy >= best_validation_accuracy:
 print("This is the best validation accuracy to date.")
 best_validation_accuracy = validation_accuracy

 best_iteration = iteration

 if test_data:
 test_accuracy = np.mean(

 [test_mb_accuracy(j) for j in xrange(num_test_batches)])
 print('The corresponding test accuracy is {0:.2
   test_accuracy))

 print("Finished training network.")
 print("Best validation accuracy of {0:.2
   best_validation_accuracy, best_iteration))

 print("Corresponding test accuracy of {0:.2

The first few lines are straightforward, separating the datasets into 
and  components, and computing the number of mini-batches
used in each dataset. The next few lines are more interesting, and
show some of what makes Theano fun to work with. Let's explicitly
excerpt the lines here:

 # define the (regularized) cost function, symbolic gradients, and updates

 l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
 cost = self.layers[-1].cost(self)+\

   0.5*lmbda*l2_norm_squared/num_training_batches

 grads = T.grad(cost, self.params)

 updates = [(param, param-eta*grad) 

 for param, grad in zip(self.params, grads)]

In these lines we symbolically set up the regularized log-likelihood
cost function, compute the corresponding derivatives in the
gradient function, as well as the corresponding parameter updates.
Theano lets us achieve all of this in just these few lines. The only
thing hidden is that computing the cost involves a call to the cost

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 31/57

method for the output layer; that code is elsewhere in network3.py.
But that code is short and simple, anyway. With all these things
defined, the stage is set to define the train_mini_batch function, a
Theano symbolic function which uses the updates to update the
Network parameters, given a mini-batch index. Similarly,
validate_mb_accuracy and test_mb_accuracy compute the accuracy
of the Network on any given mini-batch of validation or test data. By
averaging over these functions, we will be able to compute
accuracies on the entire validation and test data sets.

The remainder of the SGD method is self-explanatory - we simply
iterate over the epochs, repeatedly training the network on mini-
batches of training data, and computing the validation and test
accuracies.

Okay, we've now understood the most important pieces of code in
network3.py. Let's take a brief look at the entire program. You don't
need to read through this in detail, but you may enjoy glancing over
it, and perhaps diving down into any pieces that strike your fancy.
The best way to really understand it is, of course, by modifying it,
adding extra features, or refactoring anything you think could be
done more elegantly. After the code, there are some problems which
contain a few starter suggestions for things to do. Here's the code*:

"""network3.py

~~~~~~~~~~~~~~

A Theano-based program for training and running simple neural

networks.

Supports several layer types (fully connected, convolutional, max

pooling, softmax), and activation functions (sigmoid, tanh, and

rectified linear units, with more easily added).

When run on a CPU, this program is much faster than network.py and

network2.py. However, unlike network.py and network2.py it can also

be run on a GPU, which makes it faster still.

Because the code is based on Theano, the code is different in many

ways from network.py and network2.py. However, where possible I have

tried to maintain consistency with the earlier programs. In

particular, the API is similar to network2.py. Note that I have

focused on making the code simple, easily readable, and easily

modifiable. It is not optimized, and omits many desirable features.

This program incorporates ideas from the Theano documentation on

convolutional neural nets (notably,

http://deeplearning.net/tutorial/lenet.html), from Misha Denil's

implementation of dropout (https://github.com/mdenil/dropout), and

from Chris Olah (http://colah.github.io).

"""

*Using Theano on a GPU can be a little tricky. In
particular, it's easy to make the mistake of
pulling data off the GPU, which can slow things
down a lot. I've tried to avoid this, but wouldn't
be surprised if this code can be sped up further.
I'd appreciate hearing any tips for further
improvement (mn@michaelnielsen.org).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 32/57

Libraries

Standard library

import cPickle
import gzip

Third-party libraries

import numpy as np
import theano
import theano.tensor as T
from theano.tensor.nnet import conv
from theano.tensor.nnet import softmax
from theano.tensor import shared_randomstreams
from theano.tensor.signal import downsample

Activation functions for neurons

def linear(z): return z
def ReLU(z): return T.maximum(0.0, z)
from theano.tensor.nnet import sigmoid
from theano.tensor import tanh

Constants

GPU = True

if GPU:
 print "Trying to run under a GPU. If this is not desired, then modify "+\

 "network3.py\nto set the GPU flag to False."
 try: theano.config.device = 'gpu'
 except: pass # it's already set
 theano.config.floatX = 'float32'

else:
 print "Running with a CPU. If this is not desired, then the modify "+\

 "network3.py to set\nthe GPU flag to True."

Load the MNIST data

def load_data_shared(filename="../data/mnist.pkl.gz"):
 f = gzip.open(filename, 'rb')

 training_data, validation_data, test_data = cPickle.load(f)

f.close()

def shared(data):
 """Place the data into shared variables. This allows Theano to copy

 the data to the GPU, if one is available.

 """

 shared_x = theano.shared(

 np.asarray(data[0], dtype=theano.config.floatX), borrow=True)

 shared_y = theano.shared(

 np.asarray(data[1], dtype=theano.config.floatX), borrow=True)

 return shared_x, T.cast(shared_y, "int32")
 return [shared(training_data), shared(validation_data), shared(test_data)]

Main class used to construct and train networks

class Network(object):

 def __init__(self, layers, mini_batch_size):
 """Takes a list of `layers`, describing the network architecture, and

 a value for the `mini_batch_size` to be used during training

 by stochastic gradient descent.

 """

 self.layers = layers

 self.mini_batch_size = mini_batch_size

 self.params = [param for layer in self.layers for param in layer.params]
 self.x = T.matrix("x")

 self.y = T.ivector("y")

 init_layer = self.layers[0]

 init_layer.set_inpt(self.x, self.x, self.mini_batch_size)

 for j in xrange(1, len(self.layers)):
 prev_layer, layer = self.layers[j-1], self.layers[j]

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 33/57

 layer.set_inpt(

 prev_layer.output, prev_layer.output_dropout, self.mini_batch_size)

 self.output = self.layers[-1].output

 self.output_dropout = self.layers[-1].output_dropout

 def SGD(self, training_data, epochs, mini_batch_size, eta,
 validation_data, test_data, lmbda=0.0):

 """Train the network using mini-batch stochastic gradient descent."""

 training_x, training_y = training_data

 validation_x, validation_y = validation_data

 test_x, test_y = test_data

 # compute number of minibatches for training, validation and testing

 num_training_batches = size(training_data)/mini_batch_size

 num_validation_batches = size(validation_data)/mini_batch_size

 num_test_batches = size(test_data)/mini_batch_size

 # define the (regularized) cost function, symbolic gradients, and updates

 l2_norm_squared = sum([(layer.w**2).sum() for layer in self.layers])
 cost = self.layers[-1].cost(self)+\

 0.5*lmbda*l2_norm_squared/num_training_batches

 grads = T.grad(cost, self.params)

 updates = [(param, param-eta*grad)

 for param, grad in zip(self.params, grads)]

 # define functions to train a mini-batch, and to compute the

 # accuracy in validation and test mini-batches.

 i = T.lscalar() # mini-batch index

 train_mb = theano.function(

 [i], cost, updates=updates,

 givens={

 self.x:

 training_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

 self.y:

 training_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

 })

 validate_mb_accuracy = theano.function(

 [i], self.layers[-1].accuracy(self.y),

 givens={

 self.x:

 validation_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

 self.y:

 validation_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

 })

 test_mb_accuracy = theano.function(

 [i], self.layers[-1].accuracy(self.y),

 givens={

 self.x:

 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size],

 self.y:

 test_y[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

 })

 self.test_mb_predictions = theano.function(

 [i], self.layers[-1].y_out,

 givens={

 self.x:

 test_x[i*self.mini_batch_size: (i+1)*self.mini_batch_size]

 })

 # Do the actual training

 best_validation_accuracy = 0.0

 for epoch in xrange(epochs):
 for minibatch_index in xrange(num_training_batches):
 iteration = num_training_batches*epoch+minibatch_index

 if iteration % 1000 == 0:
 print("Training mini-batch number {0}".format(iteration))
 cost_ij = train_mb(minibatch_index)

 if (iteration+1) % num_training_batches == 0:
 validation_accuracy = np.mean(

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 34/57

 [validate_mb_accuracy(j) for j in xrange(num_validation_batches)])
 print("Epoch {0}: validation accuracy {1:.2%}".format(
 epoch, validation_accuracy))

 if validation_accuracy >= best_validation_accuracy:
 print("This is the best validation accuracy to date.")
 best_validation_accuracy = validation_accuracy

 best_iteration = iteration

 if test_data:
 test_accuracy = np.mean(

 [test_mb_accuracy(j) for j in xrange(num_test_batches)])
 print('The corresponding test accuracy is {0:.2%}'.format(
 test_accuracy))

 print("Finished training network.")
 print("Best validation accuracy of {0:.2%} obtained at iteration {1}".format(
 best_validation_accuracy, best_iteration))

 print("Corresponding test accuracy of {0:.2%}".format(test_accuracy))

Define layer types

class ConvPoolLayer(object):
 """Used to create a combination of a convolutional and a max-pooling

 layer. A more sophisticated implementation would separate the

 two, but for our purposes we'll always use them together, and it

 simplifies the code, so it makes sense to combine them.

 """

 def __init__(self, filter_shape, image_shape, poolsize=(2, 2),
 activation_fn=sigmoid):

 """`filter_shape` is a tuple of length 4, whose entries are the number

 of filters, the number of input feature maps, the filter height, and the

 filter width.

 `image_shape` is a tuple of length 4, whose entries are the

 mini-batch size, the number of input feature maps, the image

 height, and the image width.

 `poolsize` is a tuple of length 2, whose entries are the y and

 x pooling sizes.

 """

 self.filter_shape = filter_shape

 self.image_shape = image_shape

 self.poolsize = poolsize

 self.activation_fn=activation_fn

 # initialize weights and biases

 n_out = (filter_shape[0]*np.prod(filter_shape[2:])/np.prod(poolsize))

 self.w = theano.shared(

 np.asarray(

 np.random.normal(loc=0, scale=np.sqrt(1.0/n_out), size=filter_shape),

 dtype=theano.config.floatX),

 borrow=True)

 self.b = theano.shared(

 np.asarray(

 np.random.normal(loc=0, scale=1.0, size=(filter_shape[0],)),

 dtype=theano.config.floatX),

 borrow=True)

 self.params = [self.w, self.b]

 def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
 self.inpt = inpt.reshape(self.image_shape)

 conv_out = conv.conv2d(

 input=self.inpt, filters=self.w, filter_shape=self.filter_shape,

 image_shape=self.image_shape)

 pooled_out = downsample.max_pool_2d(

 input=conv_out, ds=self.poolsize, ignore_border=True)

 self.output = self.activation_fn(

 pooled_out + self.b.dimshuffle('x', 0, 'x', 'x'))

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 35/57

 self.output_dropout = self.output # no dropout in the convolutional layers

class FullyConnectedLayer(object):

 def __init__(self, n_in, n_out, activation_fn=sigmoid, p_dropout=0.0):
 self.n_in = n_in

 self.n_out = n_out

 self.activation_fn = activation_fn

 self.p_dropout = p_dropout

 # Initialize weights and biases

 self.w = theano.shared(

 np.asarray(

 np.random.normal(

 loc=0.0, scale=np.sqrt(1.0/n_out), size=(n_in, n_out)),

 dtype=theano.config.floatX),

 name='w', borrow=True)

 self.b = theano.shared(

 np.asarray(np.random.normal(loc=0.0, scale=1.0, size=(n_out,)),

 dtype=theano.config.floatX),

 name='b', borrow=True)

 self.params = [self.w, self.b]

 def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
 self.inpt = inpt.reshape((mini_batch_size, self.n_in))

 self.output = self.activation_fn(

 (1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)

 self.y_out = T.argmax(self.output, axis=1)

 self.inpt_dropout = dropout_layer(

 inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)

 self.output_dropout = self.activation_fn(

 T.dot(self.inpt_dropout, self.w) + self.b)

 def accuracy(self, y):
 "Return the accuracy for the mini-batch."

 return T.mean(T.eq(y, self.y_out))

class SoftmaxLayer(object):

 def __init__(self, n_in, n_out, p_dropout=0.0):
 self.n_in = n_in

 self.n_out = n_out

 self.p_dropout = p_dropout

 # Initialize weights and biases

 self.w = theano.shared(

 np.zeros((n_in, n_out), dtype=theano.config.floatX),

 name='w', borrow=True)

 self.b = theano.shared(

 np.zeros((n_out,), dtype=theano.config.floatX),

 name='b', borrow=True)

 self.params = [self.w, self.b]

 def set_inpt(self, inpt, inpt_dropout, mini_batch_size):
 self.inpt = inpt.reshape((mini_batch_size, self.n_in))

 self.output = softmax((1-self.p_dropout)*T.dot(self.inpt, self.w) + self.b)

 self.y_out = T.argmax(self.output, axis=1)

 self.inpt_dropout = dropout_layer(

 inpt_dropout.reshape((mini_batch_size, self.n_in)), self.p_dropout)

 self.output_dropout = softmax(T.dot(self.inpt_dropout, self.w) + self.b)

 def cost(self, net):
 "Return the log-likelihood cost."

 return -T.mean(T.log(self.output_dropout)[T.arange(net.y.shape[0]), net.y])

 def accuracy(self, y):
 "Return the accuracy for the mini-batch."

 return T.mean(T.eq(y, self.y_out))

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 36/57

Miscellanea

def size(data):
 "Return the size of the dataset `data`."

 return data[0].get_value(borrow=True).shape[0]

def dropout_layer(layer, p_dropout):
 srng = shared_randomstreams.RandomStreams(

 np.random.RandomState(0).randint(999999))

 mask = srng.binomial(n=1, p=1-p_dropout, size=layer.shape)

 return layer*T.cast(mask, theano.config.floatX)

Problems

At present, the SGD method requires the user to manually
choose the number of epochs to train for. Earlier in the book
we discussed an automated way of selecting the number of
epochs to train for, known as early stopping. Modify
network3.py to implement early stopping.

Add a Network method to return the accuracy on an arbitrary
data set.

Modify the SGD method to allow the learning rate to be a
function of the epoch number. Hint: After working on this
problem for a while, you may find it useful to see the

discussion at this link.

Earlier in the chapter I described a technique for expanding the
training data by applying (small) rotations, skewing, and
translation. Modify network3.py to incorporate all these
techniques. Note: Unless you have a tremendous amount of
memory, it is not practical to explicitly generate the entire

expanded data set. So you should consider alternate

approaches.

Add the ability to load and save networks to network3.py.

A shortcoming of the current code is that it provides few
diagnostic tools. Can you think of any diagnostics to add that
would make it easier to understand to what extent a network is
overfitting? Add them.

We've used the same initialization procedure for rectified linear
units as for sigmoid (and tanh) neurons. Our argument for that
initialization was specific to the sigmoid function. Consider a
network made entirely of rectified linear units (including
outputs). Show that rescaling all the weights in the network by

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 37/57

a constant factor simply rescales the outputs by a factor .
How does this change if the final layer is a softmax? What do
you think of using the sigmoid initialization procedure for the
rectified linear units? Can you think of a better initialization
procedure? Note: This is a very open-ended problem, not
something with a simple self-contained answer. Still,

considering the problem will help you better understand

networks containing rectified linear units.

Our analysis of the unstable gradient problem was for sigmoid
neurons. How does the analysis change for networks made up
of rectified linear units? Can you think of a good way of
modifying such a network so it doesn't suffer from the unstable
gradient problem? Note: The word good in the second part of
this makes the problem a research problem. It's actually easy

to think of ways of making such modifications. But I haven't

investigated in enough depth to know of a really good

technique.

Recent progress in image recognition
In 1998, the year MNIST was introduced, it took weeks to train a
state-of-the-art workstation to achieve accuracies substantially
worse than those we can achieve using a GPU and less than an hour
of training. Thus, MNIST is no longer a problem that pushes the
limits of available technique; rather, the speed of training means
that it is a problem good for teaching and learning purposes.
Meanwhile, the focus of research has moved on, and modern work
involves much more challenging image recognition problems. In
this section, I briefly describe some recent work on image
recognition using neural networks.

The section is different to most of the book. Through the book I've
focused on ideas likely to be of lasting interest - ideas such as
backpropagation, regularization, and convolutional networks. I've
tried to avoid results which are fashionable as I write, but whose
long-term value is unknown. In science, such results are more often
than not ephemera which fade and have little lasting impact. Given
this, a skeptic might say: "well, surely the recent progress in image
recognition is an example of such ephemera? In another two or
three years, things will have moved on. So surely these results are

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 38/57

only of interest to a few specialists who want to compete at the
absolute frontier? Why bother discussing it?"

Such a skeptic is right that some of the finer details of recent papers
will gradually diminish in perceived importance. With that said, the
past few years have seen extraordinary improvements using deep
nets to attack extremely difficult image recognition tasks. Imagine a
historian of science writing about computer vision in the year 2100.
They will identify the years 2011 to 2015 (and probably a few years
beyond) as a time of huge breakthroughs, driven by deep
convolutional nets. That doesn't mean deep convolutional nets will
still be used in 2100, much less detailed ideas such as dropout,
rectified linear units, and so on. But it does mean that an important
transition is taking place, right now, in the history of ideas. It's a bit
like watching the discovery of the atom, or the invention of
antibiotics: invention and discovery on a historic scale. And so
while we won't dig down deep into details, it's worth getting some
idea of the exciting discoveries currently being made.

The 2012 LRMD paper: Let me start with a 2012 paper* from a
group of researchers from Stanford and Google. I'll refer to this
paper as LRMD, after the last names of the first four authors.
LRMD used a neural network to classify images from ImageNet, a
very challenging image recognition problem. The 2011 ImageNet
data that they used included 16 million full color images, in 20
thousand categories. The images were crawled from the open net,
and classified by workers from Amazon's Mechanical Turk service.
Here's a few ImageNet images*:

These are, respectively, in the categories for beading plane, brown
root rot fungus, scalded milk, and the common roundworm. If
you're looking for a challenge, I encourage you to visit ImageNet's
list of hand tools, which distinguishes between beading planes,
block planes, chamfer planes, and about a dozen other types of
plane, amongst other categories. I don't know about you, but I
cannot confidently distinguish between all these tool types. This is
obviously a much more challenging image recognition task than

*Building high-level features using large scale
unsupervised learning, by Quoc Le, Marc'Aurelio
Ranzato, Rajat Monga, Matthieu Devin, Kai
Chen, Greg Corrado, Jeff Dean, and Andrew Ng
(2012). Note that the detailed architecture of the
network used in the paper differed in many
details from the deep convolutional networks
we've been studying. Broadly speaking, however,
LRMD is based on many similar ideas.

*These are from the 2014 dataset, which is
somewhat changed from 2011. Qualitatively,
however, the dataset is extremely similar. Details
about ImageNet are available in the original
ImageNet paper, ImageNet: a large-scale
hierarchical image database, by Jia Deng, Wei
Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei (2009).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 39/57

MNIST! LRMD's network obtained a respectable percent
accuracy for correctly classifying ImageNet images. That may not
sound impressive, but it was a huge improvement over the previous
best result of percent accuracy. That jump suggested that neural
networks might offer a powerful approach to very challenging
image recognition tasks, such as ImageNet.

The 2012 KSH paper: The work of LRMD was followed by a 2012
paper of Krizhevsky, Sutskever and Hinton (KSH)*. KSH trained
and tested a deep convolutional neural network using a restricted
subset of the ImageNet data. The subset they used came from a
popular machine learning competition - the ImageNet Large-Scale
Visual Recognition Challenge (ILSVRC). Using a competition
dataset gave them a good way of comparing their approach to other
leading techniques. The ILSVRC-2012 training set contained about
1.2 million ImageNet images, drawn from 1,000 categories. The
validation and test sets contained 50,000 and 150,000 images,
respectively, drawn from the same 1,000 categories.

One difficulty in running the ILSVRC competition is that many
ImageNet images contain multiple objects. Suppose an image
shows a labrador retriever chasing a soccer ball. The so-called
"correct" ImageNet classification of the image might be as a
labrador retriever. Should an algorithm be penalized if it labels the
image as a soccer ball? Because of this ambiguity, an algorithm was
considered correct if the actual ImageNet classification was among
the classifications the algorithm considered most likely. By this
top- criterion, KSH's deep convolutional network achieved an
accuracy of percent, vastly better than the next-best contest
entry, which achieved an accuracy of percent. Using the more
restrictive metric of getting the label exactly right, KSH's network
achieved an accuracy of percent.

It's worth briefly describing KSH's network, since it has inspired
much subsequent work. It's also, as we shall see, closely related to
the networks we trained earlier in this chapter, albeit more
elaborate. KSH used a deep convolutional neural network, trained
on two GPUs. They used two GPUs because the particular type of
GPU they were using (an NVIDIA GeForce GTX 580) didn't have
enough on-chip memory to store their entire network. So they split
the network into two parts, partitioned across the two GPUs.

*ImageNet classification with deep convolutional
neural networks, by Alex Krizhevsky, Ilya
Sutskever, and Geoffrey E. Hinton (2012).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 40/57

The KSH network has layers of hidden neurons. The first hidden
layers are convolutional layers (some with max-pooling), while the
next layers are fully-connected layers. The ouput layer is a -
unit softmax layer, corresponding to the image classes. Here's
a sketch of the network, taken from the KSH paper*. The details are
explained below. Note that many layers are split into parts,
corresponding to the GPUs.

The input layer contains neurons, representing the
RGB values for a image. Recall that, as mentioned earlier,
ImageNet contains images of varying resolution. This poses a
problem, since a neural network's input layer is usually of a fixed
size. KSH dealt with this by rescaling each image so the shorter side
had length . They then cropped out a area in the
center of the rescaled image. Finally, KSH extracted random

 subimages (and horizontal reflections) from the
images. They did this random cropping as a way of expanding the
training data, and thus reducing overfitting. This is particularly
helpful in a large network such as KSH's. It was these
images which were used as inputs to the network. In most cases the
cropped image still contains the main object from the uncropped
image.

Moving on to the hidden layers in KSH's network, the first hidden
layer is a convolutional layer, with a max-pooling step. It uses local
receptive fields of size , and a stride length of pixels. There
are a total of feature maps. The feature maps are split into two
groups of each, with the first feature maps residing on one
GPU, and the second 8 feature maps residing on the other GPU.
The max-pooling in this and later layers is done in regions, but
the pooling regions are allowed to overlap, and are just pixels
apart.

*Thanks to Ilya Sutskever.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 41/57

The second hidden layer is also a convolutional layer, with a max-
pooling step. It uses local receptive fields, and there's a total of

 feature maps, split into on each GPU. Note that the feature
maps only use input channels, not the full output from the
previous layer (as would usually be the case). This is because any
single feature map only uses inputs from the same GPU. In this
sense the network departs from the convolutional architecture we
described earlier in the chapter, though obviously the basic idea is
still the same.

The third, fourth and fifth hidden layers are convolutional layers,
but unlike the previous layers, they do not involve max-pooling.
Their respectives parameters are: (3) feature maps, with
local receptive fields, and input channels; (4) feature maps,
with local receptive fields, and input channels; and (5)
feature maps, with local receptive fields, and input
channels. Note that the third layer involves some inter-GPU
communication (as depicted in the figure) in order that the feature
maps use all input channels.

The sixth and seventh hidden layers are fully-connected layers, with
 neurons in each layer.

The output layer is a -unit softmax layer.

The KSH network takes advantage of many techniques. Instead of
using the sigmoid or tanh activation functions, KSH use rectified
linear units, which sped up training significantly. KSH's network
had roughly 60 million learned parameters, and was thus, even with
the large training set, susceptible to overfitting. To overcome this,
they expanded the training set using the random cropping strategy
we discussed above. They also further addressed overfitting by
using a variant of l2 regularization, and dropout. The network itself
was trained using momentum-based mini-batch stochastic gradient
descent.

That's an overview of many of the core ideas in the KSH paper. I've
omitted some details, for which you should look at the paper. You
can also look at Alex Krizhevsky's cuda-convnet (and successors),
which contains code implementing many of the ideas. A Theano-
based implementation has also been developed*, with the code
available here. The code is recognizably along similar lines to that

*Theano-based large-scale visual recognition
with multiple GPUs, by Weiguang Ding, Ruoyan

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 42/57

developed in this chapter, although the use of multiple GPUs
complicates things somewhat. The Caffe neural nets framework also
includes a version of the KSH network, see their Model Zoo for
details.

The 2014 ILSVRC competition: Since 2012, rapid progress
continues to be made. Consider the 2014 ILSVRC competition. As
in 2012, it involved a training set of million images, in
categories, and the figure of merit was whether the top predictions
included the correct category. The winning team, based primarily at
Google*, used a deep convolutional network with layers of
neurons. They called their network GoogLeNet, as a homage to
LeNet-5. GoogLeNet achieved a top-5 accuracy of percent, a
giant improvement over the 2013 winner (Clarifai, with
percent), and the 2012 winner (KSH, with percent).

Just how good is GoogLeNet's percent accuracy? In 2014 a
team of researchers wrote a survey paper about the ILSVRC
competition*. One of the questions they address is how well
humans perform on ILSVRC. To do this, they built a system which
lets humans classify ILSVRC images. As one of the authors, Andrej
Karpathy, explains in an informative blog post, it was a lot of
trouble to get the humans up to GoogLeNet's performance:

...the task of labeling images with 5 out of 1000 categories
quickly turned out to be extremely challenging, even for
some friends in the lab who have been working on ILSVRC
and its classes for a while. First we thought we would put it
up on [Amazon Mechanical Turk]. Then we thought we
could recruit paid undergrads. Then I organized a labeling
party of intense labeling effort only among the (expert
labelers) in our lab. Then I developed a modified interface
that used GoogLeNet predictions to prune the number of
categories from 1000 to only about 100. It was still too
hard - people kept missing categories and getting up to
ranges of 13-15% error rates. In the end I realized that to
get anywhere competitively close to GoogLeNet, it was
most efficient if I sat down and went through the painfully
long training process and the subsequent careful
annotation process myself... The labeling happened at a
rate of about 1 per minute, but this decreased over time...

Wang, Fei Mao, and Graham Taylor (2014).

*Going deeper with convolutions, by Christian
Szegedy, Wei Liu, Yangqing Jia, Pierre
Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich (2014).

*ImageNet large scale visual recognition
challenge, by Olga Russakovsky, Jia Deng, Hao
Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael Bernstein, Alexander C. Berg,
and Li Fei-Fei (2014).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 43/57

Some images are easily recognized, while some images
(such as those of fine-grained breeds of dogs, birds, or
monkeys) can require multiple minutes of concentrated
effort. I became very good at identifying breeds of dogs...
Based on the sample of images I worked on, the
GoogLeNet classification error turned out to be 6.8%... My
own error in the end turned out to be 5.1%, approximately
1.7% better.

In other words, an expert human, working painstakingly, was with
great effort able to narrowly beat the deep neural network. In fact,
Karpathy reports that a second human expert, trained on a smaller
sample of images, was only able to attain a percent top-5 error
rate, significantly below GoogLeNet's performance. About half the
errors were due to the expert "failing to spot and consider the
ground truth label as an option".

These are astonishing results. Indeed, since this work, several
teams have reported systems whose top-5 error rate is actually
better than 5.1%. This has sometimes been reported in the media as
the systems having better-than-human vision. While the results are
genuinely exciting, there are many caveats that make it misleading
to think of the systems as having better-than-human vision. The
ILSVRC challenge is in many ways a rather limited problem - a
crawl of the open web is not necessarily representative of images
found in applications! And, of course, the top- criterion is quite
artificial. We are still a long way from solving the problem of image
recognition or, more broadly, computer vision. Still, it's extremely
encouraging to see so much progress made on such a challenging
problem, over just a few years.

Other activity: I've focused on ImageNet, but there's a
considerable amount of other activity using neural nets to do image
recognition. Let me briefly describe a few interesting recent results,
just to give the flavour of some current work.

One encouraging practical set of results comes from a team at
Google, who applied deep convolutional networks to the problem of
recognizing street numbers in Google's Street View imagery*. In
their paper, they report detecting and automatically transcribing
nearly 100 million street numbers at an accuracy similar to that of a

*Multi-digit Number Recognition from Street
View Imagery using Deep Convolutional Neural
Networks, by Ian J. Goodfellow, Yaroslav
Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay
Shet (2013).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 44/57

human operator. The system is fast: their system transcribed all of
Street View's images of street numbers in France in less that an
hour! They say: "Having this new dataset significantly increased the
geocoding quality of Google Maps in several countries especially the
ones that did not already have other sources of good geocoding."
And they go on to make the broader claim: "We believe with this
model we have solved [optical character recognition] for short
sequences [of characters] for many applications."

I've perhaps given the impression that it's all a parade of
encouraging results. Of course, some of the most interesting work
reports on fundamental things we don't yet understand. For
instance, a 2013 paper* showed that deep networks may suffer from
what are effectively blind spots. Consider the lines of images below.
On the left is an ImageNet image classified correctly by their
network. On the right is a slightly perturbed image (the
perturbation is in the middle) which is classified incorrectly by the
network. The authors found that there are such "adversarial"
images for every sample image, not just a few special ones.

This is a disturbing result. The paper used a network based on the
same code as KSH's network - that is, just the type of network that
is being increasingly widely used. While such neural networks
compute functions which are, in principle, continuous, results like
this suggest that in practice they're likely to compute functions
which are very nearly discontinuous. Worse, they'll be

*Intriguing properties of neural networks, by
Christian Szegedy, Wojciech Zaremba, Ilya
Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus (2013)

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 45/57

discontinuous in ways that violate our intuition about what is
reasonable behavior. That's concerning. Furthermore, it's not yet
well understood what's causing the discontinuity: is it something
about the loss function? The activation functions used? The
architecture of the network? Something else? We don't yet know.

Now, these results are not quite as bad as they sound. Although
such adversarial images are common, they're also unlikely in
practice. As the paper notes:

The existence of the adversarial negatives appears to be in
contradiction with the network’s ability to achieve high
generalization performance. Indeed, if the network can
generalize well, how can it be confused by these
adversarial negatives, which are indistinguishable from the
regular examples? The explanation is that the set of
adversarial negatives is of extremely low probability, and
thus is never (or rarely) observed in the test set, yet it is
dense (much like the rational numbers), and so it is found
near virtually every test case.

Nonetheless, it is distressing that we understand neural nets so
poorly that this kind of result should be a recent discovery. Of
course, a major benefit of the results is that they have stimulated
much followup work. For example, one recent paper* shows that
given a trained network it's possible to generate images which look
to a human like white noise, but which the network classifies as
being in a known category with a very high degree of confidence.
This is another demonstration that we have a long way to go in
understanding neural networks and their use in image recognition.

Despite results like this, the overall picture is encouraging. We're
seeing rapid progress on extremely difficult benchmarks, like
ImageNet. We're also seeing rapid progress in the solution of real-
world problems, like recognizing street numbers in StreetView. But
while this is encouraging it's not enough just to see improvements
on benchmarks, or even real-world applications. There are
fundamental phenomena which we still understand poorly, such as
the existence of adversarial images. When such fundamental
problems are still being discovered (never mind solved), it is
premature to say that we're near solving the problem of image

*Deep Neural Networks are Easily Fooled: High
Confidence Predictions for Unrecognizable
Images, by Anh Nguyen, Jason Yosinski, and Jeff
Clune (2014).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 46/57

recognition. At the same time such problems are an exciting
stimulus to further work.

Other approaches to deep neural nets
Through this book, we've concentrated on a single problem:
classifying the MNIST digits. It's a juicy problem which forced us to
understand many powerful ideas: stochastic gradient descent,
backpropagation, convolutional nets, regularization, and more. But
it's also a narrow problem. If you read the neural networks
literature, you'll run into many ideas we haven't discussed:
recurrent neural networks, Boltzmann machines, generative
models, transfer learning, reinforcement learning, and so on, on
and on and on! Neural networks is a vast field. However, many
important ideas are variations on ideas we've already discussed,
and can be understood with a little effort. In this section I provide a
glimpse of these as yet unseen vistas. The discussion isn't detailed,
nor comprehensive - that would greatly expand the book. Rather,
it's impressionistic, an attempt to evoke the conceptual richness of
the field, and to relate some of those riches to what we've already
seen. Through the section, I'll provide a few links to other sources,
as entrees to learn more. Of course, many of these links will soon be
superseded, and you may wish to search out more recent literature.
That point notwithstanding, I expect many of the underlying ideas
to be of lasting interest.

Recurrent neural networks (RNNs): In the feedforward nets
we've been using there is a single input which completely
determines the activations of all the neurons through the remaining
layers. It's a very static picture: everything in the network is fixed,
with a frozen, crystalline quality to it. But suppose we allow the
elements in the network to keep changing in a dynamic way. For
instance, the behaviour of hidden neurons might not just be
determined by the activations in previous hidden layers, but also by
the activations at earlier times. Indeed, a neuron's activation might
be determined in part by its own activation at an earlier time. That's
certainly not what happens in a feedforward network. Or perhaps
the activations of hidden and output neurons won't be determined
just by the current input to the network, but also by earlier inputs.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 47/57

Neural networks with this kind of time-varying behaviour are
known as recurrent neural networks or RNNs. There are many
different ways of mathematically formalizing the informal
description of recurrent nets given in the last paragraph. You can
get the flavour of some of these mathematical models by glancing at
the Wikipedia article on RNNs. As I write, that page lists no fewer
than 13 different models. But mathematical details aside, the broad
idea is that RNNs are neural networks in which there is some
notion of dynamic change over time. And, not surprisingly, they're
particularly useful in analysing data or processes that change over
time. Such data and processes arise naturally in problems such as
speech or natural language, for example.

One way RNNs are currently being used is to connect neural
networks more closely to traditional ways of thinking about
algorithms, ways of thinking based on concepts such as Turing
machines and (conventional) programming languages. A 2014
paper developed an RNN which could take as input a character-by-
character description of a (very, very simple!) Python program, and
use that description to predict the output. Informally, the network
is learning to "understand" certain Python programs. A second
paper, also from 2014, used RNNs as a starting point to develop
what they called a neural Turing machine (NTM). This is a
universal computer whose entire structure can be trained using
gradient descent. They trained their NTM to infer algorithms for
several simple problems, such as sorting and copying.

As it stands, these are extremely simple toy models. Learning to
execute the Python program print(398345+42598) doesn't make a
network into a full-fledged Python interpreter! It's not clear how
much further it will be possible to push the ideas. Still, the results
are intriguing. Historically, neural networks have done well at
pattern recognition problems where conventional algorithmic
approaches have trouble. Vice versa, conventional algorithmic
approaches are good at solving problems that neural nets aren't so
good at. No-one today implements a web server or a database
program using a neural network! It'd be great to develop unified
models that integrate the strengths of both neural networks and
more traditional approaches to algorithms. RNNs and ideas
inspired by RNNs may help us do that.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 48/57

RNNs have also been used in recent years to attack many other
problems. They've been particularly useful in speech recognition.
Approaches based on RNNs have, for example, set records for the
accuracy of phoneme recognition. They've also been used to develop
improved models of the language people use while speaking. Better
language models help disambiguate utterances that otherwise
sound alike. A good language model will, for example, tell us that
"to infinity and beyond" is much more likely than "two infinity and
beyond", despite the fact that the phrases sound identical. RNNs
have been used to set new records for certain language benchmarks.

This work is, incidentally, part of a broader use of deep neural nets
of all types, not just RNNs, in speech recognition. For example, an
approach based on deep nets has achieved outstanding results on
large vocabulary continuous speech recognition. And another
system based on deep nets has been deployed in Google's Android
operating system (for related technical work, see Vincent
Vanhoucke's 2012-2015 papers).

I've said a little about what RNNs can do, but not so much about
how they work. It perhaps won't surprise you to learn that many of
the ideas used in feedforward networks can also be used in RNNs.
In particular, we can train RNNs using straightforward
modifications to gradient descent and backpropagation. Many other
ideas used in feedforward nets, ranging from regularization
techniques to convolutions to the activation and cost functions
used, are also useful in recurrent nets. And so many of the
techniques we've developed in the book can be adapted for use with
RNNs.

Long short-term memory units (LSTMs): One challenge
affecting RNNs is that early models turned out to be very difficult to
train, harder even than deep feedforward networks. The reason is
the unstable gradient problem discussed in Chapter 5. Recall that
the usual manifestation of this problem is that the gradient gets
smaller and smaller as it is propagated back through layers. This
makes learning in early layers extremely slow. The problem actually
gets worse in RNNs, since gradients aren't just propagated
backward through layers, they're propagated backward through
time. If the network runs for a long time that can make the gradient
extremely unstable and hard to learn from. Fortunately, it's possible

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 49/57

to incorporate an idea known as long short-term memory units
(LSTMs) into RNNs. The units were introduced by Hochreiter and
Schmidhuber in 1997 with the explicit purpose of helping address
the unstable gradient problem. LSTMs make it much easier to get
good results when training RNNs, and many recent papers
(including many that I linked above) make use of LSTMs or related
ideas.

Deep belief nets, generative models, and Boltzmann
machines: Modern interest in deep learning began in 2006, with
papers explaining how to train a type of neural network known as a
deep belief network (DBN)*. DBNs were influential for several
years, but have since lessened in popularity, while models such as
feedforward networks and recurrent neural nets have become
fashionable. Despite this, DBNs have several properties that make
them interesting.

One reason DBNs are interesting is that they're an example of
what's called a generative model. In a feedforward network, we
specify the input activations, and they determine the activations of
the feature neurons later in the network. A generative model like a
DBN can be used in a similar way, but it's also possible to specify
the values of some of the feature neurons and then "run the
network backward", generating values for the input activations.
More concretely, a DBN trained on images of handwritten digits can
(potentially, and with some care) also be used to generate images
that look like handwritten digits. In other words, the DBN would in
some sense be learning to write. In this, a generative model is much
like the human brain: not only can it read digits, it can also write
them. In Geoffrey Hinton's memorable phrase, to recognize shapes,
first learn to generate images.

A second reason DBNs are interesting is that they can do
unsupervised and semi-supervised learning. For instance, when
trained with image data, DBNs can learn useful features for
understanding other images, even if the training images are
unlabelled. And the ability to do unsupervised learning is extremely
interesting both for fundamental scientific reasons, and - if it can be
made to work well enough - for practical applications.

*See A fast learning algorithm for deep belief
nets, by Geoffrey Hinton, Simon Osindero, and
Yee-Whye Teh (2006), as well as the related
work in Reducing the dimensionality of data
with neural networks, by Geoffrey Hinton and
Ruslan Salakhutdinov (2006).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 50/57

Given these attractive features, why have DBNs lessened in
popularity as models for deep learning? Part of the reason is that
models such as feedforward and recurrent nets have achieved many
spectacular results, such as their breakthroughs on image and
speech recognition benchmarks. It's not surprising and quite right
that there's now lots of attention being paid to these models.
There's an unfortunate corollary, however. The marketplace of
ideas often functions in a winner-take-all fashion, with nearly all
attention going to the current fashion-of-the-moment in any given
area. It can become extremely difficult for people to work on
momentarily unfashionable ideas, even when those ideas are
obviously of real long-term interest. My personal opinion is that
DBNs and other generative models likely deserve more attention
than they are currently receiving. And I won't be surprised if DBNs
or a related model one day surpass the currently fashionable
models. For an introduction to DBNs, see this overview. I've also
found this article helpful. It isn't primarily about deep belief nets,
per se, but does contain much useful information about restricted
Boltzmann machines, which are a key component of DBNs.

Other ideas: What else is going on in neural networks and deep
learning? Well, there's a huge amount of other fascinating work.
Active areas of research include using neural networks to do natural
language processing (see also this informative review paper),
machine translation, as well as perhaps more surprising
applications such as music informatics. There are, of course, many
other areas too. In many cases, having read this book you should be
able to begin following recent work, although (of course) you'll need
to fill in gaps in presumed background knowledge.

Let me finish this section by mentioning a particularly fun paper. It
combines deep convolutional networks with a technique known as
reinforcement learning in order to learn to play video games well
(see also this followup). The idea is to use the convolutional
network to simplify the pixel data from the game screen, turning it
into a simpler set of features, which can be used to decide which
action to take: "go left", "go down", "fire", and so on. What is
particularly interesting is that a single network learned to play
seven different classic video games pretty well, outperforming
human experts on three of the games. Now, this all sounds like a
stunt, and there's no doubt the paper was well marketed, with the

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 51/57

title "Playing Atari with reinforcement learning". But looking past
the surface gloss, consider that this system is taking raw pixel data -
it doesn't even know the game rules! - and from that data learning
to do high-quality decision-making in several very different and
very adversarial environments, each with its own complex set of
rules. That's pretty neat.

On the future of neural networks
Intention-driven user interfaces: There's an old joke in which
an impatient professor tells a confused student: "don't listen to
what I say; listen to what I mean". Historically, computers have
often been, like the confused student, in the dark about what their
users mean. But this is changing. I still remember my surprise the
first time I misspelled a Google search query, only to have Google
say "Did you mean [corrected query]?" and to offer the
corresponding search results. Google CEO Larry Page once
described the perfect search engine as understanding exactly what
[your queries] mean and giving you back exactly what you want.

This is a vision of an intention-driven user interface. In this vision,
instead of responding to users' literal queries, search will use
machine learning to take vague user input, discern precisely what
was meant, and take action on the basis of those insights.

The idea of intention-driven interfaces can be applied far more
broadly than search. Over the next few decades, thousands of
companies will build products which use machine learning to make
user interfaces that can tolerate imprecision, while discerning and
acting on the user's true intent. We're already seeing early examples
of such intention-driven interfaces: Apple's Siri; Wolfram Alpha;
IBM's Watson; systems which can annotate photos and videos; and
much more.

Most of these products will fail. Inspired user interface design is
hard, and I expect many companies will take powerful machine
learning technology and use it to build insipid user interfaces. The
best machine learning in the world won't help if your user interface
concept stinks. But there will be a residue of products which
succeed. Over time that will cause a profound change in how we
relate to computers. Not so long ago - let's say, 2005 - users took it

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 52/57

for granted that they needed precision in most interactions with
computers. Indeed, computer literacy to a great extent meant
internalizing the idea that computers are extremely literal; a single
misplaced semi-colon may completely change the nature of an
interaction with a computer. But over the next few decades I expect
we'll develop many successful intention-driven user interfaces, and
that will dramatically change what we expect when interacting with
computers.

Machine learning, data science, and the virtuous circle of
innovation: Of course, machine learning isn't just being used to
build intention-driven interfaces. Another notable application is in
data science, where machine learning is used to find the "known
unknowns" hidden in data. This is already a fashionable area, and
much has been written about it, so I won't say much. But I do want
to mention one consequence of this fashion that is not so often
remarked: over the long run it's possible the biggest breakthrough
in machine learning won't be any single conceptual breakthrough.
Rather, the biggest breakthrough will be that machine learning
research becomes profitable, through applications to data science
and other areas. If a company can invest 1 dollar in machine
learning research and get 1 dollar and 10 cents back reasonably
rapidly, then a lot of money will end up in machine learning
research. Put another way, machine learning is an engine driving
the creation of several major new markets and areas of growth in
technology. The result will be large teams of people with deep
subject expertise, and with access to extraordinary resources. That
will propel machine learning further forward, creating more
markets and opportunities, a virtuous circle of innovation.

The role of neural networks and deep learning: I've been
talking broadly about machine learning as a creator of new
opportunities for technology. What will be the specific role of neural
networks and deep learning in all this?

To answer the question, it helps to look at history. Back in the
1980s there was a great deal of excitement and optimism about
neural networks, especially after backpropagation became widely
known. That excitement faded, and in the 1990s the machine
learning baton passed to other techniques, such as support vector
machines. Today, neural networks are again riding high, setting all

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 53/57

sorts of records, defeating all comers on many problems. But who is
to say that tomorrow some new approach won't be developed that
sweeps neural networks away again? Or perhaps progress with
neural networks will stagnate, and nothing will immediately arise to
take their place?

For this reason, it's much easier to think broadly about the future of
machine learning than about neural networks specifically. Part of
the problem is that we understand neural networks so poorly. Why
is it that neural networks can generalize so well? How is it that they
avoid overfitting as well as they do, given the very large number of
parameters they learn? Why is it that stochastic gradient descent
works as well as it does? How well will neural networks perform as
data sets are scaled? For instance, if ImageNet was expanded by a
factor of , would neural networks' performance improve more or
less than other machine learning techniques? These are all simple,
fundamental questions. And, at present, we understand the answers
to these questions very poorly. While that's the case, it's difficult to
say what role neural networks will play in the future of machine
learning.

I will make one prediction: I believe deep learning is here to stay.
The ability to learn hierarchies of concepts, building up multiple
layers of abstraction, seems to be fundamental to making sense of
the world. This doesn't mean tomorrow's deep learners won't be
radically different than today's. We could see major changes in the
constituent units used, in the architectures, or in the learning
algorithms. Those changes may be dramatic enough that we no
longer think of the resulting systems as neural networks. But they'd
still be doing deep learning.

Will neural networks and deep learning soon lead to
artificial intelligence? In this book we've focused on using
neural nets to do specific tasks, such as classifying images. Let's
broaden our ambitions, and ask: what about general-purpose
thinking computers? Can neural networks and deep learning help
us solve the problem of (general) artificial intelligence (AI)? And, if
so, given the rapid recent progress of deep learning, can we expect
general AI any time soon?

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 54/57

Addressing these questions comprehensively would take a separate
book. Instead, let me offer one observation. It's based on an idea
known as Conway's law:

Any organization that designs a system... will inevitably
produce a design whose structure is a copy of the
organization's communication structure.

So, for example, Conway's law suggests that the design of a Boeing
747 aircraft will mirror the extended organizational structure of
Boeing and its contractors at the time the 747 was designed. Or for
a simple, specific example, consider a company building a complex
software application. If the application's dashboard is supposed to
be integrated with some machine learning algorithm, the person
building the dashboard better be talking to the company's machine
learning expert. Conway's law is merely that observation, writ large.

Upon first hearing Conway's law, many people respond either
"Well, isn't that banal and obvious?" or "Isn't that wrong?" Let me
start with the objection that it's wrong. As an instance of this
objection, consider the question: where does Boeing's accounting
department show up in the design of the 747? What about their
janitorial department? Their internal catering? And the answer is
that these parts of the organization probably don't show up
explicitly anywhere in the 747. So we should understand Conway's
law as referring only to those parts of an organization concerned
explicitly with design and engineering.

What about the other objection, that Conway's law is banal and
obvious? This may perhaps be true, but I don't think so, for
organizations too often act with disregard for Conway's law. Teams
building new products are often bloated with legacy hires or,
contrariwise, lack a person with some crucial expertise. Think of all
the products which have useless complicating features. Or think of
all the products which have obvious major deficiencies - e.g., a
terrible user interface. Problems in both classes are often caused by
a mismatch between the team that was needed to produce a good
product, and the team that was actually assembled. Conway's law
may be obvious, but that doesn't mean people don't routinely ignore
it.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 55/57

Conway's law applies to the design and engineering of systems
where we start out with a pretty good understanding of the likely
constituent parts, and how to build them. It can't be applied directly
to the development of artificial intelligence, because AI isn't (yet)
such a problem: we don't know what the constituent parts are.
Indeed, we're not even sure what basic questions to be asking. In
others words, at this point AI is more a problem of science than of
engineering. Imagine beginning the design of the 747 without
knowing about jet engines or the principles of aerodynamics. You
wouldn't know what kinds of experts to hire into your organization.
As Wernher von Braun put it, "basic research is what I'm doing
when I don't know what I'm doing". Is there a version of Conway's
law that applies to problems which are more science than
engineering?

To gain insight into this question, consider the history of medicine.
In the early days, medicine was the domain of practitioners like
Galen and Hippocrates, who studied the entire body. But as our
knowledge grew, people were forced to specialize. We discovered
many deep new ideas*: think of things like the germ theory of
disease, for instance, or the understanding of how antibodies work,
or the understanding that the heart, lungs, veins and arteries form a
complete cardiovascular system. Such deep insights formed the
basis for subfields such as epidemiology, immunology, and the
cluster of inter-linked fields around the cardiovascular system. And
so the structure of our knowledge has shaped the social structure of
medicine. This is particularly striking in the case of immunology:
realizing the immune system exists and is a system worthy of study
is an extremely non-trivial insight. So we have an entire field of
medicine - with specialists, conferences, even prizes, and so on -
organized around something which is not just invisible, it's arguably
not a distinct thing at all.

This is a common pattern that has been repeated in many well-
established sciences: not just medicine, but physics, mathematics,
chemistry, and others. The fields start out monolithic, with just a
few deep ideas. Early experts can master all those ideas. But as time
passes that monolithic character changes. We discover many deep
new ideas, too many for any one person to really master. As a result,
the social structure of the field re-organizes and divides around
those ideas. Instead of a monolith, we have fields within fields

*My apologies for overloading "deep". I won't
define "deep ideas" precisely, but loosely I mean
the kind of idea which is the basis for a rich field
of enquiry. The backpropagation algorithm and
the germ theory of disease are both good
examples.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 56/57

within fields, a complex, recursive, self-referential social structure,
whose organization mirrors the connections between our deepest
insights. And so the structure of our knowledge shapes the social
organization of science. But that social shape in turn constrains

and helps determine what we can discover. This is the scientific
analogue of Conway's law.

So what's this got to do with deep learning or AI?

Well, since the early days of AI there have been arguments about it
that go, on one side, "Hey, it's not going to be so hard, we've got
[super-special weapon] on our side", countered by "[super-special
weapon] won't be enough". Deep learning is the latest super-special
weapon I've heard used in such arguments*; earlier versions of the
argument used logic, or Prolog, or expert systems, or whatever the
most powerful technique of the day was. The problem with such
arguments is that they don't give you any good way of saying just
how powerful any given candidate super-special weapon is. Of
course, we've just spent a chapter reviewing evidence that deep
learning can solve extremely challenging problems. It certainly
looks very exciting and promising. But that was also true of systems
like Prolog or Eurisko or expert systems in their day. And so the
mere fact that a set of ideas looks very promising doesn't mean
much. How can we tell if deep learning is truly different from these
earlier ideas? Is there some way of measuring how powerful and
promising a set of ideas is? Conway's law suggests that as a rough
and heuristic proxy metric we can evaluate the complexity of the
social structure associated to those ideas.

So, there are two questions to ask. First, how powerful a set of ideas
are associated to deep learning, according to this metric of social
complexity? Second, how powerful a theory will we need, in order
to be able to build a general artificial intelligence?

As to the first question: when we look at deep learning today, it's an
exciting and fast-paced but also relatively monolithic field. There
are a few deep ideas, and a few main conferences, with substantial
overlap between several of the conferences. And there is paper after
paper leveraging the same basic set of ideas: using stochastic
gradient descent (or a close variation) to optimize a cost function.
It's fantastic those ideas are so successful. But what we don't yet see

*Interestingly, often not by leading experts in
deep learning, who have been quite restrained.
See, for example, this thoughtful post by Yann
LeCun. This is a difference from many earlier
incarnations of the argument.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 57/57

is lots of well-developed subfields, each exploring their own sets of
deep ideas, pushing deep learning in many directions. And so,
according to the metric of social complexity, deep learning is, if
you'll forgive the play on words, still a rather shallow field. It's still
possible for one person to master most of the deepest ideas in the
field.

On the second question: how complex and powerful a set of ideas
will be needed to obtain AI? Of course, the answer to this question
is: no-one knows for sure. But in the appendix I examine some of
the existing evidence on this question. I conclude that, even rather
optimistically, it's going to take many, many deep ideas to build an
AI. And so Conway's law suggests that to get to such a point we will
necessarily see the emergence of many interrelating disciplines,
with a complex and surprising stucture mirroring the structure in
our deepest insights. We don't yet see this rich social structure in
the use of neural networks and deep learning. And so, I believe that
we are several decades (at least) from using deep learning to
develop general AI.

I've gone to a lot of trouble to construct an argument which is
tentative, perhaps seems rather obvious, and which has an
indefinite conclusion. This will no doubt frustrate people who crave
certainty. Reading around online, I see many people who loudly
assert very definite, very strongly held opinions about AI, often on
the basis of flimsy reasoning and non-existent evidence. My frank
opinion is this: it's too early to say. As the old joke goes, if you ask a
scientist how far away some discovery is and they say "10 years" (or
more), what they mean is "I've got no idea". AI, like controlled
fusion and a few other technologies, has been 10 years away for 60
plus years. On the flipside, what we definitely do have in deep
learning is a powerful technique whose limits have not yet been
found, and many wide-open fundamental problems. That's an
exciting creative opportunity.

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 1/10

In this book, we've focused on the nuts and bolts of neural
networks: how they work, and how they can be used to solve pattern
recognition problems. This is material with many immediate
practical applications. But, of course, one reason for interest in
neural nets is the hope that one day they will go far beyond such
basic pattern recognition problems. Perhaps they, or some other
approach based on digital computers, will eventually be used to
build thinking machines, machines that match or surpass human
intelligence? This notion far exceeds the material discussed in the
book - or what anyone in the world knows how to do. But it's fun to
speculate.

There has been much debate about whether it's even possible for
computers to match human intelligence. I'm not going to engage
with that question. Despite ongoing dispute, I believe it's not in
serious doubt that an intelligent computer is possible - although it
may be extremely complicated, and perhaps far beyond current
technology - and current naysayers will one day seem much like the
vitalists.

Rather, the question I explore here is whether there is a simple set
of principles which can be used to explain intelligence? In
particular, and more concretely, is there a simple algorithm for
intelligence?

The idea that there is a truly simple algorithm for intelligence is a
bold idea. It perhaps sounds too optimistic to be true. Many people
have a strong intuitive sense that intelligence has considerable
irreducible complexity. They're so impressed by the amazing variety
and flexibility of human thought that they conclude that a simple
algorithm for intelligence must be impossible. Despite this
intuition, I don't think it's wise to rush to judgement. The history of
science is filled with instances where a phenomenon initially
appeared extremely complex, but was later explained by some
simple but powerful set of ideas.

Consider, for example, the early days of astronomy. Humans have
known since ancient times that there is a menagerie of objects in

Appendix: Is there a simple algorithm for intelligence?

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian
Goodfellow, and Aaron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 2/10

the sky: the sun, the moon, the planets, the comets, and the stars.
These objects behave in very different ways - stars move in a stately,
regular way across the sky, for example, while comets appear as if
out of nowhere, streak across the sky, and then disappear. In the
16th century only a foolish optimist could have imagined that all
these objects' motions could be explained by a simple set of
principles. But in the 17th century Newton formulated his theory of
universal gravitation, which not only explained all these motions,
but also explained terrestrial phenomena such as the tides and the
behaviour of Earth-bound projecticles. The 16th century's foolish
optimist seems in retrospect like a pessimist, asking for too little.

Of course, science contains many more such examples. Consider the
myriad chemical substances making up our world, so beautifully
explained by Mendeleev's periodic table, which is, in turn,
explained by a few simple rules which may be obtained from
quantum mechanics. Or the puzzle of how there is so much
complexity and diversity in the biological world, whose origin turns
out to lie in the principle of evolution by natural selection. These
and many other examples suggest that it would not be wise to rule
out a simple explanation of intelligence merely on the grounds that
what our brains - currently the best examples of intelligence - are
doing appears to be very complicated*.

Contrariwise, and despite these optimistic examples, it is also
logically possible that intelligence can only be explained by a large
number of fundamentally distinct mechanisms. In the case of our
brains, those many mechanisms may perhaps have evolved in
response to many different selection pressures in our species'
evolutionary history. If this point of view is correct, then
intelligence involves considerable irreducible complexity, and no
simple algorithm for intelligence is possible.

Which of these two points of view is correct?

To get insight into this question, let's ask a closely related question,
which is whether there's a simple explanation of how human brains
work. In particular, let's look at some ways of quantifying the
complexity of the brain. Our first approach is the view of the brain
from connectomics. This is all about the raw wiring: how many
neurons there are in the brain, how many glial cells, and how many

By Michael Nielsen / Jan 2016

*Through this appendix I assume that for a
computer to be considered intelligent its
capabilities must match or exceed human
thinking ability. And so I'll regard the question
"Is there a simple algorithm for intelligence?" as
equivalent to "Is there a simple algorithm which
can `think' along essentially the same lines as
the human brain?" It's worth noting, however,
that there may well be forms of intelligence that
don't subsume human thought, but nonetheless
go beyond it in interesting ways.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 3/10

connections there are between the neurons. You've probably heard
the numbers before - the brain contains on the order of 100 billion
neurons, 100 billion glial cells, and 100 trillion connections
between neurons. Those numbers are staggering. They're also
intimidating. If we need to understand the details of all those
connections (not to mention the neurons and glial cells) in order to
understand how the brain works, then we're certainly not going to
end up with a simple algorithm for intelligence.

There's a second, more optimistic point of view, the view of the
brain from molecular biology. The idea is to ask how much genetic
information is needed to describe the brain's architecture. To get a
handle on this question, we'll start by considering the genetic
differences between humans and chimpanzees. You've probably
heard the sound bite that "human beings are 98 percent
chimpanzee". This saying is sometimes varied - popular variations
also give the number as 95 or 99 percent. The variations occur
because the numbers were originally estimated by comparing
samples of the human and chimp genomes, not the entire genomes.
However, in 2007 the entire chimpanzee genome was sequenced
(see also here), and we now know that human and chimp DNA
differ at roughly 125 million DNA base pairs. That's out of a total of
roughly 3 billion DNA base pairs in each genome. So it's not right to
say human beings are 98 percent chimpanzee - we're more like 96
percent chimpanzee.

How much information is in that 125 million base pairs? Each base
pair can be labelled by one of four possibilities - the "letters" of the
genetic code, the bases adenine, cytosine, guanine, and thymine. So
each base pair can be described using two bits of information - just
enough information to specify one of the four labels. So 125 million
base pairs is equivalent to 250 million bits of information. That's
the genetic difference between humans and chimps!

Of course, that 250 million bits accounts for all the genetic
differences between humans and chimps. We're only interested in
the difference associated to the brain. Unfortunately, no-one knows
what fraction of the total genetic difference is needed to explain the
difference between the brains. But let's assume for the sake of
argument that about half that 250 million bits accounts for the
brain differences. That's a total of 125 million bits.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 4/10

125 million bits is an impressively large number. Let's get a sense
for how large it is by translating it into more human terms. In
particular, how much would be an equivalent amount of English
text? It turns out that the information content of English text is
about 1 bit per letter. That sounds low - after all, the alphabet has
26 letters - but there is a tremendous amount of redundancy in
English text. Of course, you might argue that our genomes are
redundant, too, so two bits per base pair is an overestimate. But
we'll ignore that, since at worst it means that we're overestimating
our brain's genetic complexity. With these assumptions, we see that
the genetic difference between our brains and chimp brains is
equivalent to about 125 million letters, or about 25 million English
words. That's about 30 times as much as the King James Bible.

That's a lot of information. But it's not incomprehensibly large. It's
on a human scale. Maybe no single human could ever understand
all that's written in that code, but a group of people could perhaps
understand it collectively, through appropriate specialization. And
although it's a lot of information, it's minuscule when compared to
the information required to describe the 100 billion neurons, 100
billion glial cells, and 100 trillion connections in our brains. Even if
we use a simple, coarse description - say, 10 floating point numbers
to characterize each connection - that would require about 70
quadrillion bits. That means the genetic description is a factor of
about half a billion less complex than the full connectome for the
human brain.

What we learn from this is that our genome cannot possibly contain
a detailed description of all our neural connections. Rather, it must
specify just the broad architecture and basic principles underlying
the brain. But that architecture and those principles seem to be
enough to guarantee that we humans will grow up to be intelligent.
Of course, there are caveats - growing children need a healthy,
stimulating environment and good nutrition to achieve their
intellectual potential. But provided we grow up in a reasonable
environment, a healthy human will have remarkable intelligence. In
some sense, the information in our genes contains the essence of
how we think. And furthermore, the principles contained in that
genetic information seem likely to be within our ability to
collectively grasp.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 5/10

All the numbers above are very rough estimates. It's possible that
125 million bits is a tremendous overestimate, that there is some
much more compact set of core principles underlying human
thought. Maybe most of that 125 million bits is just fine-tuning of
relatively minor details. Or maybe we were overly conservative in
how we computed the numbers. Obviously, that'd be great if it were
true! For our current purposes, the key point is this: the
architecture of the brain is complicated, but it's not nearly as
complicated as you might think based on the number of
connections in the brain. The view of the brain from molecular
biology suggests we humans ought to one day be able to understand
the basic principles behind the brain's architecture.

In the last few paragraphs I've ignored the fact that that 125 million
bits merely quantifies the genetic difference between human and
chimp brains. Not all our brain function is due to those 125 million
bits. Chimps are remarkable thinkers in their own right. Maybe the
key to intelligence lies mostly in the mental abilities (and genetic
information) that chimps and humans have in common. If this is
correct, then human brains might be just a minor upgrade to
chimpanzee brains, at least in terms of the complexity of the
underlying principles. Despite the conventional human chauvinism
about our unique capabilities, this isn't inconceivable: the
chimpanzee and human genetic lines diverged just 5 million years
ago, a blink in evolutionary timescales. However, in the absence of a
more compelling argument, I'm sympathetic to the conventional
human chauvinism: my guess is that the most interesting principles
underlying human thought lie in that 125 million bits, not in the
part of the genome we share with chimpanzees.

Adopting the view of the brain from molecular biology gave us a
reduction of roughly nine orders of magnitude in the complexity of
our description. While encouraging, it doesn't tell us whether or not
a truly simple algorithm for intelligence is possible. Can we get any
further reductions in complexity? And, more to the point, can we
settle the question of whether a simple algorithm for intelligence is
possible?

Unfortunately, there isn't yet any evidence strong enough to
decisively settle this question. Let me describe some of the available
evidence, with the caveat that this is a very brief and incomplete

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 6/10

overview, meant to convey the flavour of some recent work, not to
comprehensively survey what is known.

Among the evidence suggesting that there may be a simple
algorithm for intelligence is an experiment reported in April 2000
in the journal Nature. A team of scientists led by Mriganka Sur
"rewired" the brains of newborn ferrets. Usually, the signal from a
ferret's eyes is transmitted to a part of the brain known as the visual
cortex. But for these ferrets the scientists took the signal from the
eyes and rerouted it so it instead went to the auditory cortex, i.e, the
brain region that's usually used for hearing.

To understand what happened when they did this, we need to know
a bit about the visual cortex. The visual cortex contains many
orientation columns. These are little slabs of neurons, each of which
responds to visual stimuli from some particular direction. You can
think of the orientation columns as tiny directional sensors: when
someone shines a bright light from some particular direction, a
corresponding orientation column is activated. If the light is moved,
a different orientation column is activated. One of the most
important high-level structures in the visual cortex is the
orientation map, which charts how the orientation columns are laid
out.

What the scientists found is that when the visual signal from the
ferrets' eyes was rerouted to the auditory cortex, the auditory cortex
changed. Orientation columns and an orientation map began to
emerge in the auditory cortex. It was more disorderly than the
orientation map usually found in the visual cortex, but
unmistakably similar. Furthermore, the scientists did some simple
tests of how the ferrets responded to visual stimuli, training them to
respond differently when lights flashed from different directions.
These tests suggested that the ferrets could still learn to "see", at
least in a rudimentary fashion, using the auditory cortex.

This is an astonishing result. It suggests that there are common
principles underlying how different parts of the brain learn to
respond to sensory data. That commonality provides at least some
support for the idea that there is a set of simple principles
underlying intelligence. However, we shouldn't kid ourselves about
how good the ferrets' vision was in these experiments. The

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 7/10

behavioural tests tested only very gross aspects of vision. And, of
course, we can't ask the ferrets if they've "learned to see". So the
experiments don't prove that the rewired auditory cortex was giving
the ferrets a high-fidelity visual experience. And so they provide
only limited evidence in favour of the idea that common principles
underlie how different parts of the brain learn.

What evidence is there against the idea of a simple algorithm for
intelligence? Some evidence comes from the fields of evolutionary
psychology and neuroanatomy. Since the 1960s evolutionary
psychologists have discovered a wide range of human universals,
complex behaviours common to all humans, across cultures and
upbringing. These human universals include the incest taboo
between mother and son, the use of music and dance, as well as
much complex linguistic structure, such as the use of swear words
(i.e., taboo words), pronouns, and even structures as basic as the
verb. Complementing these results, a great deal of evidence from
neuroanatomy shows that many human behaviours are controlled
by particular localized areas of the brain, and those areas seem to be
similar in all people. Taken together, these findings suggest that
many very specialized behaviours are hardwired into particular
parts of our brains.

Some people conclude from these results that separate explanations
must be required for these many brain functions, and that as a
consequence there is an irreducible complexity to the brain's
function, a complexity that makes a simple explanation for the
brain's operation (and, perhaps, a simple algorithm for intelligence)
impossible. For example, one well-known artificial intelligence
researcher with this point of view is Marvin Minsky. In the 1970s
and 1980s Minsky developed his "Society of Mind" theory, based on
the idea that human intelligence is the result of a large society of
individually simple (but very different) computational processes
which Minsky calls agents. In his book describing the theory,
Minsky sums up what he sees as the power of this point of view:

What magical trick makes us intelligent? The trick is that
there is no trick. The power of intelligence stems from our
vast diversity, not from any single, perfect principle.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 8/10

In a response* to reviews of his book, Minsky elaborated on the
motivation for the Society of Mind, giving an argument similar to
that stated above, based on neuroanatomy and evolutionary
psychology:

We now know that the brain itself is composed of
hundreds of different regions and nuclei, each with
significantly different architectural elements and
arrangements, and that many of them are involved with
demonstrably different aspects of our mental activities.
This modern mass of knowledge shows that many
phenomena traditionally described by commonsense
terms like "intelligence" or "understanding" actually
involve complex assemblies of machinery.

Minsky is, of course, not the only person to hold a point of view
along these lines; I'm merely giving him as an example of a
supporter of this line of argument. I find the argument interesting,
but don't believe the evidence is compelling. While it's true that the
brain is composed of a large number of different regions, with
different functions, it does not therefore follow that a simple
explanation for the brain's function is impossible. Perhaps those
architectural differences arise out of common underlying principles,
much as the motion of comets, the planets, the sun and the stars all
arise from a single gravitational force. Neither Minsky nor anyone
else has argued convincingly against such underlying principles.

My own prejudice is in favour of there being a simple algorithm for
intelligence. And the main reason I like the idea, above and beyond
the (inconclusive) arguments above, is that it's an optimistic idea.
When it comes to research, an unjustified optimism is often more
productive than a seemingly better justified pessimism, for an
optimist has the courage to set out and try new things. That's the
path to discovery, even if what is discovered is perhaps not what
was originally hoped. A pessimist may be more "correct" in some
narrow sense, but will discover less than the optimist.

This point of view is in stark contrast to the way we usually judge
ideas: by attempting to figure out whether they are right or wrong.
That's a sensible strategy for dealing with the routine minutiae of
day-to-day research. But it can be the wrong way of judging a big,

*In "Contemplating Minds: A Forum for
Artificial Intelligence", edited by William J.
Clancey, Stephen W. Smoliar, and Mark Stefik
(MIT Press, 1994).

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 9/10

bold idea, the sort of idea that defines an entire research program.
Sometimes, we have only weak evidence about whether such an
idea is correct or not. We can meekly refuse to follow the idea,
instead spending all our time squinting at the available evidence,
trying to discern what's true. Or we can accept that no-one yet
knows, and instead work hard on developing the big, bold idea, in
the understanding that while we have no guarantee of success, it is
only thus that our understanding advances.

With all that said, in its most optimistic form, I don't believe we'll
ever find a simple algorithm for intelligence. To be more concrete, I
don't believe we'll ever find a really short Python (or C or Lisp, or
whatever) program - let's say, anywhere up to a thousand lines of
code - which implements artificial intelligence. Nor do I think we'll
ever find a really easily-described neural network that can
implement artificial intelligence. But I do believe it's worth acting as
though we could find such a program or network. That's the path to
insight, and by pursuing that path we may one day understand
enough to write a longer program or build a more sophisticated
network which does exhibit intelligence. And so it's worth acting as
though an extremely simple algorithm for intelligence exists.

In the 1980s, the eminent mathematician and computer scientist
Jack Schwartz was invited to a debate between artificial intelligence
proponents and artificial intelligence skeptics. The debate became
unruly, with the proponents making over-the-top claims about the
amazing things just round the corner, and the skeptics doubling
down on their pessimism, claiming artificial intelligence was
outright impossible. Schwartz was an outsider to the debate, and
remained silent as the discussion heated up. During a lull, he was
asked to speak up and state his thoughts on the issues under
discussion. He said: "Well, some of these developments may lie one
hundred Nobel prizes away" (ref, page 22). It seems to me a perfect
response. The key to artificial intelligence is simple, powerful ideas,
and we can and should search optimistically for those ideas. But
we're going to need many such ideas, and we've still got a long way
to go!

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 10/10

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/faq.html 1/2

Is there a pdf or print version of the book available, or
planned? There's no pdf or print version available, nor planned.

People sometimes suggest that it would be easy to convert the book
to pdf or print. However, the book contains dozens of interactive
JavaScript elements, and the narrative often depends on the reader
interacting with those elements in some way. Doing the "easy"
conversion would result in a poor quality product. Of course, those
interactive parts could be rewritten to make sense in static form,
but doing it well would be a big job.

Can you help me with a mathematical problem, or with
debugging my work? No. I suggest chatting about your problem
with friends or colleagues. If that's no help, try an appropriate
online forum to ask your question.

Do you have solutions to the exercises and problems?
Sorry, no.

I'd like to do a translation into another language. Is that
okay? It's fine under the terms of the book's license (see the page
footer for details), provided: (1) you're not doing it for a product
which is commercial in some way (e.g., you intend to sell it); and (2)
you acknowledge me as the original author. I'd also appreciate a
link, of course. If you have a commercial interest, please get in
touch so we can discuss (mn@michaelnielsen.org).

Frequently Asked Questions

Neural Networks and Deep Learning
What this book is about
On the exercises and problems
Using neural nets to recognize
handwritten digits
How the backpropagation
algorithm works
Improving the way neural
networks learn
A visual proof that neural nets can
compute any function
Why are deep neural networks
hard to train?
Deep learning
Appendix: Is there a simple
algorithm for intelligence?
Acknowledgements
Frequently Asked Questions

If you benefit from the book, please
make a small donation. I suggest $3,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to Pavel Dudrenov.
Thanks also to all the contributors to
the Bugfinder Hall of Fame.

Resources

Book FAQ

Code repository

Michael Nielsen's project
announcement mailing list

Deep Learning, draft book in
preparation, by Yoshua Bengio, Ian
Goodfellow, and Aaron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/faq.html 2/2

By Michael Nielsen / Jan 2016

In academic work, please cite this book as: Michael A. Nielsen, "Neural Networks and Deep Learning",

Determination Press, 2015

This work is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported License. This means

you're free to copy, share, and build on this book, but not to sell it. If you're interested in commercial use, please

contact me.

Last update: Fri Jan 22 14:09:50 2016

欧拉的博客:www.liuhao.me

	Neural Networks and Deep Learning
	What this book is about
	On the exercises and problems
	CHAPTER 1
	CHAPTER2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	Appendix: Is there a simple algorithm for intelligence?
	Frequently Asked Questions

