

Neural Networks and Deep Learning

���Michael Nielsen
;
;
.8(!,.�:___>WO]ZKUWO_XZT[KWNNOOYUOKZWSWQ>MXV;

;
YNP ($�/:&�;

;
&�*��:___>US]RKX>VO;

;
;

�����
@9$�.-7)�%:DZOK\S^O;DXVVXW[;C\\ZSL]\SXW=HXW;DXVVOZMSKUB>?;JWYXZ\ON;
GSMOW[O��'���%0����4� IEF ($9#�����4��%�93�
2�)$�.-(�� IEF (!,51+��;
;
A9.-(!,6�
	� IEF "���� ��;
;

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/index.html 1/2

Neural Networks and Deep Learning is a free online book. The
book will teach you about:

Neural networks, a beautiful biologically-inspired
programming paradigm which enables a computer to learn
from observational data
Deep learning, a powerful set of techniques for learning in
neural networks

Neural networks and deep learning currently provide the best
solutions to many problems in image recognition, speech
recognition, and natural language processing. This book will teach
you many of the core concepts behind neural networks and deep
learning.

For more details about the approach taken in the book, see here. Or
you can jump directly to Chapter 1 and get started.

Neural Networks and Deep Learning

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an
*oodfellow, and $aron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/index.html 2/2

%y 0ichael Nielsen � -an ��1�

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn�����������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/aEout.html 1/�

Neural networks are one of the most beautiful programming
paradigms ever invented. ,n the conventional approach to
programming, we tell the computer what to do, breaking big
problems up into many small, precisely defined tasks that the
computer can easily perform. %y contrast, in a neural network we
don
t tell the computer how to solve our problem. ,nstead, it learns
from observational data, figuring out its own solution to the
problem at hand.

$utomatically learning from data sounds promising. +owever, until
���� we didn
t know how to train neural networks to surpass more
traditional approaches, e[cept for a few speciali]ed problems. :hat
changed in ���� was the discovery of techniques for learning in so-
called deep neural networks. These techniques are now known as
deep learning. They
ve been developed further, and today deep
neural networks and deep learning achieve outstanding
performance on many important problems in computer vision,
speech recognition, and natural language processing. They
re being
deployed on a large scale by companies such as *oogle, 0icrosoft,
and Facebook.

The purpose of this book is to help you master the core concepts of
neural networks, including modern techniques for deep learning.
$fter working through the book you will have written code that uses
neural networks and deep learning to solve comple[pattern
recognition problems. $nd you will have a foundation to use neural
networks and deep learning to attack problems of your own
devising.

$ prinFiple�oriented approaFK
One conviction underlying the book is that it
s better to obtain a
solid understanding of the core principles of neural networks and
deep learning, rather than a ha]y understanding of a long laundry
list of ideas. ,f you
ve understood the core ideas well, you can
rapidly understand other new material. ,n programming language
terms, think of it as mastering the core synta[, libraries and data
structures of a new language. <ou may still only �know� a tiny

:Kat tKis Eook is aEout

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an
*oodfellow, and $aron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/aEout.html 2/�

fraction of the total language - many languages have enormous
standard libraries - but new libraries and data structures can be
understood quickly and easily.

This means the book is emphatically not a tutorial in how to use
some particular neural network library. ,f you mostly want to learn
your way around a library, don
t read this book� Find the library you
wish to learn, and work through the tutorials and documentation.
%ut be warned. :hile this has an immediate problem-solving
payoff, if you want to understand what
s really going on in neural
networks, if you want insights that will still be relevant years from
now, then it
s not enough just to learn some hot library. <ou need to
understand the durable, lasting insights underlying how neural
networks work. Technologies come and technologies go, but insight
is forever.

$ Kands�on approaFK
:e
ll learn the core principles behind neural networks and deep
learning by attacking a concrete problem: the problem of teaching a
computer to recogni]e handwritten digits. This problem is
e[tremely difficult to solve using the conventional approach to
programming. $nd yet, as we
ll see, it can be solved pretty well
using a simple neural network, with just a few tens of lines of code,
and no special libraries. :hat
s more, we
ll improve the program
through many iterations, gradually incorporating more and more of
the core ideas about neural networks and deep learning.

This hands-on approach means that you
ll need some programming
e[perience to read the book. %ut you don
t need to be a professional
programmer. ,
ve written the code in 3ython �version �.��, which,
even if you don
t program in 3ython, should be easy to understand
with just a little effort. Through the course of the book we will
develop a little neural network library, which you can use to
e[periment and to build understanding. $ll the code is available for
download here. Once you
ve finished the book, or as you read it, you
can easily pick up one of the more feature-complete neural network
libraries intended for use in production.

On a related note, the mathematical requirements to read the book
are modest. There is some mathematics in most chapters, but it
s

%y 0ichael Nielsen � -an ��1�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/aEout.html �/�

usually just elementary algebra and plots of functions, which ,
e[pect most readers will be okay with. , occasionally use more
advanced mathematics, but have structured the material so you can
follow even if some mathematical details elude you. The one
chapter which uses heavier mathematics e[tensively is Chapter �,
which requires a little multivariable calculus and linear algebra. ,f
those aren
t familiar, , begin Chapter � with a discussion of how to
navigate the mathematics. ,f you
re finding it really heavy going,
you can simply skip to the summary of the chapter
s main results.
,n any case, there
s no need to worry about this at the outset.

,t
s rare for a book to aim to be both principle-oriented and hands-
on. %ut , believe you
ll learn best if we build out the fundamental
ideas of neural networks. :e
ll develop living code, not just abstract
theory, code which you can e[plore and e[tend. This way you
ll
understand the fundamentals, both in theory and practice, and be
well set to add further to your knowledge.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/exercisesBandBproElems.html 1/2

,t
s not uncommon for technical books to include an admonition
from the author that readers must do the e[ercises and problems. ,
always feel a little peculiar when , read such warnings. :ill
something bad happen to me if , don
t do the e[ercises and
problems" Of course not. ,
ll gain some time, but at the e[pense of
depth of understanding. 6ometimes that
s worth it. 6ometimes it
s
not.

6o what
s worth doing in this book" 0y advice is that you really
should attempt most of the e[ercises, and you should aim not to do
most of the problems.

<ou should do most of the e[ercises because they
re basic checks
that you
ve understood the material. ,f you can
t solve an e[ercise
relatively easily, you
ve probably missed something fundamental.
Of course, if you do get stuck on an occasional e[ercise, just move
on - chances are it
s just a small misunderstanding on your part, or
maybe ,
ve worded something poorly. %ut if most e[ercises are a
struggle, then you probably need to reread some earlier material.

The problems are another matter. They
re more difficult than the
e[ercises, and you
ll likely struggle to solve some problems. That
s
annoying, but, of course, patience in the face of such frustration is
the only way to truly understand and internali]e a subject.

:ith that said, , don
t recommend working through all the
problems. :hat
s even better is to find your own project. 0aybe
you want to use neural nets to classify your music collection. Or to
predict stock prices. Or whatever. %ut Iind a proMeFt \ou Fare
aEout. Then you can ignore the problems in the book, or use them
simply as inspiration for work on your own project. 6truggling with
a project you care about will teach you far more than working
through any number of set problems. (motional commitment is a
key to achieving mastery.

Of course, you may not have such a project in mind, at least up
front. That
s fine. :ork through those problems you feel motivated
to work on. $nd use the material in the book to help you search for
ideas for creative personal projects.

2n tKe e[erFises and proElePs

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an
*oodfellow, and $aron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/exercisesBandBproElems.html 2/2

%y 0ichael Nielsen � -an ��1�

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1/�0

The human visual system is one of the wonders of the world.
Consider the following sequence of handwritten digits:

0ost people effortlessly recogni]e those digits as ���1��. That ease
is deceptive. ,n each hemisphere of our brain, humans have a
primary visual corte[, also known as 91, containing 1�� million
neurons, with tens of billions of connections between them. $nd yet
human vision involves not just 91, but an entire series of visual
cortices - 9�, 9�, 9�, and 9� - doing progressively more comple[
image processing. :e carry in our heads a supercomputer, tuned by
evolution over hundreds of millions of years, and superbly adapted
to understand the visual world. 5ecogni]ing handwritten digits isn
t
easy. 5ather, we humans are stupendously, astoundingly good at
making sense of what our eyes show us. %ut nearly all that work is
done unconsciously. $nd so we don
t usually appreciate how tough
a problem our visual systems solve.

The difficulty of visual pattern recognition becomes apparent if you
attempt to write a computer program to recogni]e digits like those
above. :hat seems easy when we do it ourselves suddenly becomes
e[tremely difficult. 6imple intuitions about how we recogni]e
shapes - �a � has a loop at the top, and a vertical stroke in the
bottom right� - turn out to be not so simple to e[press
algorithmically. :hen you try to make such rules precise, you
quickly get lost in a morass of e[ceptions and caveats and special
cases. ,t seems hopeless.

Neural networks approach the problem in a different way. The idea
is to take a large number of handwritten digits, known as training
e[amples,

&+$37(R��

8sLnJ�neurDO�neWs�Wo�recoJnL]e�KDnGZrLWWen�GLJLWs

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2/�0

and then develop a system which can learn from those training
e[amples. ,n other words, the neural network uses the e[amples to
automatically infer rules for recogni]ing handwritten digits.
Furthermore, by increasing the number of training e[amples, the
network can learn more about handwriting, and so improve its
accuracy. 6o while ,
ve shown just 1�� training digits above,
perhaps we could build a better handwriting recogni]er by using
thousands or even millions or billions of training e[amples.

,n this chapter we
ll write a computer program implementing a
neural network that learns to recogni]e handwritten digits. The
program is just �� lines long, and uses no special neural network
libraries. %ut this short program can recogni]e digits with an
accuracy over �� percent, without human intervention.
Furthermore, in later chapters we
ll develop ideas which can
improve accuracy to over �� percent. ,n fact, the best commercial
neural networks are now so good that they are used by banks to
process cheques, and by post offices to recogni]e addresses.

:e
re focusing on handwriting recognition because it
s an e[cellent
prototype problem for learning about neural networks in general.
$s a prototype it hits a sweet spot: it
s challenging - it
s no small feat
to recogni]e handwritten digits - but it
s not so difficult as to require
an e[tremely complicated solution, or tremendous computational
power. Furthermore, it
s a great way to develop more advanced
techniques, such as deep learning. $nd so throughout the book we
ll
return repeatedly to the problem of handwriting recognition. /ater
in the book, we
ll discuss how these ideas may be applied to other

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

problems in computer vision, and also in speech, natural language
processing, and other domains.

Of course, if the point of the chapter was only to write a computer
program to recogni]e handwritten digits, then the chapter would be
much shorter� %ut along the way we
ll develop many key ideas
about neural networks, including two important types of artificial
neuron �the perceptron and the sigmoid neuron�, and the standard
learning algorithm for neural networks, known as stochastic
gradient descent. Throughout, , focus on e[plaining wK\ things are
done the way they are, and on building your neural networks
intuition. That requires a lengthier discussion than if , just
presented the basic mechanics of what
s going on, but it
s worth it
for the deeper understanding you
ll attain. $mongst the payoffs, by
the end of the chapter we
ll be in position to understand what deep
learning is, and why it matters.

3erFeptrons
:hat is a neural network" To get started, ,
ll e[plain a type of
artificial neuron called a perFeptron. 3erceptrons were developed in
the 1���s and 1���s by the scientist Frank 5osenblatt, inspired by
earlier work by :arren 0cCulloch and :alter 3itts. Today, it
s
more common to use other models of artificial neurons - in this
book, and in much modern work on neural networks, the main
neuron model used is one called the sigPoid neuron. :e
ll get to
sigmoid neurons shortly. %ut to understand why sigmoid neurons
are defined the way they are, it
s worth taking the time to first
understand perceptrons.

6o how do perceptrons work" $ perceptron takes several binary
inputs, , and produces a single binary output:

,n the e[ample shown the perceptron has three inputs, . ,n
general it could have more or fewer inputs. 5osenblatt proposed a
simple rule to compute the output. +e introduced weigKts,

, real numbers e[pressing the importance of the respective

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

inputs to the output. The neuron
s output, or , is determined by
whether the weighted sum is less than or greater than some
tKresKold Yalue. -ust like the weights, the threshold is a real
number which is a parameter of the neuron. To put it in more
precise algebraic terms:

That
s all there is to how a perceptron works�

That
s the basic mathematical model. $ way you can think about the
perceptron is that it
s a device that makes decisions by weighing up
evidence. /et me give an e[ample. ,t
s not a very realistic e[ample,
but it
s easy to understand, and we
ll soon get to more realistic
e[amples. 6uppose the weekend is coming up, and you
ve heard
that there
s going to be a cheese festival in your city. <ou like
cheese, and are trying to decide whether or not to go to the festival.
<ou might make your decision by weighing up three factors:

1. ,s the weather good"
�. Does your boyfriend or girlfriend want to accompany you"
�. ,s the festival near public transit" �<ou don
t own a car�.

:e can represent these three factors by corresponding binary
variables , and . For instance, we
d have if the weather
is good, and if the weather is bad. 6imilarly, if your
boyfriend or girlfriend wants to go, and if not. $nd similarly
again for and public transit.

Now, suppose you absolutely adore cheese, so much so that you
re
happy to go to the festival even if your boyfriend or girlfriend is
uninterested and the festival is hard to get to. %ut perhaps you
really loathe bad weather, and there
s no way you
d go to the festival
if the weather is bad. <ou can use perceptrons to model this kind of
decision-making. One way to do this is to choose a weight for
the weather, and and for the other conditions. The
larger value of indicates that the weather matters a lot to you,
much more than whether your boyfriend or girlfriend joins you, or
the nearness of public transit. Finally, suppose you choose a
threshold of for the perceptron. :ith these choices, the
perceptron implements the desired decision-making model,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

outputting whenever the weather is good, and whenever the
weather is bad. ,t makes no difference to the output whether your
boyfriend or girlfriend wants to go, or whether public transit is
nearby.

%y varying the weights and the threshold, we can get different
models of decision-making. For e[ample, suppose we instead chose
a threshold of . Then the perceptron would decide that you should
go to the festival whenever the weather was good or when both the
festival was near public transit and your boyfriend or girlfriend was
willing to join you. ,n other words, it
d be a different model of
decision-making. Dropping the threshold means you
re more
willing to go to the festival.

Obviously, the perceptron isn
t a complete model of human
decision-making� %ut what the e[ample illustrates is how a
perceptron can weigh up different kinds of evidence in order to
make decisions. $nd it should seem plausible that a comple[
network of perceptrons could make quite subtle decisions:

,n this network, the first column of perceptrons - what we
ll call the
first la\er of perceptrons - is making three very simple decisions, by
weighing the input evidence. :hat about the perceptrons in the
second layer" (ach of those perceptrons is making a decision by
weighing up the results from the first layer of decision-making. ,n
this way a perceptron in the second layer can make a decision at a
more comple[and more abstract level than perceptrons in the first
layer. $nd even more comple[decisions can be made by the
perceptron in the third layer. ,n this way, a many-layer network of
perceptrons can engage in sophisticated decision making.

,ncidentally, when , defined perceptrons , said that a perceptron
has just a single output. ,n the network above the perceptrons look
like they have multiple outputs. ,n fact, they
re still single output.
The multiple output arrows are merely a useful way of indicating

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 6/�0

that the output from a perceptron is being used as the input to
several other perceptrons. ,t
s less unwieldy than drawing a single
output line which then splits.

/et
s simplify the way we describe perceptrons. The condition
 is cumbersome, and we can make two notational

changes to simplify it. The first change is to write as a dot
product, , where and are vectors whose
components are the weights and inputs, respectively. The second
change is to move the threshold to the other side of the inequality,
and to replace it by what
s known as the perceptron
s Eias,

. 8sing the bias instead of the threshold, the
perceptron rule can be rewritten:

<ou can think of the bias as a measure of how easy it is to get the
perceptron to output a . Or to put it in more biological terms, the
bias is a measure of how easy it is to get the perceptron to Iire. For a
perceptron with a really big bias, it
s e[tremely easy for the
perceptron to output a . %ut if the bias is very negative, then it
s
difficult for the perceptron to output a . Obviously, introducing the
bias is only a small change in how we describe perceptrons, but
we
ll see later that it leads to further notational simplifications.
%ecause of this, in the remainder of the book we won
t use the
threshold, we
ll always use the bias.

,
ve described perceptrons as a method for weighing evidence to
make decisions. $nother way perceptrons can be used is to compute
the elementary logical functions we usually think of as underlying
computation, functions such as AND, OR, and NAND. For e[ample,

suppose we have a perceptron with two inputs, each with weight ,
and an overall bias of . +ere
s our perceptron:

Then we see that input produces output , since
 is positive. +ere, ,
ve introduced the

symbol to make the multiplications e[plicit. 6imilar calculations
show that the inputs and produce output . %ut the input

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

produces output , since is negative.
$nd so our perceptron implements a NAND gate�

The NAND e[ample shows that we can use perceptrons to compute

simple logical functions. ,n fact, we can use networks of
perceptrons to compute an\ logical function at all. The reason is
that the NAND gate is universal for computation, that is, we can

build any computation up out of NAND gates. For e[ample, we can

use NAND gates to build a circuit which adds two bits, and .

This requires computing the bitwise sum, , as well as a carry
bit which is set to when both and are , i.e., the carry bit is
just the bitwise product :

To get an equivalent network of perceptrons we replace all the NAND

gates by perceptrons with two inputs, each with weight , and an
overall bias of . +ere
s the resulting network. Note that ,
ve moved
the perceptron corresponding to the bottom right NAND gate a little,

just to make it easier to draw the arrows on the diagram:

One notable aspect of this network of perceptrons is that the output
from the leftmost perceptron is used twice as input to the
bottommost perceptron. :hen , defined the perceptron model ,
didn
t say whether this kind of double-output-to-the-same-place
was allowed. $ctually, it doesn
t much matter. ,f we don
t want to
allow this kind of thing, then it
s possible to simply merge the two
lines, into a single connection with a weight of -� instead of two
connections with -� weights. �,f you don
t find this obvious, you
should stop and prove to yourself that this is equivalent.� :ith that
change, the network looks as follows, with all unmarked weights

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

equal to -�, all biases equal to �, and a single weight of -�, as
marked:

8p to now ,
ve been drawing inputs like and as variables
floating to the left of the network of perceptrons. ,n fact, it
s
conventional to draw an e[tra layer of perceptrons - the input la\er
- to encode the inputs:

This notation for input perceptrons, in which we have an output,
but no inputs,

is a shorthand. ,t doesn
t actually mean a perceptron with no
inputs. To see this, suppose we did have a perceptron with no
inputs. Then the weighted sum would always be]ero, and so
the perceptron would output if , and if . That is, the
perceptron would simply output a fi[ed value, not the desired value
� , in the e[ample above�. ,t
s better to think of the input
perceptrons as not really being perceptrons at all, but rather special
units which are simply defined to output the desired values,

.

The adder e[ample demonstrates how a network of perceptrons can
be used to simulate a circuit containing many NAND gates. $nd

because NAND gates are universal for computation, it follows that

perceptrons are also universal for computation.

The computational universality of perceptrons is simultaneously
reassuring and disappointing. ,t
s reassuring because it tells us that
networks of perceptrons can be as powerful as any other computing

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �/�0

device. %ut it
s also disappointing, because it makes it seem as
though perceptrons are merely a new type of NAND gate. That
s

hardly big news�

+owever, the situation is better than this view suggests. ,t turns out
that we can devise learning algoritKPs which can automatically
tune the weights and biases of a network of artificial neurons. This
tuning happens in response to e[ternal stimuli, without direct
intervention by a programmer. These learning algorithms enable us
to use artificial neurons in a way which is radically different to
conventional logic gates. ,nstead of e[plicitly laying out a circuit of
NAND and other gates, our neural networks can simply learn to solve

problems, sometimes problems where it would be e[tremely
difficult to directly design a conventional circuit.

6igPoid neurons
/earning algorithms sound terrific. %ut how can we devise such
algorithms for a neural network" 6uppose we have a network of
perceptrons that we
d like to use to learn to solve some problem.
For e[ample, the inputs to the network might be the raw pi[el data
from a scanned, handwritten image of a digit. $nd we
d like the
network to learn weights and biases so that the output from the
network correctly classifies the digit. To see how learning might
work, suppose we make a small change in some weight �or bias� in
the network. :hat we
d like is for this small change in weight to
cause only a small corresponding change in the output from the
network. $s we
ll see in a moment, this property will make learning
possible. 6chematically, here
s what we want �obviously this
network is too simple to do handwriting recognition��:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 10/�0

,f it were true that a small change in a weight �or bias� causes only a
small change in output, then we could use this fact to modify the
weights and biases to get our network to behave more in the
manner we want. For e[ample, suppose the network was
mistakenly classifying an image as an ��� when it should be a ���.
:e could figure out how to make a small change in the weights and
biases so the network gets a little closer to classifying the image as a
���. $nd then we
d repeat this, changing the weights and biases
over and over to produce better and better output. The network
would be learning.

The problem is that this isn
t what happens when our network
contains perceptrons. ,n fact, a small change in the weights or bias
of any single perceptron in the network can sometimes cause the
output of that perceptron to completely flip, say from to . That
flip may then cause the behaviour of the rest of the network to
completely change in some very complicated way. 6o while your ���
might now be classified correctly, the behaviour of the network on
all the other images is likely to have completely changed in some
hard-to-control way. That makes it difficult to see how to gradually
modify the weights and biases so that the network gets closer to the
desired behaviour. 3erhaps there
s some clever way of getting
around this problem. %ut it
s not immediately obvious how we can
get a network of perceptrons to learn.

:e can overcome this problem by introducing a new type of
artificial neuron called a sigPoid neuron. 6igmoid neurons are
similar to perceptrons, but modified so that small changes in their
weights and bias cause only a small change in their output. That
s
the crucial fact which will allow a network of sigmoid neurons to
learn.

Okay, let me describe the sigmoid neuron. :e
ll depict sigmoid
neurons in the same way we depicted perceptrons:

-ust like a perceptron, the sigmoid neuron has inputs, . %ut
instead of being just or , these inputs can also take on any values

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 11/�0

Eetween and . 6o, for instance, is a valid input for a
sigmoid neuron. $lso just like a perceptron, the sigmoid neuron has
weights for each input, , and an overall bias, . %ut the
output is not or . ,nstead, it
s , where is called the
sigPoid IunFtion, and is defined by:

To put it all a little more e[plicitly, the output of a sigmoid neuron
with inputs , weights , and bias is

$t first sight, sigmoid neurons appear very different to perceptrons.
The algebraic form of the sigmoid function may seem opaque and
forbidding if you
re not already familiar with it. ,n fact, there are
many similarities between perceptrons and sigmoid neurons, and
the algebraic form of the sigmoid function turns out to be more of a
technical detail than a true barrier to understanding.

To understand the similarity to the perceptron model, suppose
 is a large positive number. Then and so

. ,n other words, when is large and positive, the
output from the sigmoid neuron is appro[imately , just as it would
have been for a perceptron. 6uppose on the other hand that

 is very negative. Then , and . 6o when
 is very negative, the behaviour of a sigmoid neuron

also closely appro[imates a perceptron. ,t
s only when is of
modest si]e that there
s much deviation from the perceptron model.

:hat about the algebraic form of " +ow can we understand that"
,n fact, the e[act form of isn
t so important - what really matters is
the shape of the function when plotted. +ere
s the shape:

,ncidentally, is sometimes called the logistiF
IunFtion, and this new class of neurons called
logistiF neurons. ,t
s useful to remember this
terminology, since these terms are used by many
people working with neural nets. +owever, we
ll
stick with the sigmoid terminology.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 12/�0

�� �� �� �� � � � � �

���

���

���

���

���

���

]

sigmoid function

This shape is a smoothed out version of a step function:

�� �� �� �� � � � � �

���

���

���

���

���

���

]

step function

,f had in fact been a step function, then the sigmoid neuron would
Ee a perceptron, since the output would be or depending on
whether was positive or negative. %y using the actual
function we get, as already implied above, a smoothed out
perceptron. ,ndeed, it
s the smoothness of the function that is the
crucial fact, not its detailed form. The smoothness of means that
small changes in the weights and in the bias will produce a
small change in the output from the neuron. ,n fact,
calculus tells us that is well appro[imated by

where the sum is over all the weights, , and and
 denote partial derivatives of the with respect to

and , respectively. Don
t panic if you
re not comfortable with
partial derivatives� :hile the e[pression above looks complicated,
with all the partial derivatives, it
s actually saying something very
simple �and which is very good news�: is a linear IunFtion
of the changes and in the weights and bias. This linearity

$ctually, when the perceptron
outputs , while the step function outputs . 6o,
strictly speaking, we
d need to modify the step
function at that one point. %ut you get the idea.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

makes it easy to choose small changes in the weights and biases to
achieve any desired small change in the output. 6o while sigmoid
neurons have much of the same qualitative behaviour as
perceptrons, they make it much easier to figure out how changing
the weights and biases will change the output.

,f it
s the shape of which really matters, and not its e[act form,
then why use the particular form used for in (quation ���" ,n fact,
later in the book we will occasionally consider neurons where the
output is for some other aFtiYation IunFtion . The
main thing that changes when we use a different activation function
is that the particular values for the partial derivatives in (quation
��� change. ,t turns out that when we compute those partial
derivatives later, using will simplify the algebra, simply because
e[ponentials have lovely properties when differentiated. ,n any
case, is commonly-used in work on neural nets, and is the
activation function we
ll use most often in this book.

+ow should we interpret the output from a sigmoid neuron"
Obviously, one big difference between perceptrons and sigmoid
neurons is that sigmoid neurons don
t just output or . They can
have as output any real number between and , so values such as

 and are legitimate outputs. This can be useful, for
e[ample, if we want to use the output value to represent the average
intensity of the pi[els in an image input to a neural network. %ut
sometimes it can be a nuisance. 6uppose we want the output from
the network to indicate either �the input image is a �� or �the input
image is not a ��. Obviously, it
d be easiest to do this if the output
was a or a , as in a perceptron. %ut in practice we can set up a
convention to deal with this, for e[ample, by deciding to interpret
any output of at least as indicating a ���, and any output less
than as indicating �not a ��. ,
ll always e[plicitly state when
we
re using such a convention, so it shouldn
t cause any confusion.

([erFises

Sigmoid neurons simulating perceptrons, part I
6uppose we take all the weights and biases in a network of
perceptrons, and multiply them by a positive constant, .
6how that the behaviour of the network doesn
t change.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

Sigmoid neurons simulating perceptrons, part II
6uppose we have the same setup as the last problem - a
network of perceptrons. 6uppose also that the overall input to
the network of perceptrons has been chosen. :e won
t need
the actual input value, we just need the input to have been
fi[ed. 6uppose the weights and biases are such that
for the input to any particular perceptron in the network.
Now replace all the perceptrons in the network by sigmoid
neurons, and multiply the weights and biases by a positive
constant . 6how that in the limit as the behaviour
of this network of sigmoid neurons is e[actly the same as the
network of perceptrons. +ow can this fail when
for one of the perceptrons"

7Ke arFKiteFture oI neural networks
,n the ne[t section ,
ll introduce a neural network that can do a
pretty good job classifying handwritten digits. ,n preparation for
that, it helps to e[plain some terminology that lets us name
different parts of a network. 6uppose we have the network:

$s mentioned earlier, the leftmost layer in this network is called the
input layer, and the neurons within the layer are called input
neurons. The rightmost or output layer contains the output
neurons, or, as in this case, a single output neuron. The middle
layer is called a Kidden la\er, since the neurons in this layer are
neither inputs nor outputs. The term �hidden� perhaps sounds a
little mysterious - the first time , heard the term , thought it must
have some deep philosophical or mathematical significance - but it
really means nothing more than �not an input or an output�. The
network above has just a single hidden layer, but some networks
have multiple hidden layers. For e[ample, the following four-layer
network has two hidden layers:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

6omewhat confusingly, and for historical reasons, such multiple
layer networks are sometimes called Pultila\er perFeptrons or
0L3s, despite being made up of sigmoid neurons, not perceptrons.
,
m not going to use the 0/3 terminology in this book, since , think
it
s confusing, but wanted to warn you of its e[istence.

The design of the input and output layers in a network is often
straightforward. For e[ample, suppose we
re trying to determine
whether a handwritten image depicts a ��� or not. $ natural way to
design the network is to encode the intensities of the image pi[els
into the input neurons. ,f the image is a by greyscale image,
then we
d have input neurons, with the intensities
scaled appropriately between and . The output layer will contain
just a single neuron, with output values of less than indicating
�input image is not a ��, and values greater than indicating
�input image is a � �.

:hile the design of the input and output layers of a neural network
is often straightforward, there can be quite an art to the design of
the hidden layers. ,n particular, it
s not possible to sum up the
design process for the hidden layers with a few simple rules of
thumb. ,nstead, neural networks researchers have developed many
design heuristics for the hidden layers, which help people get the
behaviour they want out of their nets. For e[ample, such heuristics
can be used to help determine how to trade off the number of
hidden layers against the time required to train the network. :e
ll
meet several such design heuristics later in this book.

8p to now, we
ve been discussing neural networks where the output
from one layer is used as input to the ne[t layer. 6uch networks are
called IeedIorward neural networks. This means there are no loops

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 16/�0

in the network - information is always fed forward, never fed back.
,f we did have loops, we
d end up with situations where the input to
the function depended on the output. That
d be hard to make
sense of, and so we don
t allow such loops.

+owever, there are other models of artificial neural networks in
which feedback loops are possible. These models are called
recurrent neural networks. The idea in these models is to have
neurons which fire for some limited duration of time, before
becoming quiescent. That firing can stimulate other neurons, which
may fire a little while later, also for a limited duration. That causes
still more neurons to fire, and so over time we get a cascade of
neurons firing. /oops don
t cause problems in such a model, since a
neuron
s output only affects its input at some later time, not
instantaneously.

5ecurrent neural nets have been less influential than feedforward
networks, in part because the learning algorithms for recurrent nets
are �at least to date� less powerful. %ut recurrent networks are still
e[tremely interesting. They
re much closer in spirit to how our
brains work than feedforward networks. $nd it
s possible that
recurrent networks can solve important problems which can only be
solved with great difficulty by feedforward networks. +owever, to
limit our scope, in this book we
re going to concentrate on the more
widely-used feedforward networks.

$ siPple network to FlassiI\
Kandwritten digits
+aving defined neural networks, let
s return to handwriting
recognition. :e can split the problem of recogni]ing handwritten
digits into two sub-problems. First, we
d like a way of breaking an
image containing many digits into a sequence of separate images,
each containing a single digit. For e[ample, we
d like to break the
image

into si[separate images,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

:e humans solve this segPentation proEleP with ease, but it
s
challenging for a computer program to correctly break up the
image. Once the image has been segmented, the program then
needs to classify each individual digit. 6o, for instance, we
d like our
program to recogni]e that the first digit above,

is a �.

:e
ll focus on writing a program to solve the second problem, that
is, classifying individual digits. :e do this because it turns out that
the segmentation problem is not so difficult to solve, once you have
a good way of classifying individual digits. There are many
approaches to solving the segmentation problem. One approach is
to trial many different ways of segmenting the image, using the
individual digit classifier to score each trial segmentation. $ trial
segmentation gets a high score if the individual digit classifier is
confident of its classification in all segments, and a low score if the
classifier is having a lot of trouble in one or more segments. The
idea is that if the classifier is having trouble somewhere, then it
s
probably having trouble because the segmentation has been chosen
incorrectly. This idea and other variations can be used to solve the
segmentation problem quite well. 6o instead of worrying about
segmentation we
ll concentrate on developing a neural network
which can solve the more interesting and difficult problem, namely,
recogni]ing individual handwritten digits.

To recogni]e individual digits we will use a three-layer neural
network:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

The input layer of the network contains neurons encoding the
values of the input pi[els. $s discussed in the ne[t section, our
training data for the network will consist of many by pi[el
images of scanned handwritten digits, and so the input layer
contains neurons. For simplicity ,
ve omitted most of
the input neurons in the diagram above. The input pi[els are
greyscale, with a value of representing white, a value of
representing black, and in between values representing gradually
darkening shades of grey.

The second layer of the network is a hidden layer. :e denote the
number of neurons in this hidden layer by , and we
ll e[periment
with different values for . The e[ample shown illustrates a small
hidden layer, containing just neurons.

The output layer of the network contains 1� neurons. ,f the first
neuron fires, i.e., has an output , then that will indicate that the
network thinks the digit is a . ,f the second neuron fires then that
will indicate that the network thinks the digit is a . $nd so on. $
little more precisely, we number the output neurons from through

, and figure out which neuron has the highest activation value. ,f
that neuron is, say, neuron number , then our network will guess
that the input digit was a . $nd so on for the other output neurons.

<ou might wonder why we use output neurons. $fter all, the goal
of the network is to tell us which digit � � corresponds to
the input image. $ seemingly natural way of doing that is to use just

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 1�/�0

 output neurons, treating each neuron as taking on a binary value,
depending on whether the neuron
s output is closer to or to .
Four neurons are enough to encode the answer, since is
more than the 1� possible values for the input digit. :hy should our
network use neurons instead" ,sn
t that inefficient" The ultimate
justification is empirical: we can try out both network designs, and
it turns out that, for this particular problem, the network with
output neurons learns to recogni]e digits better than the network
with output neurons. %ut that leaves us wondering wK\ using
output neurons works better. ,s there some heuristic that would tell
us in advance that we should use the -output encoding instead of
the -output encoding"

To understand why we do this, it helps to think about what the
neural network is doing from first principles. Consider first the case
where we use output neurons. /et
s concentrate on the first
output neuron, the one that
s trying to decide whether or not the
digit is a . ,t does this by weighing up evidence from the hidden
layer of neurons. :hat are those hidden neurons doing" :ell, just
suppose for the sake of argument that the first neuron in the hidden
layer detects whether or not an image like the following is present:

,t can do this by heavily weighting input pi[els which overlap with
the image, and only lightly weighting the other inputs. ,n a similar
way, let
s suppose for the sake of argument that the second, third,
and fourth neurons in the hidden layer detect whether or not the
following images are present:

$s you may have guessed, these four images together make up the
image that we saw in the line of digits shown earlier:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 20/�0

6o if all four of these hidden neurons are firing then we can
conclude that the digit is a . Of course, that
s not the onl\ sort of
evidence we can use to conclude that the image was a - we could
legitimately get a in many other ways �say, through translations of
the above images, or slight distortions�. %ut it seems safe to say that
at least in this case we
d conclude that the input was a .

6upposing the neural network functions in this way, we can give a
plausible e[planation for why it
s better to have outputs from the
network, rather than . ,f we had outputs, then the first output
neuron would be trying to decide what the most significant bit of
the digit was. $nd there
s no easy way to relate that most significant
bit to simple shapes like those shown above. ,t
s hard to imagine
that there
s any good historical reason the component shapes of the
digit will be closely related to �say� the most significant bit in the
output.

Now, with all that said, this is all just a heuristic. Nothing says that
the three-layer neural network has to operate in the way ,
described, with the hidden neurons detecting simple component
shapes. 0aybe a clever learning algorithm will find some
assignment of weights that lets us use only output neurons. %ut as
a heuristic the way of thinking ,
ve described works pretty well, and
can save you a lot of time in designing good neural network
architectures.

([erFise

There is a way of determining the bitwise representation of a
digit by adding an e[tra layer to the three-layer network above.
The e[tra layer converts the output from the previous layer into
a binary representation, as illustrated in the figure below. Find
a set of weights and biases for the new output layer. $ssume
that the first layers of neurons are such that the correct
output in the third layer �i.e., the old output layer� has

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 21/�0

activation at least , and incorrect outputs have activation
less than .

Learning witK gradient desFent
Now that we have a design for our neural network, how can it learn
to recogni]e digits" The first thing we
ll need is a data set to learn
from - a so-called training data set. :e
ll use the 0N,6T data set,
which contains tens of thousands of scanned images of handwritten
digits, together with their correct classifications. 0N,6T
s name
comes from the fact that it is a modified subset of two data sets
collected by N,6T, the 8nited 6tates
 National ,nstitute of
6tandards and Technology. +ere
s a few images from 0N,6T:

$s you can see, these digits are, in fact, the same as those shown at
the beginning of this chapter as a challenge to recogni]e. Of course,
when testing our network we
ll ask it to recogni]e images which
aren
t in the training set�

The 0N,6T data comes in two parts. The first part contains ��,���
images to be used as training data. These images are scanned
handwriting samples from ��� people, half of whom were 86
Census %ureau employees, and half of whom were high school
students. The images are greyscale and �� by �� pi[els in si]e. The
second part of the 0N,6T data set is 1�,��� images to be used as
test data. $gain, these are �� by �� greyscale images. :e
ll use the
test data to evaluate how well our neural network has learned to
recogni]e digits. To make this a good test of performance, the test

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 22/�0

data was taken from a diIIerent set of ��� people than the original
training data �albeit still a group split between Census %ureau
employees and high school students�. This helps give us confidence
that our system can recogni]e digits from people whose writing it
didn
t see during training.

:e
ll use the notation to denote a training input. ,t
ll be
convenient to regard each training input as a -
dimensional vector. (ach entry in the vector represents the grey
value for a single pi[el in the image. :e
ll denote the corresponding
desired output by , where is a -dimensional vector. For
e[ample, if a particular training image, , depicts a , then

 is the desired output from the
network. Note that here is the transpose operation, turning a row
vector into an ordinary �column� vector.

:hat we
d like is an algorithm which lets us find weights and biases
so that the output from the network appro[imates for all
training inputs . To quantify how well we
re achieving this goal we
define a Fost IunFtion:

+ere, denotes the collection of all weights in the network, all the
biases, is the total number of training inputs, is the vector of
outputs from the network when is input, and the sum is over all
training inputs, . Of course, the output depends on , and , but
to keep the notation simple , haven
t e[plicitly indicated this
dependence. The notation just denotes the usual length
function for a vector . :e
ll call the TuadratiF cost function� it
s
also sometimes known as the Pean sTuared error or just 06(.
,nspecting the form of the quadratic cost function, we see that

 is non-negative, since every term in the sum is non-negative.
Furthermore, the cost becomes small, i.e., ,
precisely when is appro[imately equal to the output, , for all
training inputs, . 6o our training algorithm has done a good job if it
can find weights and biases so that . %y contrast, it
s not
doing so well when is large - that would mean that is not
close to the output for a large number of inputs. 6o the aim of our
training algorithm will be to minimi]e the cost as a function
of the weights and biases. ,n other words, we want to find a set of

6ometimes referred to as a loss or oEMeFtiYe
function. :e use the term cost function
throughout this book, but you should note the
other terminology, since it
s often used in
research papers and other discussions of neural
networks.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

weights and biases which make the cost as small as possible. :e
ll
do that using an algorithm known as gradient desFent.

:hy introduce the quadratic cost" $fter all, aren
t we primarily
interested in the number of images correctly classified by the
network" :hy not try to ma[imi]e that number directly, rather
than minimi]ing a pro[y measure like the quadratic cost" The
problem with that is that the number of images correctly classified
is not a smooth function of the weights and biases in the network.
For the most part, making small changes to the weights and biases
won
t cause any change at all in the number of training images
classified correctly. That makes it difficult to figure out how to
change the weights and biases to get improved performance. ,f we
instead use a smooth cost function like the quadratic cost it turns
out to be easy to figure out how to make small changes in the
weights and biases so as to get an improvement in the cost. That
s
why we focus first on minimi]ing the quadratic cost, and only after
that will we e[amine the classification accuracy.

(ven given that we want to use a smooth cost function, you may still
wonder why we choose the quadratic function used in (quation ���.
,sn
t this a rather ad KoF choice" 3erhaps if we chose a different
cost function we
d get a totally different set of minimi]ing weights
and biases" This is a valid concern, and later we
ll revisit the cost
function, and make some modifications. +owever, the quadratic
cost function of (quation ��� works perfectly well for understanding
the basics of learning in neural networks, so we
ll stick with it for
now.

5ecapping, our goal in training a neural network is to find weights
and biases which minimi]e the quadratic cost function . This
is a well-posed problem, but it
s got a lot of distracting structure as
currently posed - the interpretation of and as weights and
biases, the function lurking in the background, the choice of
network architecture, 0N,6T, and so on. ,t turns out that we can
understand a tremendous amount by ignoring most of that
structure, and just concentrating on the minimi]ation aspect. 6o for
now we
re going to forget all about the specific form of the cost
function, the connection to neural networks, and so on. ,nstead,
we
re going to imagine that we
ve simply been given a function of
many variables and we want to minimi]e that function. :e
re going

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

to develop a technique called gradient desFent which can be used to
solve such minimi]ation problems. Then we
ll come back to the
specific function we want to minimi]e for neural networks.

Okay, let
s suppose we
re trying to minimi]e some function, .
This could be any real-valued function of many variables,

. Note that ,
ve replaced the and notation by to
emphasi]e that this could be any function - we
re not specifically
thinking in the neural networks conte[t any more. To minimi]e
it helps to imagine as a function of just two variables, which we
ll
call and :

:hat we
d like is to find where achieves its global minimum.
Now, of course, for the function plotted above, we can eyeball the
graph and find the minimum. ,n that sense, ,
ve perhaps shown
slightly too simple a function� $ general function, , may be a
complicated function of many variables, and it won
t usually be
possible to just eyeball the graph to find the minimum.

One way of attacking the problem is to use calculus to try to find the
minimum analytically. :e could compute derivatives and then try
using them to find places where is an e[tremum. :ith some luck
that might work when is a function of just one or a few variables.
%ut it
ll turn into a nightmare when we have many more variables.
$nd for neural networks we
ll often want Iar more variables - the
biggest neural networks have cost functions which depend on
billions of weights and biases in an e[tremely complicated way.
8sing calculus to minimi]e that just won
t work�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

�$fter asserting that we
ll gain insight by imagining as a function
of just two variables, ,
ve turned around twice in two paragraphs
and said, �hey, but what if it
s a function of many more than two
variables"� 6orry about that. 3lease believe me when , say that it
really does help to imagine as a function of two variables. ,t just
happens that sometimes that picture breaks down, and the last two
paragraphs were dealing with such breakdowns. *ood thinking
about mathematics often involves juggling multiple intuitive
pictures, learning when it
s appropriate to use each picture, and
when it
s not.�

Okay, so calculus doesn
t work. Fortunately, there is a beautiful
analogy which suggests an algorithm which works pretty well. :e
start by thinking of our function as a kind of a valley. ,f you squint
just a little at the plot above, that shouldn
t be too hard. $nd we
imagine a ball rolling down the slope of the valley. Our everyday
e[perience tells us that the ball will eventually roll to the bottom of
the valley. 3erhaps we can use this idea as a way to find a minimum
for the function" :e
d randomly choose a starting point for an
�imaginary� ball, and then simulate the motion of the ball as it
rolled down to the bottom of the valley. :e could do this simulation
simply by computing derivatives �and perhaps some second
derivatives� of - those derivatives would tell us everything we
need to know about the local �shape� of the valley, and therefore
how our ball should roll.

%ased on what ,
ve just written, you might suppose that we
ll be
trying to write down Newton
s equations of motion for the ball,
considering the effects of friction and gravity, and so on. $ctually,
we
re not going to take the ball-rolling analogy quite that seriously -
we
re devising an algorithm to minimi]e , not developing an
accurate simulation of the laws of physics� The ball
s-eye view is
meant to stimulate our imagination, not constrain our thinking. 6o
rather than get into all the messy details of physics, let
s simply ask
ourselves: if we were declared *od for a day, and could make up our
own laws of physics, dictating to the ball how it should roll, what
law or laws of motion could we pick that would make it so the ball
always rolled to the bottom of the valley"

To make this question more precise, let
s think about what happens
when we move the ball a small amount in the direction, and

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 26/�0

a small amount in the direction. Calculus tells us that
changes as follows:

:e
re going to find a way of choosing and so as to make
negative� i.e., we
ll choose them so the ball is rolling down into the
valley. To figure out how to make such a choice it helps to define
to be the vector of changes in , , where is again
the transpose operation, turning row vectors into column vectors.
:e
ll also define the gradient of to be the vector of partial
derivatives, . :e denote the gradient vector by , i.e.:

,n a moment we
ll rewrite the change in terms of and the
gradient, . %efore getting to that, though, , want to clarify
something that sometimes gets people hung up on the gradient.
:hen meeting the notation for the first time, people sometimes
wonder how they should think about the symbol. :hat, e[actly,
does mean" ,n fact, it
s perfectly fine to think of as a single
mathematical object - the vector defined above - which happens to
be written using two symbols. ,n this point of view, is just a piece
of notational flag-waving, telling you �hey, is a gradient vector�.
There are more advanced points of view where can be viewed as
an independent mathematical entity in its own right �for e[ample,
as a differential operator�, but we won
t need such points of view.

:ith these definitions, the e[pression ��� for can be rewritten as

This equation helps e[plain why is called the gradient vector:
 relates changes in to changes in , just as we
d e[pect

something called a gradient to do. %ut what
s really e[citing about
the equation is that it lets us see how to choose so as to make
negative. ,n particular, suppose we choose

where is a small, positive parameter �known as the learning rate�.
Then (quation ��� tells us that .
%ecause , this guarantees that , i.e., will always

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

decrease, never increase, if we change according to the
prescription in �1��. �:ithin, of course, the limits of the
appro[imation in (quation ����. This is e[actly the property we
wanted� $nd so we
ll take (quation �1�� to define the �law of
motion� for the ball in our gradient descent algorithm. That is, we
ll
use (quation �1�� to compute a value for , then move the ball
s
position by that amount:

Then we
ll use this update rule again, to make another move. ,f we
keep doing this, over and over, we
ll keep decreasing until - we
hope - we reach a global minimum.

6umming up, the way the gradient descent algorithm works is to
repeatedly compute the gradient , and then to move in the
opposite direction, �falling down� the slope of the valley. :e can
visuali]e it like this:

Notice that with this rule gradient descent doesn
t reproduce real
physical motion. ,n real life a ball has momentum, and that
momentum may allow it to roll across the slope, or even
�momentarily� roll uphill. ,t
s only after the effects of friction set in
that the ball is guaranteed to roll down into the valley. %y contrast,
our rule for choosing just says �go down, right now�. That
s still
a pretty good rule for finding the minimum�

To make gradient descent work correctly, we need to choose the
learning rate to be small enough that (quation ��� is a good

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

appro[imation. ,f we don
t, we might end up with , which
obviously would not be good� $t the same time, we don
t want to
be too small, since that will make the changes tiny, and thus the
gradient descent algorithm will work very slowly. ,n practical
implementations, is often varied so that (quation ��� remains a
good appro[imation, but the algorithm isn
t too slow. :e
ll see later
how this works.

,
ve e[plained gradient descent when is a function of just two
variables. %ut, in fact, everything works just as well even when is
a function of many more variables. 6uppose in particular that is a
function of variables, . Then the change in
produced by a small change is

where the gradient is the vector

-ust as for the two variable case, we can choose

and we
re guaranteed that our �appro[imate� e[pression �1�� for
will be negative. This gives us a way of following the gradient to a
minimum, even when is a function of many variables, by
repeatedly applying the update rule

<ou can think of this update rule as deIining the gradient descent
algorithm. ,t gives us a way of repeatedly changing the position in
order to find a minimum of the function . The rule doesn
t always
work - several things can go wrong and prevent gradient descent
from finding the global minimum of , a point we
ll return to
e[plore in later chapters. %ut, in practice gradient descent often
works e[tremely well, and in neural networks we
ll find that it
s a
powerful way of minimi]ing the cost function, and so helping the
net learn.

,ndeed, there
s even a sense in which gradient descent is the
optimal strategy for searching for a minimum. /et
s suppose that

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html 2�/�0

we
re trying to make a move in position so as to decrease as
much as possible. This is equivalent to minimi]ing .
:e
ll constrain the si]e of the move so that for some small
fi[ed . ,n other words, we want a move that is a small step of a
fi[ed si]e, and we
re trying to find the movement direction which
decreases as much as possible. ,t can be proved that the choice of

 which minimi]es is , where is
determined by the si]e constraint . 6o gradient descent can
be viewed as a way of taking small steps in the direction which does
the most to immediately decrease .

([erFises

3rove the assertion of the last paragraph. +int� ,f you
re not
already familiar with the Cauchy-6chwar] inequality, you may
find it helpful to familiari]e yourself with it.

, e[plained gradient descent when is a function of two
variables, and when it
s a function of more than two variables.
:hat happens when is a function of just one variable" Can
you provide a geometric interpretation of what gradient
descent is doing in the one-dimensional case"

3eople have investigated many variations of gradient descent,
including variations that more closely mimic a real physical ball.
These ball-mimicking variations have some advantages, but also
have a major disadvantage: it turns out to be necessary to compute
second partial derivatives of , and this can be quite costly. To see
why it
s costly, suppose we want to compute all the second partial
derivatives . ,f there are a million such variables then
we
d need to compute something like a trillion �i.e., a million
squared� second partial derivatives� That
s going to be
computationally costly. :ith that said, there are tricks for avoiding
this kind of problem, and finding alternatives to gradient descent is
an active area of investigation. %ut in this book we
ll use gradient
descent �and variations� as our main approach to learning in neural
networks.

+ow can we apply gradient descent to learn in a neural network"
The idea is to use gradient descent to find the weights and biases

 which minimi]e the cost in (quation ���. To see how this works,
let
s restate the gradient descent update rule, with the weights and

$ctually, more like half a trillion, since
. 6till, you get the point.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �0/�0

biases replacing the variables . ,n other words, our �position� now
has components and , and the gradient vector has
corresponding components and . :riting out the
gradient descent update rule in terms of components, we have

%y repeatedly applying this update rule we can �roll down the hill�,
and hopefully find a minimum of the cost function. ,n other words,
this is a rule which can be used to learn in a neural network.

There are a number of challenges in applying the gradient descent
rule. :e
ll look into those in depth in later chapters. %ut for now ,
just want to mention one problem. To understand what the problem
is, let
s look back at the quadratic cost in (quation ���. Notice that
this cost function has the form , that is, it
s an average

over costs for individual training e[amples. ,n
practice, to compute the gradient we need to compute the
gradients separately for each training input, , and then
average them, . 8nfortunately, when the number of
training inputs is very large this can take a long time, and learning
thus occurs slowly.

$n idea called stoFKastiF gradient desFent can be used to speed up
learning. The idea is to estimate the gradient by computing
for a small sample of randomly chosen training inputs. %y
averaging over this small sample it turns out that we can quickly get
a good estimate of the true gradient , and this helps speed up
gradient descent, and thus learning.

To make these ideas more precise, stochastic gradient descent
works by randomly picking out a small number of randomly
chosen training inputs. :e
ll label those random training inputs

, and refer to them as a Pini�EatFK. 3rovided the
sample si]e is large enough we e[pect that the average value of
the will be roughly equal to the average over all , that is,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �1/�0

where the second sum is over the entire set of training data.
6wapping sides we get

confirming that we can estimate the overall gradient by computing
gradients just for the randomly chosen mini-batch.

To connect this e[plicitly to learning in neural networks, suppose
and denote the weights and biases in our neural network. Then
stochastic gradient descent works by picking out a randomly chosen
mini-batch of training inputs, and training with those,

where the sums are over all the training e[amples in the current
mini-batch. Then we pick out another randomly chosen mini-batch
and train with those. $nd so on, until we
ve e[hausted the training
inputs, which is said to complete an epoFK of training. $t that point
we start over with a new training epoch.

,ncidentally, it
s worth noting that conventions vary about scaling of
the cost function and of mini-batch updates to the weights and
biases. ,n (quation ��� we scaled the overall cost function by a
factor . 3eople sometimes omit the , summing over the costs of
individual training e[amples instead of averaging. This is
particularly useful when the total number of training e[amples isn
t
known in advance. This can occur if more training data is being
generated in real time, for instance. $nd, in a similar way, the mini-
batch update rules ���� and ��1� sometimes omit the term out
the front of the sums. Conceptually this makes little difference,
since it
s equivalent to rescaling the learning rate . %ut when doing
detailed comparisons of different work it
s worth watching out for.

:e can think of stochastic gradient descent as being like political
polling: it
s much easier to sample a small mini-batch than it is to
apply gradient descent to the full batch, just as carrying out a poll is
easier than running a full election. For e[ample, if we have a
training set of si]e , as in 0N,6T, and choose a mini-

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �2/�0

batch si]e of �say� , this means we
ll get a factor of
speedup in estimating the gradient� Of course, the estimate won
t be
perfect - there will be statistical fluctuations - but it doesn
t need to
be perfect: all we really care about is moving in a general direction
that will help decrease , and that means we don
t need an e[act
computation of the gradient. ,n practice, stochastic gradient
descent is a commonly used and powerful technique for learning in
neural networks, and it
s the basis for most of the learning
techniques we
ll develop in this book.

([erFise

$n e[treme version of gradient descent is to use a mini-batch
si]e of just 1. That is, given a training input, , we update our
weights and biases according to the rules

 and . Then we
choose another training input, and update the weights and
biases again. $nd so on, repeatedly. This procedure is known as
online, on�line, or inFrePental learning. ,n online learning, a
neural network learns from just one training input at a time
�just as human beings do�. Name one advantage and one
disadvantage of online learning, compared to stochastic
gradient descent with a mini-batch si]e of, say, .

/et me conclude this section by discussing a point that sometimes
bugs people new to gradient descent. ,n neural networks the cost
is, of course, a function of many variables - all the weights and
biases - and so in some sense defines a surface in a very high-
dimensional space. 6ome people get hung up thinking: �+ey, , have
to be able to visuali]e all these e[tra dimensions�. $nd they may
start to worry: �, can
t think in four dimensions, let alone five �or
five million��. ,s there some special ability they
re missing, some
ability that �real� supermathematicians have" Of course, the answer
is no. (ven most professional mathematicians can
t visuali]e four
dimensions especially well, if at all. The trick they use, instead, is to
develop other ways of representing what
s going on. That
s e[actly
what we did above: we used an algebraic �rather than visual�
representation of to figure out how to move so as to decrease .
3eople who are good at thinking in high dimensions have a mental
library containing many different techniques along these lines� our
algebraic trick is just one e[ample. Those techniques may not have

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

the simplicity we
re accustomed to when visuali]ing three
dimensions, but once you build up a library of such techniques, you
can get pretty good at thinking in high dimensions. , won
t go into
more detail here, but if you
re interested then you may enjoy
reading this discussion of some of the techniques professional
mathematicians use to think in high dimensions. :hile some of the
techniques discussed are quite comple[, much of the best content is
intuitive and accessible, and could be mastered by anyone.

,PplePenting our network to FlassiI\
digits
$lright, let
s write a program that learns how to recogni]e
handwritten digits, using stochastic gradient descent and the
0N,6T training data. :e
ll do this with a short 3ython ��.��
program, just �� lines of code� The first thing we need is to get the
0N,6T data. ,f you
re a JLW user then you can obtain the data by
cloning the code repository for this book,

JLW�FORQH�KWWSV���JLWKXE�FRP�PQLHOVHQ�QHXUDO�QHWZRUNV�DQG�GHHS�OHDUQLQJ�JLW

,f you don
t use JLW then you can download the data and code here.

,ncidentally, when , described the 0N,6T data earlier, , said it was
split into ��,��� training images, and 1�,��� test images. That
s
the official 0N,6T description. $ctually, we
re going to split the
data a little differently. :e
ll leave the test images as is, but split the
��,���-image 0N,6T training set into two parts: a set of ��,���
images, which we
ll use to train our neural network, and a separate
1�,��� image Yalidation set. :e won
t use the validation data in
this chapter, but later in the book we
ll find it useful in figuring out
how to set certain K\per�paraPeters of the neural network - things
like the learning rate, and so on, which aren
t directly selected by
our learning algorithm. $lthough the validation data isn
t part of
the original 0N,6T specification, many people use 0N,6T in this
fashion, and the use of validation data is common in neural
networks. :hen , refer to the �0N,6T training data� from now on,
,
ll be referring to our ��,��� image data set, not the original
��,��� image data set.

$part from the 0N,6T data we also need a 3ython library called
Numpy, for doing fast linear algebra. ,f you don
t already have

$s noted earlier, the 0N,6T data set is based
on two data sets collected by N,6T, the 8nited
6tates
 National ,nstitute of 6tandards and
Technology. To construct 0N,6T the N,6T data
sets were stripped down and put into a more
convenient format by <ann /eCun, Corinna

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

Numpy installed, you can get it here.

/et me e[plain the core features of the neural networks code, before
giving a full listing, below. The centerpiece is a NHWZRUN class, which
we use to represent a neural network. +ere
s the code we use to
initiali]e a NHWZRUN object:

class�Network�REMHFW��

����def�BBLQLWBB�VHOI��VL]HV��
��������VHOI�QXPBOD\HUV� �OHQ�VL]HV�

��������VHOI�VL]HV� �VL]HV

��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[��

������������������������for�[��\�in�]LS�VL]HV>���@��VL]HV>��@�@

,n this code, the list VL]HV contains the number of neurons in the
respective layers. 6o, for e[ample, if we want to create a NHWZRUN
object with � neurons in the first layer, � neurons in the second
layer, and 1 neuron in the final layer, we
d do this with the code:

QHW� �NHWZRUN�>�������@�

The biases and weights in the NHWZRUN object are all initiali]ed
randomly, using the Numpy QS�UDQGRP�UDQGQ function to generate
*aussian distributions with mean and standard deviation . This
random initiali]ation gives our stochastic gradient descent
algorithm a place to start from. ,n later chapters we
ll find better
ways of initiali]ing the weights and biases, but this will do for now.
Note that the NHWZRUN initiali]ation code assumes that the first layer
of neurons is an input layer, and omits to set any biases for those
neurons, since biases are only ever used in computing the outputs
from later layers.

Note also that the biases and weights are stored as lists of Numpy
matrices. 6o, for e[ample QHW�ZHLJKWV>�@ is a Numpy matri[storing
the weights connecting the second and third layers of neurons. �,t
s
not the first and second layers, since 3ython
s list inde[ing starts at
�.� 6ince QHW�ZHLJKWV>�@ is rather verbose, let
s just denote that
matri[. ,t
s a matri[such that is the weight for the connection
between the neuron in the second layer, and the neuron in the
third layer. This ordering of the and indices may seem strange -
surely it
d make more sense to swap the and indices around" The
big advantage of using this ordering is that it means that the vector
of activations of the third layer of neurons is:

Cortes, and Christopher -. C. %urges. 6ee this
link for more details. The data set in my
repository is in a form that makes it easy to load
and manipulate the 0N,6T data in 3ython. ,
obtained this particular form of the data from
the /,6$ machine learning laboratory at the
8niversity of 0ontreal �link�.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

There
s quite a bit going on in this equation, so let
s unpack it piece
by piece. is the vector of activations of the second layer of
neurons. To obtain we multiply by the weight matri[, and
add the vector of biases. :e then apply the function
elementwise to every entry in the vector . �This is called
YeFtori]ing the function .� ,t
s easy to verify that (quation ����
gives the same result as our earlier rule, (quation ���, for
computing the output of a sigmoid neuron.

([erFise

:rite out (quation ���� in component form, and verify that it
gives the same result as the rule ��� for computing the output
of a sigmoid neuron.

:ith all this in mind, it
s easy to write code computing the output
from a NHWZRUN instance. :e begin by defining the sigmoid function:

def�VLJPRLG�]��
����return����������QS�H[S��]��

Note that when the input] is a vector or Numpy array, Numpy
automatically applies the function VLJPRLG elementwise, that is, in
vectori]ed form.

:e then add a IHHGIRUZDUG method to the NHWZRUN class, which,
given an input D for the network, returns the corresponding
output. $ll the method does is applies (quation ���� for each
layer:

����def�IHHGIRUZDUG�VHOI��D��
��������"""Return the output of the network if "a" is input."""

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������D� �VLJPRLG�QS�GRW�Z��D��E�

��������return�D

Of course, the main thing we want our NHWZRUN objects to do is to
learn. To that end we
ll give them an 6*D method which implements
stochastic gradient descent. +ere
s the code. ,t
s a little mysterious
in a few places, but ,
ll break it down below, after the listing.

����def�6*D�VHOI��WUDLQLQJBGDWD��HSRFKV��PLQLBEDWFKBVL]H��HWD�
������������WHVWBGDWD NRQH��

��������"""Train the neural network using mini-batch stochastic

 gradient descent. The "training_data" is a list of tuples

 "(x, y)" representing the training inputs and the desired

 outputs. The other non-optional parameters are

 self-explanatory. If "test_data" is provided then the

 network will be evaluated against the test data after each

 epoch, and partial progress printed out. This is useful for

 tracking progress, but slows things down substantially."""

,t is assumed that the input D is an �Q����
Numpy ndarray, not a �Q�� vector. +ere, Q is
the number of inputs to the network. ,f you try to
use an �Q�� vector as input you
ll get strange
results. $lthough using an �Q�� vector appears
the more natural choice, using an �Q����
ndarray makes it particularly easy to modify the
code to feedforward multiple inputs at once, and
that is sometimes convenient.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �6/�0

��������if�WHVWBGDWD��QBWHVW� �OHQ�WHVWBGDWD�
��������Q� �OHQ�WUDLQLQJBGDWD�

��������for�M�in�[UDQJH�HSRFKV��
������������UDQGRP�VKXIIOH�WUDLQLQJBGDWD�

������������PLQLBEDWFKHV� �>

����������������WUDLQLQJBGDWD>N�N�PLQLBEDWFKBVL]H@

����������������for�N�in�[UDQJH����Q��PLQLBEDWFKBVL]H�@
������������for�PLQLBEDWFK�in�PLQLBEDWFKHV�
����������������VHOI�XSGDWHBPLQLBEDWFK�PLQLBEDWFK��HWD�

������������if�WHVWBGDWD�
����������������print��(SRFK�^�`��^�`���^�`��IRUPDW�
��������������������M��VHOI�HYDOXDWH�WHVWBGDWD���QBWHVW�

������������else�
����������������print��(SRFK�^�`�FRPSOHWH��IRUPDW�M�

The WUDLQLQJBGDWD is a list of tuples �[��\� representing the training
inputs and corresponding desired outputs. The variables HSRFKV and
PLQLBEDWFKBVL]H are what you
d e[pect - the number of epochs to
train for, and the si]e of the mini-batches to use when sampling. HWD
is the learning rate, . ,f the optional argument WHVWBGDWD is
supplied, then the program will evaluate the network after each
epoch of training, and print out partial progress. This is useful for
tracking progress, but slows things down substantially.

The code works as follows. ,n each epoch, it starts by randomly
shuffling the training data, and then partitions it into mini-batches
of the appropriate si]e. This is an easy way of sampling randomly
from the training data. Then for each PLQLBEDWFK we apply a single
step of gradient descent. This is done by the code
VHOI�XSGDWHBPLQLBEDWFK�PLQLBEDWFK��HWD�, which updates the
network weights and biases according to a single iteration of
gradient descent, using just the training data in PLQLBEDWFK. +ere
s
the code for the XSGDWHBPLQLBEDWFK method:

����def�XSGDWHBPLQLBEDWFK�VHOI��PLQLBEDWFK��HWD��
��������"""Update the network's weights and biases by applying

 gradient descent using backpropagation to a single mini batch.

 The "mini_batch" is a list of tuples "(x, y)", and "eta"

 is the learning rate."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������for�[��\�in�PLQLBEDWFK�
������������GHOWDBQDEODBE��GHOWDBQDEODBZ� �VHOI�EDFNSURS�[��\�

������������QDEODBE� �>QE�GQE�for�QE��GQE�in�]LS�QDEODBE��GHOWDBQDEODBE�@
������������QDEODBZ� �>QZ�GQZ�for�QZ��GQZ�in�]LS�QDEODBZ��GHOWDBQDEODBZ�@
��������VHOI�ZHLJKWV� �>Z��HWD�OHQ�PLQLBEDWFK��QZ�

������������������������for�Z��QZ�in�]LS�VHOI�ZHLJKWV��QDEODBZ�@
��������VHOI�ELDVHV� �>E��HWD�OHQ�PLQLBEDWFK��QE�

�����������������������for�E��QE�in�]LS�VHOI�ELDVHV��QDEODBE�@

0ost of the work is done by the line

������������GHOWDBQDEODBE��GHOWDBQDEODBZ� �VHOI�EDFNSURS�[��\�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

This invokes something called the EaFkpropagation algorithm,
which is a fast way of computing the gradient of the cost function.
6o XSGDWHBPLQLBEDWFK works simply by computing these gradients
for every training e[ample in the PLQLBEDWFK, and then updating
VHOI�ZHLJKWV and VHOI�ELDVHV appropriately.

,
m not going to show the code for VHOI�EDFNSURS right now. :e
ll
study how backpropagation works in the ne[t chapter, including the
code for VHOI�EDFNSURS. For now, just assume that it behaves as
claimed, returning the appropriate gradient for the cost associated
to the training e[ample [.

/et
s look at the full program, including the documentation strings,
which , omitted above. $part from VHOI�EDFNSURS the program is
self-e[planatory - all the heavy lifting is done in VHOI�6*D and
VHOI�XSGDWHBPLQLBEDWFK, which we
ve already discussed. The
VHOI�EDFNSURS method makes use of a few e[tra functions to help in
computing the gradient, namely VLJPRLGBSULPH, which computes the
derivative of the function, and VHOI�FRVWBGHULYDWLYH, which ,
won
t describe here. <ou can get the gist of these �and perhaps the
details� just by looking at the code and documentation strings. :e
ll
look at them in detail in the ne[t chapter. Note that while the
program appears lengthy, much of the code is documentation
strings intended to make the code easy to understand. ,n fact, the
program contains just �� lines of non-whitespace, non-comment
code. $ll the code may be found on *it+ub here.

"""

network.py

~~~~~~~~~~

A module to implement the stochastic gradient descent learning

algorithm for a feedforward neural network.  Gradients are calculated

using backpropagation.  Note that I have focused on making the code

simple, easily readable, and easily modifiable.  It is not optimized,

and omits many desirable features.

"""

#### Libraries

# Standard library

import�random

# Third-party libraries

import�numpy�as�np

class�Network�REMHFW��

����def�BBLQLWBB�VHOI��VL]HV��
��������"""The list ``sizes`` contains the number of neurons in the

        respective layers of the network.  For example, if the list

        was [2, 3, 1] then it would be a three-layer network, with the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

        first layer containing 2 neurons, the second layer 3 neurons,

        and the third layer 1 neuron.  The biases and weights for the

        network are initialized randomly, using a Gaussian

        distribution with mean 0, and variance 1.  Note that the first

        layer is assumed to be an input layer, and by convention we

        won't set any biases for those neurons, since biases are only

        ever used in computing the outputs from later layers."""

��������VHOI�QXPBOD\HUV� �OHQ�VL]HV�

��������VHOI�VL]HV� �VL]HV

��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[�

������������������������for�[��\�in�]LS�VL]HV>���@��VL]HV>��@�@

����def�IHHGIRUZDUG�VHOI��D��
��������"""Return the output of the network if ``a`` is input."""

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������D� �VLJPRLG�QS�GRW�Z��D��E�

��������return�D

����def�6*D�VHOI��WUDLQLQJBGDWD��HSRFKV��PLQLBEDWFKBVL]H��HWD�
������������WHVWBGDWD NRQH��

��������"""Train the neural network using mini-batch stochastic

        gradient descent.  The ``training_data`` is a list of tuples

        ``(x, y)`` representing the training inputs and the desired

        outputs.  The other non-optional parameters are

        self-explanatory.  If ``test_data`` is provided then the

        network will be evaluated against the test data after each

        epoch, and partial progress printed out.  This is useful for

        tracking progress, but slows things down substantially."""

��������if�WHVWBGDWD��QBWHVW� �OHQ�WHVWBGDWD�
��������Q� �OHQ�WUDLQLQJBGDWD�

��������for�M�in�[UDQJH�HSRFKV��
������������UDQGRP�VKXIIOH�WUDLQLQJBGDWD�

������������PLQLBEDWFKHV� �>

����������������WUDLQLQJBGDWD>N�N�PLQLBEDWFKBVL]H@

����������������for�N�in�[UDQJH����Q��PLQLBEDWFKBVL]H�@
������������for�PLQLBEDWFK�in�PLQLBEDWFKHV�
����������������VHOI�XSGDWHBPLQLBEDWFK�PLQLBEDWFK��HWD�

������������if�WHVWBGDWD�
����������������print��(SRFK�^�`��^�`���^�`��IRUPDW�
��������������������M��VHOI�HYDOXDWH�WHVWBGDWD���QBWHVW�

������������else�
����������������print��(SRFK�^�`�FRPSOHWH��IRUPDW�M�

����def�XSGDWHBPLQLBEDWFK�VHOI��PLQLBEDWFK��HWD��
��������"""Update the network's weights and biases by applying

        gradient descent using backpropagation to a single mini batch.

        The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta``

        is the learning rate."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������for�[��\�in�PLQLBEDWFK�
������������GHOWDBQDEODBE��GHOWDBQDEODBZ� �VHOI�EDFNSURS�[��\�

������������QDEODBE� �>QE�GQE�for�QE��GQE�in�]LS�QDEODBE��GHOWDBQDEODBE�@
������������QDEODBZ� �>QZ�GQZ�for�QZ��GQZ�in�]LS�QDEODBZ��GHOWDBQDEODBZ�@
��������VHOI�ZHLJKWV� �>Z��HWD�OHQ�PLQLBEDWFK��QZ

������������������������for�Z��QZ�in�]LS�VHOI�ZHLJKWV��QDEODBZ�@
��������VHOI�ELDVHV� �>E��HWD�OHQ�PLQLBEDWFK��QE

�����������������������for�E��QE�in�]LS�VHOI�ELDVHV��QDEODBE�@

����def�EDFNSURS�VHOI��[��\��
��������"""Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������# feedforward

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

��������DFWLYDWLRQ� �[

��������DFWLYDWLRQV� �>[@�# list to store all the activations, layer by layer

��������]V� �>@�# list to store all the z vectors, layer by layer

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������]� �QS�GRW�Z��DFWLYDWLRQ��E

������������]V�DSSHQG�]�

������������DFWLYDWLRQ� �VLJPRLG�]�

������������DFWLYDWLRQV�DSSHQG�DFWLYDWLRQ�

��������# backward pass

��������GHOWD� �VHOI�FRVWBGHULYDWLYH�DFWLYDWLRQV>��@��\���?

������������VLJPRLGBSULPH�]V>��@�

��������QDEODBE>��@� �GHOWD

��������QDEODBZ>��@� �QS�GRW�GHOWD��DFWLYDWLRQV>��@�WUDQVSRVH���

��������# Note that the variable l in the loop below is used a little

��������# differently to the notation in Chapter 2 of the book.  Here,

��������# l = 1 means the last layer of neurons, l = 2 is the

��������# second-last layer, and so on.  It's a renumbering of the

��������# scheme in the book, used here to take advantage of the fact

��������# that Python can use negative indices in lists.

��������for�O�in�[UDQJH����VHOI�QXPBOD\HUV��
������������]� �]V>�O@

������������VS� �VLJPRLGBSULPH�]�

������������GHOWD� �QS�GRW�VHOI�ZHLJKWV>�O��@�WUDQVSRVH����GHOWD���VS

������������QDEODBE>�O@� �GHOWD

������������QDEODBZ>�O@� �QS�GRW�GHOWD��DFWLYDWLRQV>�O��@�WUDQVSRVH���

��������return��QDEODBE��QDEODBZ�

����def�HYDOXDWH�VHOI��WHVWBGDWD��
��������"""Return the number of test inputs for which the neural

        network outputs the correct result. Note that the neural

        network's output is assumed to be the index of whichever

        neuron in the final layer has the highest activation."""

��������WHVWBUHVXOWV� �>�QS�DUJPD[�VHOI�IHHGIRUZDUG�[����\�

������������������������for��[��\��in�WHVWBGDWD@
��������return�VXP�LQW�[�  �\��for��[��\��in�WHVWBUHVXOWV�

����def�FRVWBGHULYDWLYH�VHOI��RXWSXWBDFWLYDWLRQV��\��
��������"""Return the vector of partial derivatives \partial C_x /

        \partial a for the output activations."""

��������return��RXWSXWBDFWLYDWLRQV�\�

#### Miscellaneous functions

def�VLJPRLG�]��
����"""The sigmoid function."""

����return����������QS�H[S��]��

def�VLJPRLGBSULPH�]��
����"""Derivative of the sigmoid function."""

����return�VLJPRLG�]����VLJPRLG�]��

+ow well does the program recogni]e handwritten digits" :ell, let
s
start by loading in the 0N,6T data. ,
ll do this using a little helper
program, PQLVWBORDGHU�S\, to be described below. :e e[ecute the
following commands in a 3ython shell,

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

Of course, this could also be done in a separate 3ython program,
but if you
re following along it
s probably easiest to do in a 3ython
shell.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �0/�0

$fter loading the 0N,6T data, we
ll set up a NHWZRUN with  hidden
neurons. :e do this after importing the 3ython program listed
above, which is named QHWZRUN,

!!!�import�network
!!!�QHW� �QHWZRUN�NHWZRUN�>�����������@�

Finally, we
ll use stochastic gradient descent to learn from the
0N,6T WUDLQLQJBGDWD over �� epochs, with a mini-batch si]e of 1�,
and a learning rate of ,

!!!�QHW�6*D�WUDLQLQJBGDWD���������������WHVWBGDWD WHVWBGDWD�

Note that if you
re running the code as you read along, it will take
some time to e[ecute - for a typical machine �as of ��1�� it will
likely take a few minutes to run. , suggest you set things running,
continue to read, and periodically check the output from the code. ,f
you
re in a rush you can speed things up by decreasing the number
of epochs, by decreasing the number of hidden neurons, or by using
only part of the training data. Note that production code would be
much, much faster: these 3ython scripts are intended to help you
understand how neural nets work, not to be high-performance
code� $nd, of course, once we
ve trained a network it can be run
very quickly indeed, on almost any computing platform. For
e[ample, once we
ve learned a good set of weights and biases for a
network, it can easily be ported to run in -avascript in a web
browser, or as a native app on a mobile device. ,n any case, here is a
partial transcript of the output of one training run of the neural
network. The transcript shows the number of test images correctly
recogni]ed by the neural network after each epoch of training. $s
you can see, after just a single epoch this has reached �,1�� out of
1�,���, and the number continues to grow,

(SRFK����������������

(SRFK����������������

(SRFK����������������

���

(SRFK�����������������

(SRFK�����������������

(SRFK�����������������

That is, the trained network gives us a classification rate of about 
percent -  percent at its peak ��(poch ����� That
s quite
encouraging as a first attempt. , should warn you, however, that if
you run the code then your results are not necessarily going to be
quite the same as mine, since we
ll be initiali]ing our network using

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �1/�0

�different� random weights and biases. To generate results in this
chapter ,
ve taken best-of-three runs.

/et
s rerun the above e[periment, changing the number of hidden
neurons to . $s was the case earlier, if you
re running the code as
you read along, you should be warned that it takes quite a while to
e[ecute �on my machine this e[periment takes tens of seconds for
each training epoch�, so it
s wise to continue reading in parallel
while the code e[ecutes.

!!!�QHW� �QHWZRUN�NHWZRUN�>������������@�

!!!�QHW�6*D�WUDLQLQJBGDWD���������������WHVWBGDWD WHVWBGDWD�

6ure enough, this improves the results to  percent. $t least in
this case, using more hidden neurons helps us get better results.

Of course, to obtain these accuracies , had to make specific choices
for the number of epochs of training, the mini-batch si]e, and the
learning rate, . $s , mentioned above, these are known as hyper-
parameters for our neural network, in order to distinguish them
from the parameters �weights and biases� learnt by our learning
algorithm. ,f we choose our hyper-parameters poorly, we can get
bad results. 6uppose, for e[ample, that we
d chosen the learning
rate to be ,

!!!�QHW� �QHWZRUN�NHWZRUN�>������������@�

!!!�QHW�6*D�WUDLQLQJBGDWD�����������������WHVWBGDWD WHVWBGDWD�

The results are much less encouraging,

(SRFK����������������

(SRFK����������������

(SRFK����������������

���

(SRFK�����������������

(SRFK�����������������

(SRFK�����������������

+owever, you can see that the performance of the network is getting
slowly better over time. That suggests increasing the learning rate,
say to . ,f we do that, we get better results, which suggests
increasing the learning rate again. �,f making a change improves
things, try doing more�� ,f we do that several times over, we
ll end
up with a learning rate of something like  �and perhaps fine
tune to �, which is close to our earlier e[periments. 6o even
though we initially made a poor choice of hyper-parameters, we at
least got enough information to help us improve our choice of
hyper-parameters.

5eader feedback indicates quite some variation
in results for this e[periment, and some training
runs give results quite a bit worse. 8sing the
techniques introduced in chapter � will greatly
reduce the variation in performance across
different training runs for our networks.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �2/�0

,n general, debugging a neural network can be challenging. This is
especially true when the initial choice of hyper-parameters
produces results no better than random noise. 6uppose we try the
successful �� hidden neuron network architecture from earlier, but
with the learning rate changed to :

!!!�QHW� �QHWZRUN�NHWZRUN�>�����������@�

!!!�QHW�6*D�WUDLQLQJBGDWD�����������������WHVWBGDWD WHVWBGDWD�

$t this point we
ve actually gone too far, and the learning rate is too
high:

(SRFK����������������

(SRFK����������������

(SRFK����������������

(SRFK����������������

���

(SRFK����������������

(SRFK����������������

(SRFK����������������

Now imagine that we were coming to this problem for the first time.
Of course, we know from our earlier e[periments that the right
thing to do is to decrease the learning rate. %ut if we were coming to
this problem for the first time then there wouldn
t be much in the
output to guide us on what to do. :e might worry not only about
the learning rate, but about every other aspect of our neural
network. :e might wonder if we
ve initiali]ed the weights and
biases in a way that makes it hard for the network to learn" Or
maybe we don
t have enough training data to get meaningful
learning" 3erhaps we haven
t run for enough epochs" Or maybe it
s
impossible for a neural network with this architecture to learn to
recogni]e handwritten digits" 0aybe the learning rate is too low"
Or, maybe, the learning rate is too high" :hen you
re coming to a
problem for the first time, you
re not always sure.

The lesson to take away from this is that debugging a neural
network is not trivial, and, just as for ordinary programming, there
is an art to it. <ou need to learn that art of debugging in order to get
good results from neural networks. 0ore generally, we need to
develop heuristics for choosing good hyper-parameters and a good
architecture. :e
ll discuss all these at length through the book,
including how , chose the hyper-parameters above.

([erFise

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

Try creating a network with just two layers - an input and an
output layer, no hidden layer - with ��� and 1� neurons,
respectively. Train the network using stochastic gradient
descent. :hat classification accuracy can you achieve"

(arlier, , skipped over the details of how the 0N,6T data is loaded.
,t
s pretty straightforward. For completeness, here
s the code. The
data structures used to store the 0N,6T data are described in the
documentation strings - it
s straightforward stuff, tuples and lists of
Numpy QGDUUD\ objects �think of them as vectors if you
re not
familiar with QGDUUD\s�:

"""

mnist_loader

~~~~~~~~~~~~

A library to load the MNIST image data. For details of the data

structures that are returned, see the doc strings for ``load_data``

and ``load_data_wrapper``. In practice, ``load_data_wrapper`` is the

function usually called by our neural network code.

"""

Libraries

Standard library

import�cPickle
import�gzip

Third-party libraries

import�numpy�as�np

def�ORDGBGDWD���
����"""Return the MNIST data as a tuple containing the training data,

 the validation data, and the test data.

 The ``training_data`` is returned as a tuple with two entries.

 The first entry contains the actual training images. This is a

 numpy ndarray with 50,000 entries. Each entry is, in turn, a

 numpy ndarray with 784 values, representing the 28 * 28 = 784

 pixels in a single MNIST image.

 The second entry in the ``training_data`` tuple is a numpy ndarray

 containing 50,000 entries. Those entries are just the digit

 values (0...9) for the corresponding images contained in the first

 entry of the tuple.

 The ``validation_data`` and ``test_data`` are similar, except

 each contains only 10,000 images.

 This is a nice data format, but for use in neural networks it's

 helpful to modify the format of the ``training_data`` a little.

 That's done in the wrapper function ``load_data_wrapper()``, see

 below.

 """

����I� �J]LS�RSHQ�
���GDWD�PQLVW�SNO�J]
��
UE
�

����WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �F3LFNOH�ORDG�I�

����I�FORVH��

����return��WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD�

def�ORDGBGDWDBZUDSSHU���
����"""Return a tuple containing ``(training_data, validation_data,

 test_data)``. Based on ``load_data``, but the format is more

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

 convenient for use in our implementation of neural networks.

 In particular, ``training_data`` is a list containing 50,000

 2-tuples ``(x, y)``. ``x`` is a 784-dimensional numpy.ndarray

 containing the input image. ``y`` is a 10-dimensional

 numpy.ndarray representing the unit vector corresponding to the

 correct digit for ``x``.

 ``validation_data`` and ``test_data`` are lists containing 10,000

 2-tuples ``(x, y)``. In each case, ``x`` is a 784-dimensional

 numpy.ndarry containing the input image, and ``y`` is the

 corresponding classification, i.e., the digit values (integers)

 corresponding to ``x``.

 Obviously, this means we're using slightly different formats for

 the training data and the validation / test data. These formats

 turn out to be the most convenient for use in our neural network

 code."""

����WUBG��YDBG��WHBG� �ORDGBGDWD��

����WUDLQLQJBLQSXWV� �>QS�UHVKDSH�[������������for�[�in�WUBG>�@@
����WUDLQLQJBUHVXOWV� �>YHFWRUL]HGBUHVXOW�\��for�\�in�WUBG>�@@
����WUDLQLQJBGDWD� �]LS�WUDLQLQJBLQSXWV��WUDLQLQJBUHVXOWV�

����YDOLGDWLRQBLQSXWV� �>QS�UHVKDSH�[������������for�[�in�YDBG>�@@
����YDOLGDWLRQBGDWD� �]LS�YDOLGDWLRQBLQSXWV��YDBG>�@�

����WHVWBLQSXWV� �>QS�UHVKDSH�[������������for�[�in�WHBG>�@@
����WHVWBGDWD� �]LS�WHVWBLQSXWV��WHBG>�@�

����return��WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD�

def�YHFWRUL]HGBUHVXOW�M��
����"""Return a 10-dimensional unit vector with a 1.0 in the jth

 position and zeroes elsewhere. This is used to convert a digit

 (0...9) into a corresponding desired output from the neural

 network."""

����H� �QS�]HURV���������

����H>M@� ����

����return�H

, said above that our program gets pretty good results. :hat does
that mean" *ood compared to what" ,t
s informative to have some
simple �non-neural-network� baseline tests to compare against, to
understand what it means to perform well. The simplest baseline of
all, of course, is to randomly guess the digit. That
ll be right about
ten percent of the time. :e
re doing much better than that�

:hat about a less trivial baseline" /et
s try an e[tremely simple
idea: we
ll look at how dark an image is. For instance, an image of a

 will typically be quite a bit darker than an image of a , just
because more pi[els are blackened out, as the following e[amples
illustrate:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

This suggests using the training data to compute average
darknesses for each digit, . :hen presented with a new
image, we compute how dark the image is, and then guess that it
s
whichever digit has the closest average darkness. This is a simple
procedure, and is easy to code up, so , won
t e[plicitly write out the
code - if you
re interested it
s in the *it+ub repository. %ut it
s a big
improvement over random guessing, getting of the
test images correct, i.e., percent accuracy.

,t
s not difficult to find other ideas which achieve accuracies in the
 to percent range. ,f you work a bit harder you can get up over
 percent. %ut to get much higher accuracies it helps to use

established machine learning algorithms. /et
s try using one of the
best known algorithms, the support YeFtor PaFKine or 690. ,f
you
re not familiar with 690s, not to worry, we
re not going to need
to understand the details of how 690s work. ,nstead, we
ll use a
3ython library called scikit-learn, which provides a simple 3ython
interface to a fast C-based library for 690s known as /,%690.

,f we run scikit-learn
s 690 classifier using the default settings,
then it gets �,��� of 1�,��� test images correct. �The code is
available here.� That
s a big improvement over our naive approach
of classifying an image based on how dark it is. ,ndeed, it means
that the 690 is performing roughly as well as our neural networks,
just a little worse. ,n later chapters we
ll introduce new techniques
that enable us to improve our neural networks so that they perform
much better than the 690.

That
s not the end of the story, however. The �,��� of 1�,��� result
is for scikit-learn
s default settings for 690s. 690s have a number
of tunable parameters, and it
s possible to search for parameters
which improve this out-of-the-bo[performance. , won
t e[plicitly
do this search, but instead refer you to this blog post by $ndreas
0ueller if you
d like to know more. 0ueller shows that with some
work optimi]ing the 690
s parameters it
s possible to get the
performance up above ��.� percent accuracy. ,n other words, a
well-tuned 690 only makes an error on about one digit in ��.
That
s pretty good� Can neural networks do better"

,n fact, they can. $t present, well-designed neural networks
outperform every other technique for solving 0N,6T, including

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �6/�0

690s. The current ���1�� record is classifying �,��� of 1�,���
images correctly. This was done by /i :an, 0atthew =eiler, 6i[in
=hang, <ann /eCun, and 5ob Fergus. :e
ll see most of the
techniques they used later in the book. $t that level the
performance is close to human-equivalent, and is arguably better,
since quite a few of the 0N,6T images are difficult even for humans
to recogni]e with confidence, for e[ample:

, trust you
ll agree that those are tough to classify� :ith images like
these in the 0N,6T data set it
s remarkable that neural networks
can accurately classify all but �1 of the 1�,��� test images. 8sually,
when programming we believe that solving a complicated problem
like recogni]ing the 0N,6T digits requires a sophisticated
algorithm. %ut even the neural networks in the :an et al paper just
mentioned involve quite simple algorithms, variations on the
algorithm we
ve seen in this chapter. $ll the comple[ity is learned,
automatically, from the training data. ,n some sense, the moral of
both our results and those in more sophisticated papers, is that for
some problems:

sophisticated algorithm simple learning algorithm � good
training data.

7oward deep learning
:hile our neural network gives impressive performance, that
performance is somewhat mysterious. The weights and biases in the
network were discovered automatically. $nd that means we don
t
immediately have an e[planation of how the network does what it
does. Can we find some way to understand the principles by which
our network is classifying handwritten digits" $nd, given such
principles, can we do better"

To put these questions more starkly, suppose that a few decades
hence neural networks lead to artificial intelligence �$,�. :ill we
understand how such intelligent networks work" 3erhaps the
networks will be opaque to us, with weights and biases we don
t

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

understand, because they
ve been learned automatically. ,n the
early days of $, research people hoped that the effort to build an $,
would also help us understand the principles behind intelligence
and, maybe, the functioning of the human brain. %ut perhaps the
outcome will be that we end up understanding neither the brain nor
how artificial intelligence works�

To address these questions, let
s think back to the interpretation of
artificial neurons that , gave at the start of the chapter, as a means
of weighing evidence. 6uppose we want to determine whether an
image shows a human face or not:

:e could attack this problem the same way we attacked
handwriting recognition - by using the pi[els in the image as input
to a neural network, with the output from the network a single
neuron indicating either �<es, it
s a face� or �No, it
s not a face�.

/et
s suppose we do this, but that we
re not using a learning
algorithm. ,nstead, we
re going to try to design a network by hand,
choosing appropriate weights and biases. +ow might we go about
it" Forgetting neural networks entirely for the moment, a heuristic
we could use is to decompose the problem into sub-problems: does
the image have an eye in the top left" Does it have an eye in the top
right" Does it have a nose in the middle" Does it have a mouth in
the bottom middle" ,s there hair on top" $nd so on.

,f the answers to several of these questions are �yes�, or even just
�probably yes�, then we
d conclude that the image is likely to be a
face. Conversely, if the answers to most of the questions are �no�,
then the image probably isn
t a face.

Of course, this is just a rough heuristic, and it suffers from many
deficiencies. 0aybe the person is bald, so they have no hair. 0aybe
we can only see part of the face, or the face is at an angle, so some of
the facial features are obscured. 6till, the heuristic suggests that if

Credits: 1. (ster ,nbar. �. 8nknown. �. N6,
(6$, *. ,llingworth, D. 0agee, and 3. Oesch
�8niversity of California, 6anta Cru]�, 5.
%ouwens �/eiden 8niversity�, and the +8DF��
Team. Click on the images for more details.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

we can solve the sub-problems using neural networks, then perhaps
we can build a neural network for face-detection, by combining the
networks for the sub-problems. +ere
s a possible architecture, with
rectangles denoting the sub-networks. Note that this isn
t intended
as a realistic approach to solving the face-detection problem� rather,
it
s to help us build intuition about how networks function. +ere
s
the architecture:

,t
s also plausible that the sub-networks can be decomposed.
6uppose we
re considering the question: �,s there an eye in the top
left"� This can be decomposed into questions such as: �,s there an
eyebrow"�� �$re there eyelashes"�� �,s there an iris"�� and so on. Of
course, these questions should really include positional
information, as well - �,s the eyebrow in the top left, and above the
iris"�, that kind of thing - but let
s keep it simple. The network to
answer the question �,s there an eye in the top left"� can now be
decomposed:

Those questions too can be broken down, further and further
through multiple layers. 8ltimately, we
ll be working with sub-

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html ��/�0

networks that answer questions so simple they can easily be
answered at the level of single pi[els. Those questions might, for
e[ample, be about the presence or absence of very simple shapes at
particular points in the image. 6uch questions can be answered by
single neurons connected to the raw pi[els in the image.

The end result is a network which breaks down a very complicated
question - does this image show a face or not - into very simple
questions answerable at the level of single pi[els. ,t does this
through a series of many layers, with early layers answering very
simple and specific questions about the input image, and later
layers building up a hierarchy of ever more comple[and abstract
concepts. Networks with this kind of many-layer structure - two or
more hidden layers - are called deep neural networks.

Of course, , haven
t said how to do this recursive decomposition
into sub-networks. ,t certainly isn
t practical to hand-design the
weights and biases in the network. ,nstead, we
d like to use learning
algorithms so that the network can automatically learn the weights
and biases - and thus, the hierarchy of concepts - from training
data. 5esearchers in the 1���s and 1���s tried using stochastic
gradient descent and backpropagation to train deep networks.
8nfortunately, e[cept for a few special architectures, they didn
t
have much luck. The networks would learn, but very slowly, and in
practice often too slowly to be useful.

6ince ����, a set of techniques has been developed that enable
learning in deep neural nets. These deep learning techniques are
based on stochastic gradient descent and backpropagation, but also
introduce new ideas. These techniques have enabled much deeper
�and larger� networks to be trained - people now routinely train
networks with � to 1� hidden layers. $nd, it turns out that these
perform far better on many problems than shallow neural networks,
i.e., networks with just a single hidden layer. The reason, of course,
is the ability of deep nets to build up a comple[hierarchy of
concepts. ,t
s a bit like the way conventional programming
languages use modular design and ideas about abstraction to enable
the creation of comple[computer programs. Comparing a deep
network to a shallow network is a bit like comparing a
programming language with the ability to make function calls to a
stripped down language with no ability to make such calls.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap1.html �0/�0

$bstraction takes a different form in neural networks than it does in
conventional programming, but it
s just as important.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn�����������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1/2�

,n the last chapter we saw how neural networks can learn their
weights and biases using the gradient descent algorithm. There was,
however, a gap in our e[planation: we didn
t discuss how to
compute the gradient of the cost function. That
s quite a gap� ,n this
chapter ,
ll e[plain a fast algorithm for computing such gradients,
an algorithm known as EaFkpropagation.

The backpropagation algorithm was originally introduced in the
1���s, but its importance wasn
t fully appreciated until a famous
1��� paper by David 5umelhart, *eoffrey +inton, and 5onald
:illiams. That paper describes several neural networks where
backpropagation works far faster than earlier approaches to
learning, making it possible to use neural nets to solve problems
which had previously been insoluble. Today, the backpropagation
algorithm is the workhorse of learning in neural networks.

This chapter is more mathematically involved than the rest of the
book. ,f you
re not cra]y about mathematics you may be tempted to
skip the chapter, and to treat backpropagation as a black bo[whose
details you
re willing to ignore. :hy take the time to study those
details"

The reason, of course, is understanding. $t the heart of
backpropagation is an e[pression for the partial derivative of
the cost function with respect to any weight �or bias � in the
network. The e[pression tells us how quickly the cost changes when
we change the weights and biases. $nd while the e[pression is
somewhat comple[, it also has a beauty to it, with each element
having a natural, intuitive interpretation. $nd so backpropagation
isn
t just a fast algorithm for learning. ,t actually gives us detailed
insights into how changing the weights and biases changes the
overall behaviour of the network. That
s well worth studying in
detail.

:ith that said, if you want to skim the chapter, or jump straight to
the ne[t chapter, that
s fine. ,
ve written the rest of the book to be
accessible even if you treat backpropagation as a black bo[. There

&+$37(R��

+oZ�WKe�EDcNpropDJDWLon�DOJorLWKP�ZorNs

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 2/2�

are, of course, points later in the book where , refer back to results
from this chapter. %ut at those points you should still be able to
understand the main conclusions, even if you don
t follow all the
reasoning.

:arP up� a Iast Patri[�Eased approaFK
to FoPputing tKe output IroP a neural
network
%efore discussing backpropagation, let
s warm up with a fast
matri[-based algorithm to compute the output from a neural
network. :e actually already briefly saw this algorithm near the
end of the last chapter, but , described it quickly, so it
s worth
revisiting in detail. ,n particular, this is a good way of getting
comfortable with the notation used in backpropagation, in a
familiar conte[t.

/et
s begin with a notation which lets us refer to weights in the
network in an unambiguous way. :e
ll use to denote the weight
for the connection from the neuron in the layer to the
neuron in the layer. 6o, for e[ample, the diagram below shows
the weight on a connection from the fourth neuron in the second
layer to the second neuron in the third layer of a network:

This notation is cumbersome at first, and it does take some work to
master. %ut with a little effort you
ll find the notation becomes easy
and natural. One quirk of the notation is the ordering of the and
indices. <ou might think that it makes more sense to use to refer to
the input neuron, and to the output neuron, not vice versa, as is
actually done. ,
ll e[plain the reason for this quirk below.

:e use a similar notation for the network
s biases and activations.
([plicitly, we use for the bias of the neuron in the layer.

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

$nd we use for the activation of the neuron in the layer. The
following diagram shows e[amples of these notations in use:

:ith these notations, the activation of the neuron in the
layer is related to the activations in the layer by the
equation �compare (quation ��� and surrounding discussion in the
last chapter�

where the sum is over all neurons in the layer. To rewrite
this e[pression in a matri[form we define a weigKt Patri[for
each layer, . The entries of the weight matri[are just the weights
connecting to the layer of neurons, that is, the entry in the row
and column is . 6imilarly, for each layer we define a Eias
YeFtor, . <ou can probably guess how this works - the components
of the bias vector are just the values , one component for each
neuron in the layer. $nd finally, we define an activation vector
whose components are the activations .

The last ingredient we need to rewrite ���� in a matri[form is the
idea of vectori]ing a function such as . :e met vectori]ation briefly
in the last chapter, but to recap, the idea is that we want to apply a
function such as to every element in a vector . :e use the
obvious notation to denote this kind of elementwise application
of a function. That is, the components of are just .
$s an e[ample, if we have the function then the vectori]ed
form of has the effect

that is, the vectori]ed just squares every element of the vector.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

:ith these notations in mind, (quation ���� can be rewritten in the
beautiful and compact vectori]ed form

This e[pression gives us a much more global way of thinking about
how the activations in one layer relate to activations in the previous
layer: we just apply the weight matri[to the activations, then add
the bias vector, and finally apply the function. That global view is
often easier and more succinct �and involves fewer indices�� than
the neuron-by-neuron view we
ve taken to now. Think of it as a way
of escaping inde[hell, while remaining precise about what
s going
on. The e[pression is also useful in practice, because most matri[
libraries provide fast ways of implementing matri[multiplication,
vector addition, and vectori]ation. ,ndeed, the code in the last
chapter made implicit use of this e[pression to compute the
behaviour of the network.

:hen using (quation ���� to compute , we compute the
intermediate quantity along the way. This quantity
turns out to be useful enough to be worth naming: we call the
weigKted input to the neurons in layer . :e
ll make considerable
use of the weighted input later in the chapter. (quation ���� is
sometimes written in terms of the weighted input, as . ,t
s
also worth noting that has components , that
is, is just the weighted input to the activation function for neuron
in layer .

7Ke two assuPptions we need aEout
tKe Fost IunFtion
The goal of backpropagation is to compute the partial derivatives

 and of the cost function with respect to any weight
or bias in the network. For backpropagation to work we need to
make two main assumptions about the form of the cost function.
%efore stating those assumptions, though, it
s useful to have an
e[ample cost function in mind. :e
ll use the quadratic cost function
from last chapter �c.f. (quation ����. ,n the notation of the last
section, the quadratic cost has the form

%y the way, it
s this e[pression that motivates
the quirk in the notation mentioned earlier.

,f we used to inde[the input neuron, and to
inde[the output neuron, then we
d need to
replace the weight matri[in (quation ���� by the
transpose of the weight matri[. That
s a small
change, but annoying, and we
d lose the easy
simplicity of saying �and thinking� �apply the
weight matri[to the activations�.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

where: is the total number of training e[amples� the sum is over
individual training e[amples, � is the corresponding
desired output� denotes the number of layers in the network� and

 is the vector of activations output from the network when
 is input.

Okay, so what assumptions do we need to make about our cost
function, , in order that backpropagation can be applied" The first
assumption we need is that the cost function can be written as an
average over cost functions for individual training
e[amples, . This is the case for the quadratic cost function, where
the cost for a single training e[ample is . This
assumption will also hold true for all the other cost functions we
ll
meet in this book.

The reason we need this assumption is because what
backpropagation actually lets us do is compute the partial
derivatives and for a single training e[ample. :e
then recover and by averaging over training e[amples.
,n fact, with this assumption in mind, we
ll suppose the training
e[ample has been fi[ed, and drop the subscript, writing the cost

 as . :e
ll eventually put the back in, but for now it
s a
notational nuisance that is better left implicit.

The second assumption we make about the cost is that it can be
written as a function of the outputs from the neural network:

For e[ample, the quadratic cost function satisfies this requirement,
since the quadratic cost for a single training e[ample may be
written as

and thus is a function of the output activations. Of course, this cost
function also depends on the desired output , and you may wonder

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 6/2�

why we
re not regarding the cost also as a function of . 5emember,
though, that the input training e[ample is fi[ed, and so the output
 is also a fi[ed parameter. ,n particular, it
s not something we can

modify by changing the weights and biases in any way, i.e., it
s not
something which the neural network learns. $nd so it makes sense
to regard as a function of the output activations alone, with
merely a parameter that helps define that function.

7Ke +adaPard produFt�
The backpropagation algorithm is based on common linear
algebraic operations - things like vector addition, multiplying a
vector by a matri[, and so on. %ut one of the operations is a little
less commonly used. ,n particular, suppose and are two vectors
of the same dimension. Then we use to denote the elePentwise
product of the two vectors. Thus the components of are just

. $s an e[ample,

This kind of elementwise multiplication is sometimes called the
+adaPard produFt or 6FKur produFt. :e
ll refer to it as the
+adamard product. *ood matri[libraries usually provide fast
implementations of the +adamard product, and that comes in
handy when implementing backpropagation.

7Ke Iour IundaPental eTuations
EeKind EaFkpropagation
%ackpropagation is about understanding how changing the weights
and biases in a network changes the cost function. 8ltimately, this
means computing the partial derivatives and . %ut to
compute those, we first introduce an intermediate quantity, ,
which we call the error in the neuron in the layer.
%ackpropagation will give us a procedure to compute the error ,
and then will relate to and .

To understand how the error is defined, imagine there is a demon
in our neural network:

欧拉的博客:www.liuhao.me

Gang LI

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

The demon sits at the neuron in layer . $s the input to the
neuron comes in, the demon messes with the neuron
s operation. ,t
adds a little change to the neuron
s weighted input, so that
instead of outputting , the neuron instead outputs .
This change propagates through later layers in the network, finally
causing the overall cost to change by an amount .

Now, this demon is a good demon, and is trying to help you
improve the cost, i.e., they
re trying to find a which makes the
cost smaller. 6uppose has a large value �either positive or

negative�. Then the demon can lower the cost quite a bit by
choosing to have the opposite sign to . %y contrast, if is

close to]ero, then the demon can
t improve the cost much at all by
perturbing the weighted input . 6o far as the demon can tell, the
neuron is already pretty near optimal. $nd so there
s a heuristic
sense in which is a measure of the error in the neuron.

0otivated by this story, we define the error of neuron in layer
by

$s per our usual conventions, we use to denote the vector of
errors associated with layer . %ackpropagation will give us a way of
computing for every layer, and then relating those errors to the
quantities of real interest, and .

<ou might wonder why the demon is changing the weighted input
. 6urely it
d be more natural to imagine the demon changing the

output activation , with the result that we
d be using as our

measure of error. ,n fact, if you do this things work out quite
similarly to the discussion below. %ut it turns out to make the

This is only the case for small changes , of
course. :e
ll assume that the demon is
constrained to make such small changes.

欧拉的博客:www.liuhao.me

Gang LI

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

presentation of backpropagation a little more algebraically
complicated. 6o we
ll stick with as our measure of error.

3lan oI attacN� %ackpropagation is based around four
fundamental equations. Together, those equations give us a way of
computing both the error and the gradient of the cost function. ,
state the four equations below. %e warned, though: you shouldn
t
e[pect to instantaneously assimilate the equations. 6uch an
e[pectation will lead to disappointment. ,n fact, the
backpropagation equations are so rich that understanding them
well requires considerable time and patience as you gradually delve
deeper into the equations. The good news is that such patience is
repaid many times over. $nd so the discussion in this section is
merely a beginning, helping you on the way to a thorough
understanding of the equations.

+ere
s a preview of the ways we
ll delve more deeply into the
equations later in the chapter: ,
ll give a short proof of the
equations, which helps e[plain why they are true� we
ll restate the
equations in algorithmic form as pseudocode, and see how the
pseudocode can be implemented as real, running 3ython code� and,
in the final section of the chapter, we
ll develop an intuitive picture
of what the backpropagation equations mean, and how someone
might discover them from scratch. $long the way we
ll return
repeatedly to the four fundamental equations, and as you deepen
your understanding those equations will come to seem comfortable
and, perhaps, even beautiful and natural.

$n eTuation Ior tKe error in tKe output la\er, � The
components of are given by

This is a very natural e[pression. The first term on the right, ,
just measures how fast the cost is changing as a function of the
output activation. ,f, for e[ample, doesn
t depend much on a
particular output neuron, , then will be small, which is what
we
d e[pect. The second term on the right, , measures how
fast the activation function is changing at .

,n classification problems like 0N,6T the term
�error� is sometimes used to mean the
classification failure rate. (.g., if the neural net
correctly classifies ��.� percent of the digits,
then the error is �.� percent. Obviously, this has
quite a different meaning from our vectors. ,n
practice, you shouldn
t have trouble telling
which meaning is intended in any given usage.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html �/2�

Notice that everything in �%31� is easily computed. ,n particular, we
compute while computing the behaviour of the network, and it
s
only a small additional overhead to compute . The e[act form
of will, of course, depend on the form of the cost function.
+owever, provided the cost function is known there should be little
trouble computing . For e[ample, if we
re using the quadratic
cost function then , and so ,
which obviously is easily computable.

(quation �%31� is a componentwise e[pression for . ,t
s a
perfectly good e[pression, but not the matri[-based form we want
for backpropagation. +owever, it
s easy to rewrite the equation in a
matri[-based form, as

+ere, is defined to be a vector whose components are the
partial derivatives . <ou can think of as e[pressing the
rate of change of with respect to the output activations. ,t
s easy
to see that (quations �%31a� and �%31� are equivalent, and for that
reason from now on we
ll use �%31� interchangeably to refer to both
equations. $s an e[ample, in the case of the quadratic cost we have

, and so the fully matri[-based form of �%31�
becomes

$s you can see, everything in this e[pression has a nice vector form,
and is easily computed using a library such as Numpy.

$n eTuation Ior tKe error in terms oI tKe error in tKe
ne[t la\er, � ,n particular

where is the transpose of the weight matri[for the
 layer. This equation appears complicated, but each element

has a nice interpretation. 6uppose we know the error at the
 layer. :hen we apply the transpose weight matri[, ,

we can think intuitively of this as moving the error EaFkward
through the network, giving us some sort of measure of the error at
the output of the layer. :e then take the +adamard product

. This moves the error backward through the activation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 10/2�

function in layer , giving us the error in the weighted input to
layer .

%y combining �%3�� with �%31� we can compute the error for any
layer in the network. :e start by using �%31� to compute , then
apply (quation �%3�� to compute , then (quation �%3�� again
to compute , and so on, all the way back through the network.

$n eTuation Ior tKe rate oI cKange oI tKe cost ZitK respect
to an\ Eias in tKe netZorN� ,n particular:

That is, the error is e[aFtl\ eTual to the rate of change .
This is great news, since �%31� and �%3�� have already told us how
to compute . :e can rewrite �%3�� in shorthand as

where it is understood that is being evaluated at the same neuron
as the bias .

$n eTuation Ior tKe rate oI cKange oI tKe cost ZitK respect
to an\ ZeigKt in tKe netZorN� ,n particular:

This tells us how to compute the partial derivatives in terms
of the quantities and , which we already know how to
compute. The equation can be rewritten in a less inde[-heavy
notation as

where it
s understood that is the activation of the neuron input
to the weight , and is the error of the neuron output from the
weight . =ooming in to look at just the weight , and the two
neurons connected by that weight, we can depict this as:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 11/2�

$ nice consequence of (quation ���� is that when the activation
is small, , the gradient term will also tend to be small.
,n this case, we
ll say the weight learns slowl\, meaning that it
s not
changing much during gradient descent. ,n other words, one
consequence of �%3�� is that weights output from low-activation
neurons learn slowly.

There are other insights along these lines which can be obtained
from �%31�-�%3��. /et
s start by looking at the output layer.
Consider the term in �%31�. 5ecall from the graph of the
sigmoid function in the last chapter that the function becomes
very flat when is appro[imately or . :hen this occurs we
will have . $nd so the lesson is that a weight in the final
layer will learn slowly if the output neuron is either low activation �

� or high activation � �. ,n this case it
s common to say the
output neuron has saturated and, as a result, the weight has
stopped learning �or is learning slowly�. 6imilar remarks hold also
for the biases of output neuron.

:e can obtain similar insights for earlier layers. ,n particular, note
the term in �%3��. This means that is likely to get small if
the neuron is near saturation. $nd this, in turn, means that any
weights input to a saturated neuron will learn slowly.

6umming up, we
ve learnt that a weight will learn slowly if either
the input neuron is low-activation, or if the output neuron has
saturated, i.e., is either high- or low-activation.

None of these observations is too greatly surprising. 6till, they help
improve our mental model of what
s going on as a neural network
learns. Furthermore, we can turn this type of reasoning around. The
four fundamental equations turn out to hold for any activation
function, not just the standard sigmoid function �that
s because, as
we
ll see in a moment, the proofs don
t use any special properties of

�. $nd so we can use these equations to design activation functions
which have particular desired learning properties. $s an e[ample to
give you the idea, suppose we were to choose a �non-sigmoid�
activation function so that is always positive, and never gets
close to]ero. That would prevent the slow-down of learning that
occurs when ordinary sigmoid neurons saturate. /ater in the book
we
ll see e[amples where this kind of modification is made to the

This reasoning won
t hold if has large
enough entries to compensate for the smallness
of . %ut ,
m speaking of the general
tendency.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 12/2�

activation function. .eeping the four equations �%31�-�%3�� in
mind can help e[plain why such modifications are tried, and what
impact they can have.

3roEleP

$lternate presentation oI tKe eTuations oI
EacNpropagation� ,
ve stated the equations of
backpropagation �notably �%31� and �%3��� using the
+adamard product. This presentation may be disconcerting if
you
re unused to the +adamard product. There
s an alternative
approach, based on conventional matri[multiplication, which
some readers may find enlightening. �1� 6how that �%31� may
be rewritten as

where is a square matri[whose diagonal entries are the
values , and whose off-diagonal entries are]ero. Note
that this matri[acts on by conventional matri[
multiplication. ��� 6how that �%3�� may be rewritten as

��� %y combining observations �1� and ��� show that

For readers comfortable with matri[multiplication this
equation may be easier to understand than �%31� and �%3��.
The reason ,
ve focused on �%31� and �%3�� is because that
approach turns out to be faster to implement numerically.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

3rooI oI tKe Iour IundaPental
eTuations �optional�
:e
ll now prove the four fundamental equations �%31�-�%3��. $ll
four are consequences of the chain rule from multivariable calculus.
,f you
re comfortable with the chain rule, then , strongly encourage
you to attempt the derivation yourself before reading on.

/et
s begin with (quation �%31�, which gives an e[pression for the
output error, . To prove this equation, recall that by definition

$pplying the chain rule, we can re-e[press the partial derivative
above in terms of partial derivatives with respect to the output
activations,

where the sum is over all neurons in the output layer. Of course,
the output activation of the neuron depends only on the input
weight for the neuron when . $nd so vanishes
when . $s a result we can simplify the previous equation to

5ecalling that the second term on the right can be
written as , and the equation becomes

which is just �%31�, in component form.

Ne[t, we
ll prove �%3��, which gives an equation for the error in
terms of the error in the ne[t layer, . To do this, we want to
rewrite in terms of . :e can do this using
the chain rule,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

where in the last line we have interchanged the two terms on the
right-hand side, and substituted the definition of . To evaluate
the first term on the last line, note that

Differentiating, we obtain

6ubstituting back into ���� we obtain

This is just �%3�� written in component form.

The final two equations we want to prove are �%3�� and �%3��.
These also follow from the chain rule, in a manner similar to the
proofs of the two equations above. , leave them to you as an
e[ercise.

([erFise

3rove (quations �%3�� and �%3��.

That completes the proof of the four fundamental equations of
backpropagation. The proof may seem complicated. %ut it
s really
just the outcome of carefully applying the chain rule. $ little less
succinctly, we can think of backpropagation as a way of computing
the gradient of the cost function by systematically applying the
chain rule from multi-variable calculus. That
s all there really is to
backpropagation - the rest is details.

7Ke EaFkpropagation algoritKP

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

The backpropagation equations provide us with a way of computing
the gradient of the cost function. /et
s e[plicitly write this out in the
form of an algorithm:

1. Input � 6et the corresponding activation for the input
layer.

�.)eedIorZard� For each compute
and .

�. 2utput error � Compute the vector .

�. %acNpropagate tKe error� For each
compute .

�. 2utput� The gradient of the cost function is given by
 and .

([amining the algorithm you can see why it
s called
EaFkpropagation. :e compute the error vectors backward,
starting from the final layer. ,t may seem peculiar that we
re going
through the network backward. %ut if you think about the proof of
backpropagation, the backward movement is a consequence of the
fact that the cost is a function of outputs from the network. To
understand how the cost varies with earlier weights and biases we
need to repeatedly apply the chain rule, working backward through
the layers to obtain usable e[pressions.

([erFises

%acNpropagation ZitK a single modiIied neuron
6uppose we modify a single neuron in a feedforward network
so that the output from the neuron is given by ,
where is some function other than the sigmoid. +ow should
we modify the backpropagation algorithm in this case"

%acNpropagation ZitK linear neurons 6uppose we
replace the usual non-linear function with
throughout the network. 5ewrite the backpropagation
algorithm for this case.

$s ,
ve described it above, the backpropagation algorithm computes
the gradient of the cost function for a single training e[ample,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 16/2�

. ,n practice, it
s common to combine backpropagation with
a learning algorithm such as stochastic gradient descent, in which
we compute the gradient for many training e[amples. ,n particular,
given a mini-batch of training e[amples, the following algorithm
applies a gradient descent learning step based on that mini-batch:

1. Input a set oI training e[amples

�.)or eacK training e[ample � 6et the corresponding input
activation , and perform the following steps:

)eedIorZard� For each compute
 and .

2utput error � Compute the vector
.

%acNpropagate tKe error� For each
 compute

.

�. *radient descent� For each update the
weights according to the rule , and
the biases according to the rule .

Of course, to implement stochastic gradient descent in practice you
also need an outer loop generating mini-batches of training
e[amples, and an outer loop stepping through multiple epochs of
training. ,
ve omitted those for simplicity.

7Ke Fode Ior EaFkpropagation
+aving understood backpropagation in the abstract, we can now
understand the code used in the last chapter to implement
backpropagation. 5ecall from that chapter that the code was
contained in the XSGDWHBPLQLBEDWFK and EDFNSURS methods of the
NHWZRUN class. The code for these methods is a direct translation of
the algorithm described above. ,n particular, the XSGDWHBPLQLBEDWFK
method updates the NHWZRUN
s weights and biases by computing the
gradient for the current PLQLBEDWFK of training e[amples:

class�Network�REMHFW��
���

����def�XSGDWHBPLQLBEDWFK�VHOI��PLQLBEDWFK��HWD��
��������"""Update the network's weights and biases by applying

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

 gradient descent using backpropagation to a single mini batch.

 The "mini_batch" is a list of tuples "(x, y)", and "eta"

 is the learning rate."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������for�[��\�in�PLQLBEDWFK�
������������GHOWDBQDEODBE��GHOWDBQDEODBZ� �VHOI�EDFNSURS�[��\�

������������QDEODBE� �>QE�GQE�for�QE��GQE�in�]LS�QDEODBE��GHOWDBQDEODBE�@
������������QDEODBZ� �>QZ�GQZ�for�QZ��GQZ�in�]LS�QDEODBZ��GHOWDBQDEODBZ�@
��������VHOI�ZHLJKWV� �>Z��HWD�OHQ�PLQLBEDWFK��QZ�

������������������������for�Z��QZ�in�]LS�VHOI�ZHLJKWV��QDEODBZ�@
��������VHOI�ELDVHV� �>E��HWD�OHQ�PLQLBEDWFK��QE�

�����������������������for�E��QE�in�]LS�VHOI�ELDVHV��QDEODBE�@

0ost of the work is done by the line GHOWDBQDEODBE��GHOWDBQDEODBZ
 �VHOI�EDFNSURS�[��\� which uses the EDFNSURS method to figure
out the partial derivatives and . The EDFNSURS
method follows the algorithm in the last section closely. There is
one small change - we use a slightly different approach to inde[ing
the layers. This change is made to take advantage of a feature of
3ython, namely the use of negative list indices to count backward
from the end of a list, so, e.g., O>��@ is the third last entry in a list O.
The code for EDFNSURS is below, together with a few helper
functions, which are used to compute the function, the derivative

, and the derivative of the cost function. :ith these inclusions you
should be able to understand the code in a self-contained way. ,f
something
s tripping you up, you may find it helpful to consult the
original description �and complete listing� of the code.

class�Network�REMHFW��
���

���def�EDFNSURS�VHOI��[��\��
��������"""Return a tuple "(nabla_b, nabla_w)" representing the

 gradient for the cost function C_x. "nabla_b" and

 "nabla_w" are layer-by-layer lists of numpy arrays, similar

 to "self.biases" and "self.weights"."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������# feedforward

��������DFWLYDWLRQ� �[

��������DFWLYDWLRQV� �>[@�# list to store all the activations, layer by layer

��������]V� �>@�# list to store all the z vectors, layer by layer

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������]� �QS�GRW�Z��DFWLYDWLRQ��E

������������]V�DSSHQG�]�

������������DFWLYDWLRQ� �VLJPRLG�]�

������������DFWLYDWLRQV�DSSHQG�DFWLYDWLRQ�

��������# backward pass

��������GHOWD� �VHOI�FRVWBGHULYDWLYH�DFWLYDWLRQV>��@��\���?

������������VLJPRLGBSULPH�]V>��@�

��������QDEODBE>��@� �GHOWD

��������QDEODBZ>��@� �QS�GRW�GHOWD��DFWLYDWLRQV>��@�WUDQVSRVH���

��������# Note that the variable l in the loop below is used a little

��������# differently to the notation in Chapter 2 of the book. Here,

��������# l = 1 means the last layer of neurons, l = 2 is the

��������# second-last layer, and so on. It's a renumbering of the

��������# scheme in the book, used here to take advantage of the fact

��������# that Python can use negative indices in lists.

��������for�O�in�[UDQJH����VHOI�QXPBOD\HUV��

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

������������]� �]V>�O@

������������VS� �VLJPRLGBSULPH�]�

������������GHOWD� �QS�GRW�VHOI�ZHLJKWV>�O��@�WUDQVSRVH����GHOWD���VS

������������QDEODBE>�O@� �GHOWD

������������QDEODBZ>�O@� �QS�GRW�GHOWD��DFWLYDWLRQV>�O��@�WUDQVSRVH���

��������return��QDEODBE��QDEODBZ�

���

����def�FRVWBGHULYDWLYH�VHOI��RXWSXWBDFWLYDWLRQV��\��
��������"""Return the vector of partial derivatives \partial C_x /

 \partial a for the output activations."""

��������return��RXWSXWBDFWLYDWLRQV�\��

def�VLJPRLG�]��
����"""The sigmoid function."""

����return����������QS�H[S��]��

def�VLJPRLGBSULPH�]��
����"""Derivative of the sigmoid function."""

����return�VLJPRLG�]����VLJPRLG�]��

3roEleP

)ull\ matri[�Eased approacK to EacNpropagation oYer
a mini�EatcK Our implementation of stochastic gradient
descent loops over training e[amples in a mini-batch. ,t
s
possible to modify the backpropagation algorithm so that it
computes the gradients for all training e[amples in a mini-
batch simultaneously. The idea is that instead of beginning
with a single input vector, , we can begin with a matri[

 whose columns are the vectors in the mini-
batch. :e forward-propagate by multiplying by the weight
matrices, adding a suitable matri[for the bias terms, and
applying the sigmoid function everywhere. :e backpropagate
along similar lines. ([plicitly write out pseudocode for this
approach to the backpropagation algorithm. 0odify QHWZRUN�S\
so that it uses this fully matri[-based approach. The advantage
of this approach is that it takes full advantage of modern
libraries for linear algebra. $s a result it can be quite a bit faster
than looping over the mini-batch. �On my laptop, for e[ample,
the speedup is about a factor of two when run on 0N,6T
classification problems like those we considered in the last
chapter.� ,n practice, all serious libraries for backpropagation
use this fully matri[-based approach or some variant.

,n wKat sense is EaFkpropagation a
Iast algoritKP"

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 1�/2�

,n what sense is backpropagation a fast algorithm" To answer this
question, let
s consider another approach to computing the
gradient. ,magine it
s the early days of neural networks research.
0aybe it
s the 1���s or 1���s, and you
re the first person in the
world to think of using gradient descent to learn� %ut to make the
idea work you need a way of computing the gradient of the cost
function. <ou think back to your knowledge of calculus, and decide
to see if you can use the chain rule to compute the gradient. %ut
after playing around a bit, the algebra looks complicated, and you
get discouraged. 6o you try to find another approach. <ou decide to
regard the cost as a function of the weights alone �we
ll get
back to the biases in a moment�. <ou number the weights ,
and want to compute for some particular weight . $n
obvious way of doing that is to use the appro[imation

where is a small positive number, and is the unit vector in
the direction. ,n other words, we can estimate by
computing the cost for two slightly different values of , and
then applying (quation ����. The same idea will let us compute the
partial derivatives with respect to the biases.

This approach looks very promising. ,t
s simple conceptually, and
e[tremely easy to implement, using just a few lines of code.
Certainly, it looks much more promising than the idea of using the
chain rule to compute the gradient�

8nfortunately, while this approach appears promising, when you
implement the code it turns out to be e[tremely slow. To
understand why, imagine we have a million weights in our network.
Then for each distinct weight we need to compute in
order to compute . That means that to compute the gradient
we need to compute the cost function a million different times,
requiring a million forward passes through the network �per
training e[ample�. :e need to compute as well, so that
s a
total of a million and one passes through the network.

:hat
s clever about backpropagation is that it enables us to
simultaneously compute all the partial derivatives using just
one forward pass through the network, followed by one backward

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 20/2�

pass through the network. 5oughly speaking, the computational
cost of the backward pass is about the same as the forward pass.
$nd so the total cost of backpropagation is roughly the same as
making just two forward passes through the network. Compare that
to the million and one forward passes we needed for the approach
based on ����� $nd so even though backpropagation appears
superficially more comple[than the approach based on ����, it
s
actually much, much faster.

This speedup was first fully appreciated in 1���, and it greatly
e[panded the range of problems that neural networks could solve.
That, in turn, caused a rush of people using neural networks. Of
course, backpropagation is not a panacea. (ven in the late 1���s
people ran up against limits, especially when attempting to use
backpropagation to train deep neural networks, i.e., networks with
many hidden layers. /ater in the book we
ll see how modern
computers and some clever new ideas now make it possible to use
backpropagation to train such deep neural networks.

%aFkpropagation� tKe Eig piFture
$s ,
ve e[plained it, backpropagation presents two mysteries. First,
what
s the algorithm really doing" :e
ve developed a picture of the
error being backpropagated from the output. %ut can we go any
deeper, and build up more intuition about what is going on when
we do all these matri[and vector multiplications" The second
mystery is how someone could ever have discovered
backpropagation in the first place" ,t
s one thing to follow the steps
in an algorithm, or even to follow the proof that the algorithm
works. %ut that doesn
t mean you understand the problem so well
that you could have discovered the algorithm in the first place. ,s
there a plausible line of reasoning that could have led you to
discover the backpropagation algorithm" ,n this section ,
ll address
both these mysteries.

To improve our intuition about what the algorithm is doing, let
s
imagine that we
ve made a small change to some weight in the
network, :

This should be plausible, but it requires some
analysis to make a careful statement. ,t
s
plausible because the dominant computational
cost in the forward pass is multiplying by the
weight matrices, while in the backward pass it
s
multiplying by the transposes of the weight
matrices. These operations obviously have
similar computational cost.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 21/2�

That change in weight will cause a change in the output activation
from the corresponding neuron:

That, in turn, will cause a change in all the activations in the ne[t
layer:

Those changes will in turn cause changes in the ne[t layer, and then
the ne[t, and so on all the way through to causing a change in the
final layer, and then in the cost function:

The change in the cost is related to the change in the
weight by the equation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 22/2�

This suggests that a possible approach to computing is to

carefully track how a small change in propagates to cause a
small change in . ,f we can do that, being careful to e[press
everything along the way in terms of easily computable quantities,
then we should be able to compute .

/et
s try to carry this out. The change causes a small change
 in the activation of the neuron in the layer. This change is

given by

The change in activation will cause changes in all the
activations in the ne[t layer, i.e., the layer. :e
ll
concentrate on the way just a single one of those activations is
affected, say ,

,n fact, it
ll cause the following change:

6ubstituting in the e[pression from (quation ����, we get:

Of course, the change will, in turn, cause changes in the
activations in the ne[t layer. ,n fact, we can imagine a path all the
way through the network from to , with each change in
activation causing a change in the ne[t activation, and, finally, a
change in the cost at the output. ,f the path goes through activations

 then the resulting e[pression is

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 2�/2�

that is, we
ve picked up a type term for each additional neuron
we
ve passed through, as well as the term at the end. This
represents the change in due to changes in the activations along
this particular path through the network. Of course, there
s many
paths by which a change in can propagate to affect the cost, and
we
ve been considering just a single path. To compute the total
change in it is plausible that we should sum over all the possible
paths between the weight and the final cost, i.e.,

where we
ve summed over all possible choices for the intermediate
neurons along the path. Comparing with ���� we see that

Now, (quation ���� looks complicated. +owever, it has a nice
intuitive interpretation. :e
re computing the rate of change of
with respect to a weight in the network. :hat the equation tells us
is that every edge between two neurons in the network is associated
with a rate factor which is just the partial derivative of one neuron
s
activation with respect to the other neuron
s activation. The edge
from the first weight to the first neuron has a rate factor .
The rate factor for a path is just the product of the rate factors along
the path. $nd the total rate of change is just the sum of the
rate factors of all paths from the initial weight to the final cost. This
procedure is illustrated here, for a single path:

:hat ,
ve been providing up to now is a heuristic argument, a way
of thinking about what
s going on when you perturb a weight in a
network. /et me sketch out a line of thinking you could use to
further develop this argument. First, you could derive e[plicit

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 2�/2�

e[pressions for all the individual partial derivatives in (quation
����. That
s easy to do with a bit of calculus. +aving done that, you
could then try to figure out how to write all the sums over indices as
matri[multiplications. This turns out to be tedious, and requires
some persistence, but not e[traordinary insight. $fter doing all this,
and then simplifying as much as possible, what you discover is that
you end up with e[actly the backpropagation algorithm� $nd so you
can think of the backpropagation algorithm as providing a way of
computing the sum over the rate factor for all these paths. Or, to
put it slightly differently, the backpropagation algorithm is a clever
way of keeping track of small perturbations to the weights �and
biases� as they propagate through the network, reach the output,
and then affect the cost.

Now, ,
m not going to work through all this here. ,t
s messy and
requires considerable care to work through all the details. ,f you
re
up for a challenge, you may enjoy attempting it. $nd even if not, ,
hope this line of thinking gives you some insight into what
backpropagation is accomplishing.

:hat about the other mystery - how backpropagation could have
been discovered in the first place" ,n fact, if you follow the approach
, just sketched you will discover a proof of backpropagation.
8nfortunately, the proof is quite a bit longer and more complicated
than the one , described earlier in this chapter. 6o how was that
short �but more mysterious� proof discovered" :hat you find when
you write out all the details of the long proof is that, after the fact,
there are several obvious simplifications staring you in the face. <ou
make those simplifications, get a shorter proof, and write that out.
$nd then several more obvious simplifications jump out at you. 6o
you repeat again. The result after a few iterations is the proof we
saw earlier - short, but somewhat obscure, because all the
signposts to its construction have been removed� , am, of course,
asking you to trust me on this, but there really is no great mystery
to the origin of the earlier proof. ,t
s just a lot of hard work
simplifying the proof ,
ve sketched in this section.

There is one clever step required. ,n (quation
���� the intermediate variables are activations
like . The clever idea is to switch to using
weighted inputs, like , as the intermediate
variables. ,f you don
t have this idea, and instead
continue using the activations , the proof you
obtain turns out to be slightly more comple[
than the proof given earlier in the chapter.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ�� /DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap2.html 2�/2�

'eWerPLnDWLon�3ress������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1/�2

:hen a golf player is first learning to play golf, they usually spend
most of their time developing a basic swing. Only gradually do they
develop other shots, learning to chip, draw and fade the ball,
building on and modifying their basic swing. ,n a similar way, up to
now we
ve focused on understanding the backpropagation
algorithm. ,t
s our �basic swing�, the foundation for learning in
most work on neural networks. ,n this chapter , e[plain a suite of
techniques which can be used to improve on our vanilla
implementation of backpropagation, and so improve the way our
networks learn.

The techniques we
ll develop in this chapter include: a better choice
of cost function, known as the cross-entropy cost function� four so-
called �regulari]ation� methods �/1 and /� regulari]ation, dropout,
and artificial e[pansion of the training data�, which make our
networks better at generali]ing beyond the training data� a better
method for initiali]ing the weights in the network� and a set of
heuristics to help choose good hyper-parameters for the network.
,
ll also overview several other techniques in less depth. The
discussions are largely independent of one another, and so you may
jump ahead if you wish. :e
ll also implement many of the
techniques in running code, and use them to improve the results
obtained on the handwriting classification problem studied in
Chapter 1.

Of course, we
re only covering a few of the many, many techniques
which have been developed for use in neural nets. The philosophy is
that the best entree to the plethora of available techniques is in-
depth study of a few of the most important. 0astering those
important techniques is not just useful in its own right, but will also
deepen your understanding of what problems can arise when you
use neural networks. That will leave you well prepared to quickly
pick up other techniques, as you need them.

7Ke Fross�entrop\ Fost IunFtion

&+$37(R��

,PproYLnJ�WKe�ZD\�neurDO�neWZorNs�OeDrn

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2/�2

0ost of us find it unpleasant to be wrong. 6oon after beginning to
learn the piano , gave my first performance before an audience. ,
was nervous, and began playing the piece an octave too low. , got
confused, and couldn
t continue until someone pointed out my
error. , was very embarrassed. <et while unpleasant, we also learn
quickly when we
re decisively wrong. <ou can bet that the ne[t time
, played before an audience , played in the correct octave� %y
contrast, we learn more slowly when our errors are less well-
defined.

,deally, we hope and e[pect that our neural networks will learn fast
from their errors. ,s this what happens in practice" To answer this
question, let
s look at a toy e[ample. The e[ample involves a neuron
with just one input:

:e
ll train this neuron to do something ridiculously easy: take the
input to the output . Of course, this is such a trivial task that we
could easily figure out an appropriate weight and bias by hand,
without using a learning algorithm. +owever, it turns out to be
illuminating to use gradient descent to attempt to learn a weight
and bias. 6o let
s take a look at how the neuron learns.

To make things definite, ,
ll pick the initial weight to be and the
initial bias to be . These are generic choices used as a place to
begin learning, , wasn
t picking them to be special in any way. The
initial output from the neuron is , so quite a bit of learning will
be needed before our neuron gets near the desired output, . Click
on �5un� in the bottom right corner below to see how the neuron
learns an output much closer to . Note that this isn
t a pre-
recorded animation, your browser is actually computing the
gradient, then using the gradient to update the weight and bias, and
displaying the result. The learning rate is , which turns out
to be slow enough that we can follow what
s happening, but fast
enough that we can get substantial learning in just a few seconds.
The cost is the quadratic cost function, , introduced back in
Chapter 1. ,
ll remind you of the e[act form of the cost function
shortly, so there
s no need to go and dig up the definition. Note that

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

you can run the animation multiple times by clicking on �5un�
again.

$s you can see, the neuron rapidly learns a weight and bias that
drives down the cost, and gives an output from the neuron of about

. That
s not quite the desired output, , but it is pretty good.
6uppose, however, that we instead choose both the starting weight
and the starting bias to be . ,n this case the initial output is ,
which is very badly wrong. /et
s look at how the neuron learns to
output in this case. Click on �5un� again:

$lthough this e[ample uses the same learning rate � �, we
can see that learning starts out much more slowly. ,ndeed, for the
first 1�� or so learning epochs, the weights and biases don
t change
much at all. Then the learning kicks in and, much as in our first
e[ample, the neuron
s output rapidly moves closer to .

This behaviour is strange when contrasted to human learning. $s ,
said at the beginning of this section, we often learn fastest when
we
re badly wrong about something. %ut we
ve just seen that our
artificial neuron has a lot of difficulty learning when it
s badly
wrong - far more difficulty than when it
s just a little wrong. :hat
s

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

more, it turns out that this behaviour occurs not just in this toy
model, but in more general networks. :hy is learning so slow" $nd
can we find a way of avoiding this slowdown"

To understand the origin of the problem, consider that our neuron
learns by changing the weight and bias at a rate determined by the
partial derivatives of the cost function, and . 6o saying
�learning is slow� is really the same as saying that those partial
derivatives are small. The challenge is to understand why they are
small. To understand that, let
s compute the partial derivatives.
5ecall that we
re using the quadratic cost function, which, from
(quation ���, is given by

where is the neuron
s output when the training input is
used, and is the corresponding desired output. To write this
more e[plicitly in terms of the weight and bias, recall that ,
where . 8sing the chain rule to differentiate with respect
to the weight and bias we get

where , have substituted and . To understand the
behaviour of these e[pressions, let
s look more closely at the
term on the right-hand side. 5ecall the shape of the function:

�� �� �� �� � � � � �

���

���

���

���

���

���

]

sigmoid function

:e can see from this graph that when the neuron
s output is close
to , the curve gets very flat, and so gets very small. (quations
���� and ���� then tell us that and get very small. This
is the origin of the learning slowdown. :hat
s more, as we shall see

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

a little later, the learning slowdown occurs for essentially the same
reason in more general neural networks, not just the toy e[ample
we
ve been playing with.

,ntroduFing tKe Fross�entrop\ Fost IunFtion

+ow can we address the learning slowdown" ,t turns out that we
can solve the problem by replacing the quadratic cost with a
different cost function, known as the cross-entropy. To understand
the cross-entropy, let
s move a little away from our super-simple toy
model. :e
ll suppose instead that we
re trying to train a neuron
with several input variables, , corresponding weights

, and a bias, :

The output from the neuron is, of course, , where
 is the weighted sum of the inputs. :e define the

cross-entropy cost function for this neuron by

where is the total number of items of training data, the sum is
over all training inputs, , and is the corresponding desired
output.

,t
s not obvious that the e[pression ���� fi[es the learning slowdown
problem. ,n fact, frankly, it
s not even obvious that it makes sense to
call this a cost function� %efore addressing the learning slowdown,
let
s see in what sense the cross-entropy can be interpreted as a cost
function.

Two properties in particular make it reasonable to interpret the
cross-entropy as a cost function. First, it
s non-negative, that is,

. To see this, notice that: �a� all the individual terms in the
sum in ���� are negative, since both logarithms are of numbers in
the range to � and �b� there is a minus sign out the front of the
sum.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6/�2

6econd, if the neuron
s actual output is close to the desired output
for all training inputs, , then the cross-entropy will be close to
]ero. To see this, suppose for e[ample that and for
some input . This is a case when the neuron is doing a good job on
that input. :e see that the first term in the e[pression ���� for the
cost vanishes, since , while the second term is just

. $ similar analysis holds when and . $nd
so the contribution to the cost will be low provided the actual
output is close to the desired output.

6umming up, the cross-entropy is positive, and tends toward]ero
as the neuron gets better at computing the desired output, , for all
training inputs, . These are both properties we
d intuitively e[pect
for a cost function. ,ndeed, both properties are also satisfied by the
quadratic cost. 6o that
s good news for the cross-entropy. %ut the
cross-entropy cost function has the benefit that, unlike the
quadratic cost, it avoids the problem of learning slowing down. To
see this, let
s compute the partial derivative of the cross-entropy
cost with respect to the weights. :e substitute into ����,
and apply the chain rule twice, obtaining:

3utting everything over a common denominator and simplifying
this becomes:

8sing the definition of the sigmoid function, , and
a little algebra we can show that . ,
ll ask you to
verify this in an e[ercise below, but for now let
s accept it as given.
:e see that the and terms cancel in the equation
just above, and it simplifies to become:

This is a beautiful e[pression. ,t tells us that the rate at which the
weight learns is controlled by , i.e., by the error in the
output. The larger the error, the faster the neuron will learn. This is

To prove this , will need to assume that the
desired outputs are all either or . This is
usually the case when solving classification
problems, for e[ample, or when computing
%oolean functions. To understand what happens
when we don
t make this assumption, see the
e[ercises at the end of this section.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

just what we
d intuitively e[pect. ,n particular, it avoids the learning
slowdown caused by the term in the analogous equation for
the quadratic cost, (quation ����. :hen we use the cross-entropy,
the term gets canceled out, and we no longer need worry about
it being small. This cancellation is the special miracle ensured by
the cross-entropy cost function. $ctually, it
s not really a miracle. $s
we
ll see later, the cross-entropy was specially chosen to have just
this property.

,n a similar way, we can compute the partial derivative for the bias.
, won
t go through all the details again, but you can easily verify
that

$gain, this avoids the learning slowdown caused by the term in
the analogous equation for the quadratic cost, (quation ����.

([erFise

9erify that .

/et
s return to the toy e[ample we played with earlier, and e[plore
what happens when we use the cross-entropy instead of the
quadratic cost. To re-orient ourselves, we
ll begin with the case
where the quadratic cost did just fine, with starting weight and
starting bias . 3ress �5un� to see what happens when we replace
the quadratic cost by the cross-entropy:

8nsurprisingly, the neuron learns perfectly well in this instance,
just as it did earlier. $nd now let
s look at the case where our

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

neuron got stuck before �link, for comparison�, with the weight and
bias both starting at :

6uccess� This time the neuron learned quickly, just as we hoped. ,f
you observe closely you can see that the slope of the cost curve was
much steeper initially than the initial flat region on the
corresponding curve for the quadratic cost. ,t
s that steepness which
the cross-entropy buys us, preventing us from getting stuck just
when we
d e[pect our neuron to learn fastest, i.e., when the neuron
starts out badly wrong.

, didn
t say what learning rate was used in the e[amples just
illustrated. (arlier, with the quadratic cost, we used .
6hould we have used the same learning rate in the new e[amples"
,n fact, with the change in cost function it
s not possible to say
precisely what it means to use the �same� learning rate� it
s an
apples and oranges comparison. For both cost functions , simply
e[perimented to find a learning rate that made it possible to see
what is going on. ,f you
re still curious, despite my disavowal, here
s
the lowdown: , used in the e[amples just given.

<ou might object that the change in learning rate makes the graphs
above meaningless. :ho cares how fast the neuron learns, when
our choice of learning rate was arbitrary to begin with"� That
objection misses the point. The point of the graphs isn
t about the
absolute speed of learning. ,t
s about how the speed of learning
changes. ,n particular, when we use the quadratic cost learning is
slower when the neuron is unambiguously wrong than it is later on,
as the neuron gets closer to the correct output� while with the cross-
entropy learning is faster when the neuron is unambiguously

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�2

wrong. Those statements don
t depend on how the learning rate is
set.

:e
ve been studying the cross-entropy for a single neuron.
+owever, it
s easy to generali]e the cross-entropy to many-neuron
multi-layer networks. ,n particular, suppose are the
desired values at the output neurons, i.e., the neurons in the final
layer, while are the actual output values. Then we define
the cross-entropy by

This is the same as our earlier e[pression, (quation ����, e[cept
now we
ve got the summing over all the output neurons. , won
t
e[plicitly work through a derivation, but it should be plausible that
using the e[pression ���� avoids a learning slowdown in many-
neuron networks. ,f you
re interested, you can work through the
derivation in the problem below.

:hen should we use the cross-entropy instead of the quadratic
cost" ,n fact, the cross-entropy is nearly always the better choice,
provided the output neurons are sigmoid neurons. To see why,
consider that when we
re setting up the network we usually
initiali]e the weights and biases using some sort of randomi]ation.
,t may happen that those initial choices result in the network being
decisively wrong for some training input - that is, an output neuron
will have saturated near , when it should be , or vice versa. ,f
we
re using the quadratic cost that will slow down learning. ,t won
t
stop learning completely, since the weights will continue learning
from other training inputs, but it
s obviously undesirable.

([erFises

One gotcha with the cross-entropy is that it can be difficult at
first to remember the respective roles of the s and the s. ,t
s
easy to get confused about whether the right form is

 or . :hat
happens to the second of these e[pressions when or "
Does this problem afflict the first e[pression" :hy or why not"

,n the single-neuron discussion at the start of this section, ,
argued that the cross-entropy is small if for all training

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 10/�2

inputs. The argument relied on being equal to either or .
This is usually true in classification problems, but for other
problems �e.g., regression problems� can sometimes take
values intermediate between and . 6how that the cross-
entropy is still minimi]ed when for all training inputs.
:hen this is the case the cross-entropy has the value:

The quantity is sometimes known as
the binary entropy.

3roElePs

0an\�la\er multi�neuron netZorNs ,n the notation
introduced in the last chapter, show that for the quadratic cost
the partial derivative with respect to weights in the output layer
is

The term causes a learning slowdown whenever an
output neuron saturates on the wrong value. 6how that for the
cross-entropy cost the output error for a single training
e[ample is given by

8se this e[pression to show that the partial derivative with
respect to the weights in the output layer is given by

The term has vanished, and so the cross-entropy avoids
the problem of learning slowdown, not just when used with a
single neuron, as we saw earlier, but also in many-layer multi-
neuron networks. $ simple variation on this analysis holds also
for the biases. ,f this is not obvious to you, then you should
work through that analysis as well.

8sing tKe Tuadratic cost ZKen Ze KaYe linear neurons
in tKe output la\er 6uppose that we have a many-layer

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 11/�2

multi-neuron network. 6uppose all the neurons in the final
layer are linear neurons, meaning that the sigmoid activation
function is not applied, and the outputs are simply .
6how that if we use the quadratic cost function then the output
error for a single training e[ample is given by

6imilarly to the previous problem, use this e[pression to show
that the partial derivatives with respect to the weights and
biases in the output layer are given by

This shows that if the output neurons are linear neurons then
the quadratic cost will not give rise to any problems with a
learning slowdown. ,n this case the quadratic cost is, in fact, an
appropriate cost function to use.

8sing tKe Fross�entrop\ to FlassiI\ 0N,67 digits

The cross-entropy is easy to implement as part of a program which
learns using gradient descent and backpropagation. :e
ll do that
later in the chapter, developing an improved version of our earlier
program for classifying the 0N,6T handwritten digits, QHWZRUN�S\.
The new program is called QHWZRUN��S\, and incorporates not just
the cross-entropy, but also several other techniques developed in
this chapter. For now, let
s look at how well our new program
classifies 0N,6T digits. $s was the case in Chapter 1, we
ll use a
network with hidden neurons, and we
ll use a mini-batch si]e of

. :e set the learning rate to and we train for epochs.
The interface to QHWZRUN��S\ is slightly different than QHWZRUN�S\,
but it should still be clear what is going on. <ou can, by the way, get
documentation about QHWZRUN��S\
s interface by using commands
such as KHOS�QHWZRUN��NHWZRUN�6*D� in a 3ython shell.

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

!!!�import�network�
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

The code is available on *it+ub.

,n Chapter 1 we used the quadratic cost and a
learning rate of . $s discussed above, it
s
not possible to say precisely what it means to use
the �same� learning rate when the cost function
is changed. For both cost functions ,
e[perimented to find a learning rate that
provides near-optimal performance, given the
other hyper-parameter choices.

There is, incidentally, a very rough general
heuristic for relating the learning rate for the
cross-entropy and the quadratic cost. $s we saw
earlier, the gradient terms for the quadratic cost
have an e[tra term in them.
6uppose we average this over values for ,

. :e see that �very roughly�
the quadratic cost learns an average of times

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 12/�2

!!!�QHW�6*D�WUDLQLQJBGDWD���������������HYDOXDWLRQBGDWD WHVWBGDWD�

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

Note, by the way, that the QHW�ODUJHBZHLJKWBLQLWLDOL]HU��
command is used to initiali]e the weights and biases in the same
way as described in Chapter 1. :e need to run this command
because later in this chapter we
ll change the default weight
initiali]ation in our networks. The result from running the above
sequence of commands is a network with percent accuracy.
This is pretty close to the result we obtained in Chapter 1,
percent, using the quadratic cost.

/et
s look also at the case where we use hidden neurons, the
cross-entropy, and otherwise keep the parameters the same. ,n this
case we obtain an accuracy of percent. That
s a substantial
improvement over the results from Chapter 1, where we obtained a
classification accuracy of percent, using the quadratic cost.
That may look like a small change, but consider that the error rate
has dropped from percent to percent. That is, we
ve
eliminated about one in fourteen of the original errors. That
s quite
a handy improvement.

,t
s encouraging that the cross-entropy cost gives us similar or
better results than the quadratic cost. +owever, these results don
t
conclusively prove that the cross-entropy is a better choice. The
reason is that ,
ve put only a little effort into choosing hyper-
parameters such as learning rate, mini-batch si]e, and so on. For
the improvement to be really convincing we
d need to do a thorough
job optimi]ing such hyper-parameters. 6till, the results are
encouraging, and reinforce our earlier theoretical argument that the
cross-entropy is a better choice than the quadratic cost.

This, by the way, is part of a general pattern that we
ll see through
this chapter and, indeed, through much of the rest of the book.
:e
ll develop a new technique, we
ll try it out, and we
ll get
�improved� results. ,t is, of course, nice that we see such
improvements. %ut the interpretation of such improvements is
always problematic. They
re only truly convincing if we see an
improvement after putting tremendous effort into optimi]ing all the
other hyper-parameters. That
s a great deal of work, requiring lots
of computing power, and we
re not usually going to do such an
e[haustive investigation. ,nstead, we
ll proceed on the basis of

slower, for the same learning rate. This suggests
that a reasonable starting point is to divide the
learning rate for the quadratic cost by . Of
course, this argument is far from rigorous, and
shouldn
t be taken too seriously. 6till, it can
sometimes be a useful starting point.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

informal tests like those done above. 6till, you should keep in mind
that such tests fall short of definitive proof, and remain alert to
signs that the arguments are breaking down.

%y now, we
ve discussed the cross-entropy at great length. :hy go
to so much effort when it gives only a small improvement to our
0N,6T results" /ater in the chapter we
ll see other techniques -
notably, regulari]ation - which give much bigger improvements. 6o
why so much focus on cross-entropy" 3art of the reason is that the
cross-entropy is a widely-used cost function, and so is worth
understanding well. %ut the more important reason is that neuron
saturation is an important problem in neural nets, a problem we
ll
return to repeatedly throughout the book. $nd so ,
ve discussed the
cross-entropy at length because it
s a good laboratory to begin
understanding neuron saturation and how it may be addressed.

:Kat does tKe Fross�entrop\ Pean" :Kere
does it FoPe IroP"

Our discussion of the cross-entropy has focused on algebraic
analysis and practical implementation. That
s useful, but it leaves
unanswered broader conceptual questions, like: what does the
cross-entropy mean" ,s there some intuitive way of thinking about
the cross-entropy" $nd how could we have dreamed up the cross-
entropy in the first place"

/et
s begin with the last of these questions: what could have
motivated us to think up the cross-entropy in the first place"
6uppose we
d discovered the learning slowdown described earlier,
and understood that the origin was the terms in (quations
���� and ����. $fter staring at those equations for a bit, we might
wonder if it
s possible to choose a cost function so that the
term disappeared. ,n that case, the cost for a single training
e[ample would satisfy

,f we could choose the cost function to make these equations true,
then they would capture in a simple way the intuition that the
greater the initial error, the faster the neuron learns. They
d also

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

eliminate the problem of a learning slowdown. ,n fact, starting from
these equations we
ll now show that it
s possible to derive the form
of the cross-entropy, simply by following our mathematical noses.
To see this, note that from the chain rule we have

8sing the last equation becomes

Comparing to (quation ���� we obtain

,ntegrating this e[pression with respect to gives

for some constant of integration. This is the contribution to the cost
from a single training e[ample, . To get the full cost function we
must average over training e[amples, obtaining

where the constant here is the average of the individual constants
for each training e[ample. $nd so we see that (quations ��1� and
���� uniquely determine the form of the cross-entropy, up to an
overall constant term. The cross-entropy isn
t something that was
miraculously pulled out of thin air. 5ather, it
s something that we
could have discovered in a simple and natural way.

:hat about the intuitive meaning of the cross-entropy" +ow should
we think about it" ([plaining this in depth would take us further
afield than , want to go. +owever, it is worth mentioning that there
is a standard way of interpreting the cross-entropy that comes from
the field of information theory. 5oughly speaking, the idea is that
the cross-entropy is a measure of surprise. ,n particular, our neuron
is trying to compute the function . %ut instead it
computes the function . 6uppose we think of as our
neuron
s estimated probability that is , and is the estimated
probability that the right value for is . Then the cross-entropy
measures how �surprised� we are, on average, when we learn the

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

true value for . :e get low surprise if the output is what we e[pect,
and high surprise if the output is une[pected. Of course, , haven
t
said e[actly what �surprise� means, and so this perhaps seems like
empty verbiage. %ut in fact there is a precise information-theoretic
way of saying what is meant by surprise. 8nfortunately, , don
t
know of a good, short, self-contained discussion of this subject
that
s available online. %ut if you want to dig deeper, then
:ikipedia contains a brief summary that will get you started down
the right track. $nd the details can be filled in by working through
the materials about the .raft inequality in chapter � of the book
about information theory by Cover and Thomas.

3roEleP

:e
ve discussed at length the learning slowdown that can occur
when output neurons saturate, in networks using the quadratic
cost to train. $nother factor that may inhibit learning is the
presence of the term in (quation ��1�. %ecause of this term,
when an input is near to]ero, the corresponding weight
will learn slowly. ([plain why it is not possible to eliminate the

 term through a clever choice of cost function.

6oItPa[

,n this chapter we
ll mostly use the cross-entropy cost to address
the problem of learning slowdown. +owever, , want to briefly
describe another approach to the problem, based on what are called
soItPa[layers of neurons. :e
re not actually going to use softma[
layers in the remainder of the chapter, so if you
re in a great hurry,
you can skip to the ne[t section. +owever, softma[is still worth
understanding, in part because it
s intrinsically interesting, and in
part because we
ll use softma[layers in Chapter �, in our discussion
of deep neural networks.

The idea of softma[is to define a new type of output layer for our
neural networks. ,t begins in the same way as with a sigmoid layer,
by forming the weighted inputs . +owever, we
don
t apply the sigmoid function to get the output. ,nstead, in a
softma[layer we apply the so-called soItPa[IunFtion to the .
$ccording to this function, the activation of the th output
neuron is

,n describing the softma[we
ll make frequent
use of notation introduced in the last chapter.
<ou may wish to revisit that chapter if you need
to refresh your memory about the meaning of
the notation.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 16/�2

where in the denominator we sum over all the output neurons.

,f you
re not familiar with the softma[function, (quation ���� may
look pretty opaque. ,t
s certainly not obvious why we
d want to use
this function. $nd it
s also not obvious that this will help us address
the learning slowdown problem. To better understand (quation
����, suppose we have a network with four output neurons, and four
corresponding weighted inputs, which we
ll denote , and .
6hown below are adjustable sliders showing possible values for the
weighted inputs, and a graph of the corresponding output
activations. $ good place to start e[ploration is by using the bottom
slider to increase :

 2.5 0.315

 1 0.009

 3.2 0.633

 0.5 0.043

$s you increase , you
ll see an increase in the corresponding
output activation, , and a decrease in the other output activations.
6imilarly, if you decrease then will decrease, and all the other
output activations will increase. ,n fact, if you look closely, you
ll see
that in both cases the total change in the other activations e[actly
compensates for the change in . The reason is that the output
activations are guaranteed to always sum up to , as we can prove
using (quation ���� and a little algebra:

$s a result, if increases, then the other output activations must
decrease by the same total amount, to ensure the sum over all
activations remains . $nd, of course, similar statements hold for all
the other activations.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

(quation ���� also implies that the output activations are all
positive, since the e[ponential function is positive. Combining this
with the observation in the last paragraph, we see that the output
from the softma[layer is a set of positive numbers which sum up to

. ,n other words, the output from the softma[layer can be thought
of as a probability distribution.

The fact that a softma[layer outputs a probability distribution is
rather pleasing. ,n many problems it
s convenient to be able to
interpret the output activation as the network
s estimate of the
probability that the correct output is . 6o, for instance, in the
0N,6T classification problem, we can interpret as the network
s
estimated probability that the correct digit classification is .

%y contrast, if the output layer was a sigmoid layer, then we
certainly couldn
t assume that the activations formed a probability
distribution. , won
t e[plicitly prove it, but it should be plausible
that the activations from a sigmoid layer won
t in general form a
probability distribution. $nd so with a sigmoid output layer we
don
t have such a simple interpretation of the output activations.

([erFise

Construct an e[ample showing e[plicitly that in a network with
a sigmoid output layer, the output activations won
t always
sum to .

:e
re starting to build up some feel for the softma[function and
the way softma[layers behave. -ust to review where we
re at: the
e[ponentials in (quation ���� ensure that all the output activations
are positive. $nd the sum in the denominator of (quation ����
ensures that the softma[outputs sum to . 6o that particular form
no longer appears so mysterious: rather, it is a natural way to
ensure that the output activations form a probability distribution.
<ou can think of softma[as a way of rescaling the , and then
squishing them together to form a probability distribution.

([erFises

0onotonicit\ oI soItma[6how that is positive if
 and negative if . $s a consequence, increasing is

guaranteed to increase the corresponding output activation, ,

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

and will decrease all the other output activations. :e already
saw this empirically with the sliders, but this is a rigorous
proof.

1on�localit\ oI soItma[$ nice thing about sigmoid layers is
that the output is a function of the corresponding weighted
input, . ([plain why this is not the case for a softma[
layer: any particular output activation depends on all the
weighted inputs.

3roEleP

InYerting tKe soItma[la\er 6uppose we have a neural
network with a softma[output layer, and the activations are
known. 6how that the corresponding weighted inputs have the
form , for some constant that is independent of
.

7Ke learning sloZdoZn proElem� :e
ve now built up
considerable familiarity with softma[layers of neurons. %ut we
haven
t yet seen how a softma[layer lets us address the learning
slowdown problem. To understand that, let
s define the log�
likeliKood cost function. :e
ll use to denote a training input to the
network, and to denote the corresponding desired output. Then
the log-likelihood cost associated to this training input is

6o, for instance, if we
re training with 0N,6T images, and input an
image of a , then the log-likelihood cost is . To see that this
makes intuitive sense, consider the case when the network is doing
a good job, that is, it is confident the input is a . ,n that case it will
estimate a value for the corresponding probability which is close
to , and so the cost will be small. %y contrast, when the
network isn
t doing such a good job, the probability will be
smaller, and the cost will be larger. 6o the log-likelihood cost
behaves as we
d e[pect a cost function to behave.

:hat about the learning slowdown problem" To analy]e that, recall
that the key to the learning slowdown is the behaviour of the
quantities and . , won
t go through the derivation

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�2

e[plicitly - ,
ll ask you to do in the problems, below - but with a little
algebra you can show that

These equations are the same as the analogous e[pressions
obtained in our earlier analysis of the cross-entropy. Compare, for
e[ample, (quation ���� to (quation ����. ,t
s the same equation,
albeit in the latter ,
ve averaged over training instances. $nd, just as
in the earlier analysis, these e[pressions ensure that we will not
encounter a learning slowdown. ,n fact, it
s useful to think of a
softma[output layer with log-likelihood cost as being quite similar
to a sigmoid output layer with cross-entropy cost.

*iven this similarity, should you use a sigmoid output layer and
cross-entropy, or a softma[output layer and log-likelihood" ,n fact,
in many situations both approaches work well. Through the
remainder of this chapter we
ll use a sigmoid output layer, with the
cross-entropy cost. /ater, in Chapter �, we
ll sometimes use a
softma[output layer, with log-likelihood cost. The reason for the
switch is to make some of our later networks more similar to
networks found in certain influential academic papers. $s a more
general point of principle, softma[plus log-likelihood is worth
using whenever you want to interpret the output activations as
probabilities. That
s not always a concern, but can be useful with
classification problems �like 0N,6T� involving disjoint classes.

3roElePs

Derive (quations ��1� and ����.

:Kere does tKe �soItma[� name come Irom" 6uppose
we change the softma[function so the output activations are
given by

where is a positive constant. Note that corresponds to
the standard softma[function. %ut if we use a different value of
 we get a different function, which is nonetheless qualitatively

Note that ,
m abusing notation here, using in
a slightly different way to last paragraph. ,n the
last paragraph we used to denote the desired
output from the network - e.g., output a � � if an
image of a was input. %ut in the equations
which follow ,
m using to denote the vector of
output activations which corresponds to , that
is, a vector which is all s, e[cept for a in the

th location.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 20/�2

rather similar to the softma[. ,n particular, show that the
output activations form a probability distribution, just as for
the usual softma[. 6uppose we allow to become large, i.e.,

. :hat is the limiting value for the output activations "
$fter solving this problem it should be clear to you why we
think of the function as a �softened� version of the
ma[imum function. This is the origin of the term �softma[�.

%acNpropagation ZitK soItma[and tKe log�liNeliKood
cost ,n the last chapter we derived the backpropagation
algorithm for a network containing sigmoid layers. To apply
the algorithm to a network with a softma[layer we need to
figure out an e[pression for the error in the final
layer. 6how that a suitable e[pression is:

8sing this e[pression we can apply the backpropagation
algorithm to a network using a softma[output layer and the
log-likelihood cost.

2YerÀtting and regulari]ation
The Nobel pri]ewinning physicist (nrico Fermi was once asked his
opinion of a mathematical model some colleagues had proposed as
the solution to an important unsolved physics problem. The model
gave e[cellent agreement with e[periment, but Fermi was skeptical.
+e asked how many free parameters could be set in the model.
�Four� was the answer. Fermi replied: �, remember my friend
-ohnny von Neumann used to say, with four parameters , can fit an
elephant, and with five , can make him wiggle his trunk.�.

The point, of course, is that models with a large number of free
parameters can describe an ama]ingly wide range of phenomena.
(ven if such a model agrees well with the available data, that
doesn
t make it a good model. ,t may just mean there
s enough
freedom in the model that it can describe almost any data set of the
given si]e, without capturing any genuine insights into the
underlying phenomenon. :hen that happens the model will work
well for the e[isting data, but will fail to generali]e to new
situations. The true test of a model is its ability to make predictions
in situations it hasn
t been e[posed to before.

The quote comes from a charming article by
Freeman Dyson, who is one of the people who
proposed the flawed model. $ four-parameter
elephant may be found here.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 21/�2

Fermi and von Neumann were suspicious of models with four
parameters. Our �� hidden neuron network for classifying 0N,6T
digits has nearly ��,��� parameters� That
s a lot of parameters. Our
1�� hidden neuron network has nearly ��,��� parameters, and
state-of-the-art deep neural nets sometimes contain millions or
even billions of parameters. 6hould we trust the results"

/et
s sharpen this problem up by constructing a situation where our
network does a bad job generali]ing to new situations. :e
ll use our
�� hidden neuron network, with its ��,��� parameters. %ut we
won
t train the network using all ��,��� 0N,6T training images.
,nstead, we
ll use just the first 1,��� training images. 8sing that
restricted set will make the problem with generali]ation much more
evident. :e
ll train in a similar way to before, using the cross-
entropy cost function, with a learning rate of and a mini-
batch si]e of . +owever, we
ll train for ��� epochs, a somewhat
larger number than before, because we
re not using as many
training e[amples. /et
s use QHWZRUN� to look at the way the cost
function changes:

�

!!!�import�mnist_loader�
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

!!!�import�network��
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW��

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@����������������HYDOXDWLRQBGDWD WHVWBGDWD�

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH��PRQLWRUBWUDLQLQJBFRVW 7UXH�

8sing the results we can plot the way the cost changes as the
network learns : This and the ne[t four graphs were generated

by the program overfitting.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 22/�2

This looks encouraging, showing a smooth decrease in the cost, just
as we e[pect. Note that ,
ve only shown training epochs ���
through ���. This gives us a nice up-close view of the later stages of
learning, which, as we
ll see, turns out to be where the interesting
action is.

/et
s now look at how the classification accuracy on the test data
changes over time:

$gain, ,
ve]oomed in quite a bit. ,n the first ��� epochs �not
shown� the accuracy rises to just under �� percent. The learning
then gradually slows down. Finally, at around epoch ��� the
classification accuracy pretty much stops improving. /ater epochs
merely see small stochastic fluctuations near the value of the
accuracy at epoch ���. Contrast this with the earlier graph, where
the cost associated to the training data continues to smoothly drop.
,f we just look at that cost, it appears that our model is still getting
�better�. %ut the test accuracy results show the improvement is an
illusion. -ust like the model that Fermi disliked, what our network
learns after epoch ��� no longer generali]es to the test data. $nd so
it
s not useful learning. :e say the network is oYerIitting or
oYertraining beyond epoch ���.

<ou might wonder if the problem here is that ,
m looking at the Fost
on the training data, as opposed to the FlassiIiFation aFFuraF\ on
the test data. ,n other words, maybe the problem is that we
re
making an apples and oranges comparison. :hat would happen if
we compared the cost on the training data with the cost on the test
data, so we
re comparing similar measures" Or perhaps we could

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

compare the classification accuracy on both the training data and
the test data" ,n fact, essentially the same phenomenon shows up
no matter how we do the comparison. The details do change,
however. For instance, let
s look at the cost on the test data:

:e can see that the cost on the test data improves until around
epoch 1�, but after that it actually starts to get worse, even though
the cost on the training data is continuing to get better. This is
another sign that our model is overfitting. ,t poses a pu]]le, though,
which is whether we should regard epoch 1� or epoch ��� as the
point at which overfitting is coming to dominate learning" From a
practical point of view, what we really care about is improving
classification accuracy on the test data, while the cost on the test
data is no more than a pro[y for classification accuracy. $nd so it
makes most sense to regard epoch ��� as the point beyond which
overfitting is dominating learning in our neural network.

$nother sign of overfitting may be seen in the classification
accuracy on the training data:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

The accuracy rises all the way up to percent. That is, our
network correctly classifies all training images� 0eanwhile,
our test accuracy tops out at just percent. 6o our network
really is learning about peculiarities of the training set, not just
recogni]ing digits in general. ,t
s almost as though our network is
merely memori]ing the training set, without understanding digits
well enough to generali]e to the test set.

Overfitting is a major problem in neural networks. This is especially
true in modern networks, which often have very large numbers of
weights and biases. To train effectively, we need a way of detecting
when overfitting is going on, so we don
t overtrain. $nd we
d like to
have techniques for reducing the effects of overfitting.

The obvious way to detect overfitting is to use the approach above,
keeping track of accuracy on the test data as our network trains. ,f
we see that the accuracy on the test data is no longer improving,
then we should stop training. Of course, strictly speaking, this is not
necessarily a sign of overfitting. ,t might be that accuracy on the
test data and the training data both stop improving at the same
time. 6till, adopting this strategy will prevent overfitting.

,n fact, we
ll use a variation on this strategy. 5ecall that when we
load in the 0N,6T data we load in three data sets:

�

!!!�import�mnist_loader�
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

8p to now we
ve been using the WUDLQLQJBGDWD and WHVWBGDWD, and
ignoring the YDOLGDWLRQBGDWD. The YDOLGDWLRQBGDWD contains
images of digits, images which are different from the images
in the 0N,6T training set, and the images in the 0N,6T test
set. ,nstead of using the WHVWBGDWD to prevent overfitting, we will use
the YDOLGDWLRQBGDWD. To do this, we
ll use much the same strategy as
was described above for the WHVWBGDWD. That is, we
ll compute the
classification accuracy on the YDOLGDWLRQBGDWD at the end of each
epoch. Once the classification accuracy on the YDOLGDWLRQBGDWD has
saturated, we stop training. This strategy is called earl\ stopping.
Of course, in practice we won
t immediately know when the
accuracy has saturated. ,nstead, we continue training until we
re
confident that the accuracy has saturated.

:hy use the YDOLGDWLRQBGDWD to prevent overfitting, rather than the
WHVWBGDWD" ,n fact, this is part of a more general strategy, which is
to use the YDOLGDWLRQBGDWD to evaluate different trial choices of
hyper-parameters such as the number of epochs to train for, the
learning rate, the best network architecture, and so on. :e use such
evaluations to find and set good values for the hyper-parameters.
,ndeed, although , haven
t mentioned it until now, that is, in part,
how , arrived at the hyper-parameter choices made earlier in this
book. �0ore on this later.�

Of course, that doesn
t in any way answer the question of why we
re
using the YDOLGDWLRQBGDWD to prevent overfitting, rather than the
WHVWBGDWD. ,nstead, it replaces it with a more general question,
which is why we
re using the YDOLGDWLRQBGDWD rather than the
WHVWBGDWD to set good hyper-parameters" To understand why,
consider that when setting hyper-parameters we
re likely to try
many different choices for the hyper-parameters. ,f we set the
hyper-parameters based on evaluations of the WHVWBGDWD it
s
possible we
ll end up overfitting our hyper-parameters to the
WHVWBGDWD. That is, we may end up finding hyper-parameters which
fit particular peculiarities of the WHVWBGDWD, but where the
performance of the network won
t generali]e to other data sets. :e
guard against that by figuring out the hyper-parameters using the
YDOLGDWLRQBGDWD. Then, once we
ve got the hyper-parameters we
want, we do a final evaluation of accuracy using the WHVWBGDWD. That
gives us confidence that our results on the WHVWBGDWD are a true
measure of how well our neural network generali]es. To put it

,t requires some judgment to determine when
to stop. ,n my earlier graphs , identified epoch
��� as the place at which accuracy saturated. ,t
s
possible that was too pessimistic. Neural
networks sometimes plateau for a while in
training, before continuing to improve. ,
wouldn
t be surprised if more learning could
have occurred even after epoch ���, although
the magnitude of any further improvement
would likely be small. 6o it
s possible to adopt
more or less aggressive strategies for early
stopping.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 26/�2

another way, you can think of the validation data as a type of
training data that helps us learn good hyper-parameters. This
approach to finding good hyper-parameters is sometimes known as
the Kold out method, since the YDOLGDWLRQBGDWD is kept apart or
�held out� from the WUDLQLQJBGDWD.

Now, in practice, even after evaluating performance on the
WHVWBGDWD we may change our minds and want to try another
approach - perhaps a different network architecture - which will
involve finding a new set of hyper-parameters. ,f we do this, isn
t
there a danger we
ll end up overfitting to the WHVWBGDWD as well" Do
we need a potentially infinite regress of data sets, so we can be
confident our results will generali]e" $ddressing this concern fully
is a deep and difficult problem. %ut for our practical purposes, we
re
not going to worry too much about this question. ,nstead, we
ll
plunge ahead, using the basic hold out method, based on the
WUDLQLQJBGDWD, YDOLGDWLRQBGDWD, and WHVWBGDWD, as described above.

:e
ve been looking so far at overfitting when we
re just using 1,���
training images. :hat happens when we use the full training set of
��,��� images" :e
ll keep all the other parameters the same ���
hidden neurons, learning rate �.�, mini-batch si]e of 1��, but train
using all ��,��� images for �� epochs. +ere
s a graph showing the
results for the classification accuracy on both the training data and
the test data. Note that ,
ve used the test data here, rather than the
validation data, in order to make the results more directly
comparable with the earlier graphs.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

$s you can see, the accuracy on the test and training data remain
much closer together than when we were using 1,��� training
e[amples. ,n particular, the best classification accuracy of
percent on the training data is only percent higher than the

 percent on the test data. That
s compared to the percent
gap we had earlier� Overfitting is still going on, but it
s been greatly
reduced. Our network is generali]ing much better from the training
data to the test data. ,n general, one of the best ways of reducing
overfitting is to increase the si]e of the training data. :ith enough
training data it is difficult for even a very large network to overfit.
8nfortunately, training data can be e[pensive or difficult to acquire,
so this is not always a practical option.

5egulari]ation

,ncreasing the amount of training data is one way of reducing
overfitting. $re there other ways we can reduce the e[tent to which
overfitting occurs" One possible approach is to reduce the si]e of
our network. +owever, large networks have the potential to be
more powerful than small networks, and so this is an option we
d
only adopt reluctantly.

Fortunately, there are other techniques which can reduce
overfitting, even when we have a fi[ed network and fi[ed training
data. These are known as regulari]ation techniques. ,n this section
, describe one of the most commonly used regulari]ation
techniques, a technique sometimes known as weigKt deFa\ or L�
regulari]ation. The idea of /� regulari]ation is to add an e[tra term
to the cost function, a term called the regulari]ation terP. +ere
s
the regulari]ed cross-entropy:

The first term is just the usual e[pression for the cross-entropy. %ut
we
ve added a second term, namely the sum of the squares of all the
weights in the network. This is scaled by a factor , where is
known as the regulari]ation paraPeter, and is, as usual, the si]e
of our training set. ,
ll discuss later how is chosen. ,t
s also worth
noting that the regulari]ation term doesn
t include the biases. ,
ll
also come back to that below.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

Of course, it
s possible to regulari]e other cost functions, such as the
quadratic cost. This can be done in a similar way:

,n both cases we can write the regulari]ed cost function as

where is the original, unregulari]ed cost function.

,ntuitively, the effect of regulari]ation is to make it so the network
prefers to learn small weights, all other things being equal. /arge
weights will only be allowed if they considerably improve the first
part of the cost function. 3ut another way, regulari]ation can be
viewed as a way of compromising between finding small weights
and minimi]ing the original cost function. The relative importance
of the two elements of the compromise depends on the value of :
when is small we prefer to minimi]e the original cost function, but
when is large we prefer small weights.

Now, it
s really not at all obvious why making this kind of
compromise should help reduce overfitting� %ut it turns out that it
does. :e
ll address the question of why it helps in the ne[t section.
%ut first, let
s work through an e[ample showing that regulari]ation
really does reduce overfitting.

To construct such an e[ample, we first need to figure out how to
apply our stochastic gradient descent learning algorithm in a
regulari]ed neural network. ,n particular, we need to know how to
compute the partial derivatives and for all the weights
and biases in the network. Taking the partial derivatives of
(quation ���� gives

The and terms can be computed using
backpropagation, as described in the last chapter. $nd so we see
that it
s easy to compute the gradient of the regulari]ed cost
function: just use backpropagation, as usual, and then add to
the partial derivative of all the weight terms. The partial derivatives

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�2

with respect to the biases are unchanged, and so the gradient
descent learning rule for the biases doesn
t change from the usual
rule:

The learning rule for the weights becomes:

This is e[actly the same as the usual gradient descent learning rule,
e[cept we first rescale the weight by a factor . This rescaling
is sometimes referred to as weigKt deFa\, since it makes the
weights smaller. $t first glance it looks as though this means the
weights are being driven unstoppably toward]ero. %ut that
s not
right, since the other term may lead the weights to increase, if so
doing causes a decrease in the unregulari]ed cost function.

Okay, that
s how gradient descent works. :hat about stochastic
gradient descent" :ell, just as in unregulari]ed stochastic gradient
descent, we can estimate by averaging over a mini-batch of
training e[amples. Thus the regulari]ed learning rule for stochastic
gradient descent becomes �c.f. (quation �����

where the sum is over training e[amples in the mini-batch, and
is the �unregulari]ed� cost for each training e[ample. This is e[actly
the same as the usual rule for stochastic gradient descent, e[cept for
the weight decay factor. Finally, and for completeness, let me
state the regulari]ed learning rule for the biases. This is, of course,
e[actly the same as in the unregulari]ed case �c.f. (quation ��1��,

where the sum is over training e[amples in the mini-batch.

/et
s see how regulari]ation changes the performance of our neural
network. :e
ll use a network with hidden neurons, a mini-batch
si]e of , a learning rate of , and the cross-entropy cost function.
+owever, this time we
ll use a regulari]ation parameter of .

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

Note that in the code, we use the variable name OPEGD, because
ODPEGD is a reserved word in 3ython, with an unrelated meaning.
,
ve also used the WHVWBGDWD again, not the YDOLGDWLRQBGDWD. 6trictly
speaking, we should use the YDOLGDWLRQBGDWD, for all the reasons we
discussed earlier. %ut , decided to use the WHVWBGDWD because it
makes the results more directly comparable with our earlier,
unregulari]ed results. <ou can easily change the code to use the
YDOLGDWLRQBGDWD instead, and you
ll find that it gives similar results.

�

!!!�import�mnist_loader�
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU���

!!!�import�network��
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@���������������

����HYDOXDWLRQBGDWD WHVWBGDWD��OPEGD� �����

����PRQLWRUBHYDOXDWLRQBFRVW 7UXH��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

����PRQLWRUBWUDLQLQJBFRVW 7UXH��PRQLWRUBWUDLQLQJBDFFXUDF\ 7UXH�

The cost on the training data decreases over the whole time, much
as it did in the earlier, unregulari]ed case:

%ut this time the accuracy on the WHVWBGDWD continues to increase
for the entire ��� epochs:

This and the ne[t two graphs were produced
with the program overfitting.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

Clearly, the use of regulari]ation has suppressed overfitting. :hat
s
more, the accuracy is considerably higher, with a peak classification
accuracy of percent, compared to the peak of percent
obtained in the unregulari]ed case. ,ndeed, we could almost
certainly get considerably better results by continuing to train past
��� epochs. ,t seems that, empirically, regulari]ation is causing our
network to generali]e better, and considerably reducing the effects
of overfitting.

:hat happens if we move out of the artificial environment of just
having 1,��� training images, and return to the full ��,��� image
training set" Of course, we
ve seen already that overfitting is much
less of a problem with the full ��,��� images. Does regulari]ation
help any further" /et
s keep the hyper-parameters the same as
before - epochs, learning rate , mini-batch si]e of .
+owever, we need to modify the regulari]ation parameter. The
reason is because the si]e of the training set has changed from

 to , and this changes the weight decay factor
. ,f we continued to use that would mean much less

weight decay, and thus much less of a regulari]ation effect. :e
compensate by changing to .

Okay, let
s train our network, stopping first to re-initiali]e the
weights:

�

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

!!!�QHW�6*D�WUDLQLQJBGDWD��������������

����HYDOXDWLRQBGDWD WHVWBGDWD��OPEGD� �����

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH��PRQLWRUBWUDLQLQJBDFFXUDF\ 7UXH�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

:e obtain the results:

There
s lots of good news here. First, our classification accuracy on
the test data is up, from percent when running unregulari]ed,
to percent. That
s a big improvement. 6econd, we can see that
the gap between results on the training and test data is much
narrower than before, running at under a percent. That
s still a
significant gap, but we
ve obviously made substantial progress
reducing overfitting.

Finally, let
s see what test classification accuracy we get when we
use 1�� hidden neurons and a regulari]ation parameter of . ,
won
t go through a detailed analysis of overfitting here, this is
purely for fun, just to see how high an accuracy we can get when we
use our new tricks: the cross-entropy cost function and /�
regulari]ation.

�

!!!�QHW� �QHWZRUN��NHWZRUN�>������������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD ����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD�

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

The final result is a classification accuracy of percent on the
validation data. That
s a big jump from the �� hidden neuron case.
,n fact, tuning just a little more, to run for �� epochs at and

 we break the percent barrier, achieving percent
classification accuracy on the validation data. Not bad for what
turns out to be 1�� lines of code�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

,
ve described regulari]ation as a way to reduce overfitting and to
increase classification accuracies. ,n fact, that
s not the only benefit.
(mpirically, when doing multiple runs of our 0N,6T networks, but
with different �random� weight initiali]ations, ,
ve found that the
unregulari]ed runs will occasionally get �stuck�, apparently caught
in local minima of the cost function. The result is that different runs
sometimes provide quite different results. %y contrast, the
regulari]ed runs have provided much more easily replicable results.

:hy is this going on" +euristically, if the cost function is
unregulari]ed, then the length of the weight vector is likely to grow,
all other things being equal. Over time this can lead to the weight
vector being very large indeed. This can cause the weight vector to
get stuck pointing in more or less the same direction, since changes
due to gradient descent only make tiny changes to the direction,
when the length is long. , believe this phenomenon is making it
hard for our learning algorithm to properly e[plore the weight
space, and consequently harder to find good minima of the cost
function.

:K\ does regulari]ation Kelp reduFe
oYerÀtting"

:e
ve seen empirically that regulari]ation helps reduce overfitting.
That
s encouraging but, unfortunately, it
s not obvious why
regulari]ation helps� $ standard story people tell to e[plain what
s
going on is along the following lines: smaller weights are, in some
sense, lower comple[ity, and so provide a simpler and more
powerful e[planation for the data, and should thus be preferred.
That
s a pretty terse story, though, and contains several elements
that perhaps seem dubious or mystifying. /et
s unpack the story
and e[amine it critically. To do that, let
s suppose we have a simple
data set for which we wish to build a model:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

� � � � � �

x

�

�

�

�

�

�

�

�

�

�

��

y

,mplicitly, we
re studying some real-world phenomenon here, with
and representing real-world data. Our goal is to build a model
which lets us predict as a function of . :e could try using neural
networks to build such a model, but ,
m going to do something even
simpler: ,
ll try to model as a polynomial in . ,
m doing this
instead of using neural nets because using polynomials will make
things particularly transparent. Once we
ve understood the
polynomial case, we
ll translate to neural networks. Now, there are
ten points in the graph above, which means we can find a unique

th-order polynomial which fits the data
e[actly. +ere
s the graph of that polynomial:

� � � � � �

x

�

�

�

�

�

�

�

�

�

�

��

y

That provides an e[act fit. %ut we can also get a good fit using the
linear model :

, won
t show the coefficients e[plicitly, although
they are easy to find using a routine such as
Numpy
s SRO\ILW. <ou can view the e[act form
of the polynomial in the source code for the
graph if you
re curious. ,t
s the function S�[�
defined starting on line 1� of the program which
produces the graph.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

� � � � � �

x

�

�

�

�

�

�

�

�

�

�

��

y

:hich of these is the better model" :hich is more likely to be true"
$nd which model is more likely to generali]e well to other e[amples
of the same underlying real-world phenomenon"

These are difficult questions. ,n fact, we can
t determine with
certainty the answer to any of the above questions, without much
more information about the underlying real-world phenomenon.
%ut let
s consider two possibilities: �1� the th order polynomial is,
in fact, the model which truly describes the real-world
phenomenon, and the model will therefore generali]e perfectly� ���
the correct model is , but there
s a little additional noise due
to, say, measurement error, and that
s why the model isn
t an e[act
fit.

,t
s not a priori possible to say which of these two possibilities is
correct. �Or, indeed, if some third possibility holds�. /ogically,
either could be true. $nd it
s not a trivial difference. ,t
s true that on
the data provided there
s only a small difference between the two
models. %ut suppose we want to predict the value of
corresponding to some large value of , much larger than any shown
on the graph above. ,f we try to do that there will be a dramatic
difference between the predictions of the two models, as the th
order polynomial model comes to be dominated by the term,
while the linear model remains, well, linear.

One point of view is to say that in science we should go with the
simpler e[planation, unless compelled not to. :hen we find a
simple model that seems to e[plain many data points we are
tempted to shout �(ureka�� $fter all, it seems unlikely that a simple
e[planation should occur merely by coincidence. 5ather, we suspect

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �6/�2

that the model must be e[pressing some underlying truth about the
phenomenon. ,n the case at hand, the model seems
much simpler than . ,t would be surprising if
that simplicity had occurred by chance, and so we suspect that

 e[presses some underlying truth. ,n this point of
view, the �th order model is really just learning the effects of local
noise. $nd so while the �th order model works perfectly for these
particular data points, the model will fail to generali]e to other data
points, and the noisy linear model will have greater predictive
power.

/et
s see what this point of view means for neural networks.
6uppose our network mostly has small weights, as will tend to
happen in a regulari]ed network. The smallness of the weights
means that the behaviour of the network won
t change too much if
we change a few random inputs here and there. That makes it
difficult for a regulari]ed network to learn the effects of local noise
in the data. Think of it as a way of making it so single pieces of
evidence don
t matter too much to the output of the network.
,nstead, a regulari]ed network learns to respond to types of
evidence which are seen often across the training set. %y contrast, a
network with large weights may change its behaviour quite a bit in
response to small changes in the input. $nd so an unregulari]ed
network can use large weights to learn a comple[model that carries
a lot of information about the noise in the training data. ,n a
nutshell, regulari]ed networks are constrained to build relatively
simple models based on patterns seen often in the training data,
and are resistant to learning peculiarities of the noise in the training
data. The hope is that this will force our networks to do real
learning about the phenomenon at hand, and to generali]e better
from what they learn.

:ith that said, this idea of preferring simpler e[planation should
make you nervous. 3eople sometimes refer to this idea as �Occam
s
5a]or�, and will]ealously apply it as though it has the status of
some general scientific principle. %ut, of course, it
s not a general
scientific principle. There is no a priori logical reason to prefer
simple e[planations over more comple[e[planations. ,ndeed,
sometimes the more comple[e[planation turns out to be correct.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

/et me describe two e[amples where more comple[e[planations
have turned out to be correct. ,n the 1���s the physicist 0arcel
6chein announced the discovery of a new particle of nature. The
company he worked for, *eneral (lectric, was ecstatic, and
publici]ed the discovery widely. %ut the physicist +ans %ethe was
skeptical. %ethe visited 6chein, and looked at the plates showing the
tracks of 6chein
s new particle. 6chein showed %ethe plate after
plate, but on each plate %ethe identified some problem that
suggested the data should be discarded. Finally, 6chein showed
%ethe a plate that looked good. %ethe said it might just be a
statistical fluke. 6chein: �<es, but the chance that this would be
statistics, even according to your own formula, is one in five.�
%ethe: �%ut we have already looked at five plates.� Finally, 6chein
said: �%ut on my plates, each one of the good plates, each one of the
good pictures, you e[plain by a different theory, whereas , have one
hypothesis that e[plains all the plates, that they are >the new
particle@.� %ethe replied: �The sole difference between your and my
e[planations is that yours is wrong and all of mine are right. <our
single e[planation is wrong, and all of my multiple e[planations are
right.� 6ubsequent work confirmed that Nature agreed with %ethe,
and 6chein
s particle is no more.

$s a second e[ample, in 1��� the astronomer 8rbain /e 9errier
observed that the orbit of the planet 0ercury doesn
t have quite the
shape that Newton
s theory of gravitation says it should have. ,t was
a tiny, tiny deviation from Newton
s theory, and several of the
e[planations proferred at the time boiled down to saying that
Newton
s theory was more or less right, but needed a tiny
alteration. ,n 1�1�, (instein showed that the deviation could be
e[plained very well using his general theory of relativity, a theory
radically different to Newtonian gravitation, and based on much
more comple[mathematics. Despite that additional comple[ity,
today it
s accepted that (instein
s e[planation is correct, and
Newtonian gravity, even in its modified forms, is wrong. This is in
part because we now know that (instein
s theory e[plains many
other phenomena which Newton
s theory has difficulty with.
Furthermore, and even more impressively, (instein
s theory
accurately predicts several phenomena which aren
t predicted by
Newtonian gravity at all. %ut these impressive qualities weren
t
entirely obvious in the early days. ,f one had judged merely on the

The story is related by the physicist 5ichard
Feynman in an interview with the historian
Charles :einer.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

grounds of simplicity, then some modified form of Newton
s theory
would arguably have been more attractive.

There are three morals to draw from these stories. First, it can be
quite a subtle business deciding which of two e[planations is truly
�simpler�. 6econd, even if we can make such a judgment, simplicity
is a guide that must be used with great caution� Third, the true test
of a model is not simplicity, but rather how well it does in
predicting new phenomena, in new regimes of behaviour.

:ith that said, and keeping the need for caution in mind, it
s an
empirical fact that regulari]ed neural networks usually generali]e
better than unregulari]ed networks. $nd so through the remainder
of the book we will make frequent use of regulari]ation. ,
ve
included the stories above merely to help convey why no-one has
yet developed an entirely convincing theoretical e[planation for
why regulari]ation helps networks generali]e. ,ndeed, researchers
continue to write papers where they try different approaches to
regulari]ation, compare them to see which works better, and
attempt to understand why different approaches work better or
worse. $nd so you can view regulari]ation as something of a kludge.
:hile it often helps, we don
t have an entirely satisfactory
systematic understanding of what
s going on, merely incomplete
heuristics and rules of thumb.

There
s a deeper set of issues here, issues which go to the heart of
science. ,t
s the question of how we generali]e. 5egulari]ation may
give us a computational magic wand that helps our networks
generali]e better, but it doesn
t give us a principled understanding
of how generali]ation works, nor of what the best approach is.

This is particularly galling because in everyday life, we humans
generali]e phenomenally well. 6hown just a few images of an
elephant a child will quickly learn to recogni]e other elephants. Of
course, they may occasionally make mistakes, perhaps confusing a
rhinoceros for an elephant, but in general this process works
remarkably accurately. 6o we have a system - the human brain -
with a huge number of free parameters. $nd after being shown just
one or a few training images that system learns to generali]e to
other images. Our brains are, in some sense, regulari]ing ama]ingly
well� +ow do we do it" $t this point we don
t know. , e[pect that in

These issues go back to the problem of
induction, famously discussed by the 6cottish
philosopher David +ume in �$n (nquiry
Concerning +uman 8nderstanding� �1����. The
problem of induction has been given a modern
machine learning form in the no-free lunch
theorem �link� of David :olpert and :illiam
0acready �1����.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

years to come we will develop more powerful techniques for
regulari]ation in artificial neural networks, techniques that will
ultimately enable neural nets to generali]e well even from small
data sets.

,n fact, our networks already generali]e better than one might a
priori e[pect. $ network with 1�� hidden neurons has nearly
��,��� parameters. :e have only ��,��� images in our training
data. ,t
s like trying to fit an ��,���th degree polynomial to ��,���
data points. %y all rights, our network should overfit terribly. $nd
yet, as we saw earlier, such a network actually does a pretty good
job generali]ing. :hy is that the case" ,t
s not well understood. ,t
has been conjectured that �the dynamics of gradient descent
learning in multilayer nets has a Cself-regulari]ation
 effect�. This is
e[ceptionally fortunate, but it
s also somewhat disquieting that we
don
t understand why it
s the case. ,n the meantime, we will adopt
the pragmatic approach and use regulari]ation whenever we can.
Our neural networks will be the better for it.

/et me conclude this section by returning to a detail which , left
une[plained earlier: the fact that /� regulari]ation doesn
t
constrain the biases. Of course, it would be easy to modify the
regulari]ation procedure to regulari]e the biases. (mpirically, doing
this often doesn
t change the results very much, so to some e[tent
it
s merely a convention whether to regulari]e the biases or not.
+owever, it
s worth noting that having a large bias doesn
t make a
neuron sensitive to its inputs in the same way as having large
weights. $nd so we don
t need to worry about large biases enabling
our network to learn the noise in our training data. $t the same
time, allowing large biases gives our networks more fle[ibility in
behaviour - in particular, large biases make it easier for neurons to
saturate, which is sometimes desirable. For these reasons we don
t
usually include bias terms when regulari]ing.

2tKer teFKniTues Ior regulari]ation

There are many regulari]ation techniques other than /�
regulari]ation. ,n fact, so many techniques have been developed
that , can
t possibly summari]e them all. ,n this section , briefly
describe three other approaches to reducing overfitting: /1
regulari]ation, dropout, and artificially increasing the training set

,n *radient-%ased /earning $pplied to
Document 5ecognition, by <ann /eCun, /pon
%ottou, <oshua %engio, and 3atrick +affner
�1����.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

si]e. :e won
t go into nearly as much depth studying these
techniques as we did earlier. ,nstead, the purpose is to get familiar
with the main ideas, and to appreciate something of the diversity of
regulari]ation techniques available.

/� regulari]ation� ,n this approach we modify the unregulari]ed
cost function by adding the sum of the absolute values of the
weights:

,ntuitively, this is similar to /� regulari]ation, penali]ing large
weights, and tending to make the network prefer small weights. Of
course, the /1 regulari]ation term isn
t the same as the /�
regulari]ation term, and so we shouldn
t e[pect to get e[actly the
same behaviour. /et
s try to understand how the behaviour of a
network trained using /1 regulari]ation differs from a network
trained using /� regulari]ation.

To do that, we
ll look at the partial derivatives of the cost function.
Differentiating ���� we obtain:

where is the sign of , that is, if is positive, and if
is negative. 8sing this e[pression, we can easily modify
backpropagation to do stochastic gradient descent using /1
regulari]ation. The resulting update rule for an /1 regulari]ed
network is

where, as per usual, we can estimate using a mini-batch
average, if we wish. Compare that to the update rule for /�
regulari]ation �c.f. (quation �����,

,n both e[pressions the effect of regulari]ation is to shrink the
weights. This accords with our intuition that both kinds of
regulari]ation penali]e large weights. %ut the way the weights
shrink is different. ,n /1 regulari]ation, the weights shrink by a

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

constant amount toward . ,n /� regulari]ation, the weights shrink
by an amount which is proportional to . $nd so when a particular
weight has a large magnitude, , /1 regulari]ation shrinks the
weight much less than /� regulari]ation does. %y contrast, when
is small, /1 regulari]ation shrinks the weight much more than /�
regulari]ation. The net result is that /1 regulari]ation tends to
concentrate the weight of the network in a relatively small number
of high-importance connections, while the other weights are driven
toward]ero.

,
ve glossed over an issue in the above discussion, which is that the
partial derivative isn
t defined when . The reason is that
the function has a sharp �corner� at , and so isn
t
differentiable at that point. That
s okay, though. :hat we
ll do is
just apply the usual �unregulari]ed� rule for stochastic gradient
descent when . That should be okay - intuitively, the effect of
regulari]ation is to shrink weights, and obviously it can
t shrink a
weight which is already . To put it more precisely, we
ll use
(quations ���� and ���� with the convention that . That
gives a nice, compact rule for doing stochastic gradient descent with
/1 regulari]ation.

'ropout� Dropout is a radically different technique for
regulari]ation. 8nlike /1 and /� regulari]ation, dropout doesn
t
rely on modifying the cost function. ,nstead, in dropout we modify
the network itself. /et me describe the basic mechanics of how
dropout works, before getting into why it works, and what the
results are.

6uppose we
re trying to train a network:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

,n particular, suppose we have a training input and corresponding
desired output . Ordinarily, we
d train by forward-propagating
through the network, and then backpropagating to determine the
contribution to the gradient. :ith dropout, this process is modified.
:e start by randomly �and temporarily� deleting half the hidden
neurons in the network, while leaving the input and output neurons
untouched. $fter doing this, we
ll end up with a network along the
following lines. Note that the dropout neurons, i.e., the neurons
which have been temporarily deleted, are still ghosted in:

:e forward-propagate the input through the modified network,
and then backpropagate the result, also through the modified
network. $fter doing this over a mini-batch of e[amples, we update
the appropriate weights and biases. :e then repeat the process,
first restoring the dropout neurons, then choosing a new random
subset of hidden neurons to delete, estimating the gradient for a
different mini-batch, and updating the weights and biases in the
network.

%y repeating this process over and over, our network will learn a set
of weights and biases. Of course, those weights and biases will have
been learnt under conditions in which half the hidden neurons were
dropped out. :hen we actually run the full network that means that
twice as many hidden neurons will be active. To compensate for
that, we halve the weights outgoing from the hidden neurons.

This dropout procedure may seem strange and ad KoF. :hy would
we e[pect it to help with regulari]ation" To e[plain what
s going on,
,
d like you to briefly stop thinking about dropout, and instead
imagine training neural networks in the standard way �no dropout�.
,n particular, imagine we train several different neural networks, all

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

using the same training data. Of course, the networks may not start
out identical, and as a result after training they may sometimes give
different results. :hen that happens we could use some kind of
averaging or voting scheme to decide which output to accept. For
instance, if we have trained five networks, and three of them are
classifying a digit as a ���, then it probably really is a ���. The other
two networks are probably just making a mistake. This kind of
averaging scheme is often found to be a powerful �though
e[pensive� way of reducing overfitting. The reason is that the
different networks may overfit in different ways, and averaging may
help eliminate that kind of overfitting.

:hat
s this got to do with dropout" +euristically, when we dropout
different sets of neurons, it
s rather like we
re training different
neural networks. $nd so the dropout procedure is like averaging the
effects of a very large number of different networks. The different
networks will overfit in different ways, and so, hopefully, the net
effect of dropout will be to reduce overfitting.

$ related heuristic e[planation for dropout is given in one of the
earliest papers to use the technique: �This technique reduces
comple[co-adaptations of neurons, since a neuron cannot rely on
the presence of particular other neurons. ,t is, therefore, forced to
learn more robust features that are useful in conjunction with many
different random subsets of the other neurons.� ,n other words, if
we think of our network as a model which is making predictions,
then we can think of dropout as a way of making sure that the
model is robust to the loss of any individual piece of evidence. ,n
this, it
s somewhat similar to /1 and /� regulari]ation, which tend
to reduce weights, and thus make the network more robust to losing
any individual connection in the network.

Of course, the true measure of dropout is that it has been very
successful in improving the performance of neural networks. The
original paper introducing the technique applied it to many
different tasks. For us, it
s of particular interest that they applied
dropout to 0N,6T digit classification, using a vanilla feedforward
neural network along lines similar to those we
ve been considering.
The paper noted that the best result anyone had achieved up to that
point using such an architecture was percent classification
accuracy on the test set. They improved that to percent

,mageNet Classification with Deep
Convolutional Neural Networks, by $le[
.ri]hevsky, ,lya 6utskever, and *eoffrey +inton
���1��.

,mproving neural networks by preventing co-
adaptation of feature detectors by *eoffrey
+inton, Nitish 6rivastava, $le[.ri]hevsky, ,lya
6utskever, and 5uslan 6alakhutdinov ���1��.
Note that the paper discusses a number of
subtleties that , have glossed over in this brief
introduction.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

accuracy using a combination of dropout and a modified form of /�
regulari]ation. 6imilarly impressive results have been obtained for
many other tasks, including problems in image and speech
recognition, and natural language processing. Dropout has been
especially useful in training large, deep networks, where the
problem of overfitting is often acute.

$rtiIiciall\ e[panding tKe training data� :e saw earlier that
our 0N,6T classification accuracy dropped down to percentages in
the mid-��s when we used only 1,��� training images. ,t
s not
surprising that this is the case, since less training data means our
network will be e[posed to fewer variations in the way human
beings write digits. /et
s try training our �� hidden neuron network
with a variety of different training data set si]es, to see how
performance varies. :e train using a mini-batch si]e of 1�, a
learning rate , a regulari]ation parameter , and the
cross-entropy cost function. :e will train for �� epochs when the
full training data set is used, and scale up the number of epochs
proportionally when smaller training sets are used. To ensure the
weight decay factor remains the same across training sets, we will
use a regulari]ation parameter of when the full training data
set is used, and scale down proportionally when smaller training
sets are used.

$s you can see, the classification accuracies improve considerably
as we use more training data. 3resumably this improvement would
continue still further if more data was available. Of course, looking
at the graph above it does appear that we
re getting near saturation.

This and the ne[t two graph are produced with
the program moreBdata.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

6uppose, however, that we redo the graph with the training set si]e
plotted logarithmically:

,t seems clear that the graph is still going up toward the end. This
suggests that if we used vastly more training data - say, millions or
even billions of handwriting samples, instead of just ��,��� - then
we
d likely get considerably better performance, even from this very
small network.

Obtaining more training data is a great idea. 8nfortunately, it can
be e[pensive, and so is not always possible in practice. +owever,
there
s another idea which can work nearly as well, and that
s to
artificially e[pand the training data. 6uppose, for e[ample, that we
take an 0N,6T training image of a five,

and rotate it by a small amount, let
s say 1� degrees:

,t
s still recogni]ably the same digit. $nd yet at the pi[el level it
s
quite different to any image currently in the 0N,6T training data.
,t
s conceivable that adding this image to the training data might
help our network learn more about how to classify digits. :hat
s
more, obviously we
re not limited to adding just this one image. :e

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �6/�2

can e[pand our training data by making Pan\ small rotations of all
the 0N,6T training images, and then using the e[panded training
data to improve our network
s performance.

This idea is very powerful and has been widely used. /et
s look at
some of the results from a paper which applied several variations
of the idea to 0N,6T. One of the neural network architectures they
considered was along similar lines to what we
ve been using, a
feedforward network with ��� hidden neurons and using the cross-
entropy cost function. 5unning the network with the standard
0N,6T training data they achieved a classification accuracy of ��.�
percent on their test set. %ut then they e[panded the training data,
using not just rotations, as , described above, but also translating
and skewing the images. %y training on the e[panded data set they
increased their network
s accuracy to ��.� percent. They also
e[perimented with what they called �elastic distortions�, a special
type of image distortion intended to emulate the random
oscillations found in hand muscles. %y using the elastic distortions
to e[pand the data they achieved an even higher accuracy, ��.�
percent. (ffectively, they were broadening the e[perience of their
network by e[posing it to the sort of variations that are found in
real handwriting.

9ariations on this idea can be used to improve performance on
many learning tasks, not just handwriting recognition. The general
principle is to e[pand the training data by applying operations that
reflect real-world variation. ,t
s not difficult to think of ways of
doing this. 6uppose, for e[ample, that you
re building a neural
network to do speech recognition. :e humans can recogni]e speech
even in the presence of distortions such as background noise. $nd
so you can e[pand your data by adding background noise. :e can
also recogni]e speech if it
s sped up or slowed down. 6o that
s
another way we can e[pand the training data. These techniques are
not always used - for instance, instead of e[panding the training
data by adding noise, it may well be more efficient to clean up the
input to the network by first applying a noise reduction filter. 6till,
it
s worth keeping the idea of e[panding the training data in mind,
and looking for opportunities to apply it.

([erFise

%est 3ractices for Convolutional Neural
Networks $pplied to 9isual Document $nalysis,
by 3atrice 6imard, Dave 6teinkraus, and -ohn
3latt ������.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

$s discussed above, one way of e[panding the 0N,6T training
data is to use small rotations of training images. :hat
s a
problem that might occur if we allow arbitrarily large rotations
of training images"

$n aside on Eig data and ZKat it means to compare
classiIication accuracies� /et
s look again at how our neural
network
s accuracy varies with training set si]e:

6uppose that instead of using a neural network we use some other
machine learning technique to classify digits. For instance, let
s try
using the support vector machines �690� which we met briefly
back in Chapter 1. $s was the case in Chapter 1, don
t worry if you
re
not familiar with 690s, we don
t need to understand their details.
,nstead, we
ll use the 690 supplied by the scikit-learn library.
+ere
s how 690 performance varies as a function of training set
si]e. ,
ve plotted the neural net results as well, to make comparison
easy: This graph was produced with the program

moreBdata.py �as were the last few graphs�.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

3robably the first thing that strikes you about this graph is that our
neural network outperforms the 690 for every training set si]e.
That
s nice, although you shouldn
t read too much into it, since ,
just used the out-of-the-bo[settings from scikit-learn
s 690, while
we
ve done a fair bit of work improving our neural network. $ more
subtle but more interesting fact about the graph is that if we train
our 690 using ��,��� images then it actually has better
performance ���.�� percent accuracy� than our neural network
does when trained using �,��� images ���.�� percent accuracy�. ,n
other words, more training data can sometimes compensate for
differences in the machine learning algorithm used.

6omething even more interesting can occur. 6uppose we
re trying to
solve a problem using two machine learning algorithms, algorithm
$ and algorithm %. ,t sometimes happens that algorithm $ will
outperform algorithm % with one set of training data, while
algorithm % will outperform algorithm $ with a different set of
training data. :e don
t see that above - it would require the two
graphs to cross - but it does happen. The correct response to the
question �,s algorithm $ better than algorithm %"� is really: �:hat
training data set are you using"�

$ll this is a caution to keep in mind, both when doing development,
and when reading research papers. 0any papers focus on finding
new tricks to wring out improved performance on standard
benchmark data sets. �Our whi]-bang technique gave us an
improvement of ; percent on standard benchmark <� is a canonical
form of research claim. 6uch claims are often genuinely interesting,

6triking e[amples may be found in 6caling to
very very large corpora for natural language
disambiguation, by 0ichele %anko and (ric %rill
����1�.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

but they must be understood as applying only in the conte[t of the
specific training data set used. ,magine an alternate history in
which the people who originally created the benchmark data set had
a larger research grant. They might have used the e[tra money to
collect more training data. ,t
s entirely possible that the
�improvement� due to the whi]-bang technique would disappear on
a larger data set. ,n other words, the purported improvement might
be just an accident of history. The message to take away, especially
in practical applications, is that what we want is both better
algorithms and better training data. ,t
s fine to look for better
algorithms, but make sure you
re not focusing on better algorithms
to the e[clusion of easy wins getting more or better training data.

3roEleP

�5esearcK proElem� +ow do our machine learning
algorithms perform in the limit of very large data sets" For any
given algorithm it
s natural to attempt to define a notion of
asymptotic performance in the limit of truly big data. $ quick-
and-dirty approach to this problem is to simply try fitting
curves to graphs like those shown above, and then to
e[trapolate the fitted curves out to infinity. $n objection to this
approach is that different approaches to curve fitting will give
different notions of asymptotic performance. Can you find a
principled justification for fitting to some particular class of
curves" ,f so, compare the asymptotic performance of several
different machine learning algorithms.

Summing up� :e
ve now completed our dive into overfitting and
regulari]ation. Of course, we
ll return again to the issue. $s ,
ve
mentioned several times, overfitting is a major problem in neural
networks, especially as computers get more powerful, and we have
the ability to train larger networks. $s a result there
s a pressing
need to develop powerful regulari]ation techniques to reduce
overfitting, and this is an e[tremely active area of current work.

:eigKt initiali]ation
:hen we create our neural networks, we have to make choices for
the initial weights and biases. 8p to now, we
ve been choosing them
according to a prescription which , discussed only briefly back in

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

Chapter 1. -ust to remind you, that prescription was to choose both
the weights and biases using independent *aussian random
variables, normali]ed to have mean and standard deviation .
:hile this approach has worked well, it was quite ad KoF, and it
s
worth revisiting to see if we can find a better way of setting our
initial weights and biases, and perhaps help our neural networks
learn faster.

,t turns out that we can do quite a bit better than initiali]ing with
normali]ed *aussians. To see why, suppose we
re working with a
network with a large number - say - of input neurons. $nd
let
s suppose we
ve used normali]ed *aussians to initiali]e the
weights connecting to the first hidden layer. For now ,
m going to
concentrate specifically on the weights connecting the input
neurons to the first neuron in the hidden layer, and ignore the rest
of the network:

:e
ll suppose for simplicity that we
re trying to train using a
training input in which half the input neurons are on, i.e., set to ,
and half the input neurons are off, i.e., set to . The argument which
follows applies more generally, but you
ll get the gist from this
special case. /et
s consider the weighted sum of
inputs to our hidden neuron. terms in this sum vanish, because
the corresponding input is]ero. $nd so is a sum over a total of

 normali]ed *aussian random variables, accounting for the
weight terms and the e[tra bias term. Thus is itself distributed as
a *aussian with mean]ero and standard deviation .
That is, has a very broad *aussian distribution, not sharply
peaked at all:

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

��� ��� ��� � �� �� ��

����

,n particular, we can see from this graph that it
s quite likely that
will be pretty large, i.e., either or . ,f that
s the case
then the output from the hidden neuron will be very close to
either or . That means our hidden neuron will have saturated.
$nd when that happens, as we know, making small changes in the
weights will make only absolutely miniscule changes in the
activation of our hidden neuron. That miniscule change in the
activation of the hidden neuron will, in turn, barely affect the rest of
the neurons in the network at all, and we
ll see a correspondingly
miniscule change in the cost function. $s a result, those weights will
only learn very slowly when we use the gradient descent algorithm.
,t
s similar to the problem we discussed earlier in this chapter, in
which output neurons which saturated on the wrong value caused
learning to slow down. :e addressed that earlier problem with a
clever choice of cost function. 8nfortunately, while that helped with
saturated output neurons, it does nothing at all for the problem
with saturated hidden neurons.

,
ve been talking about the weights input to the first hidden layer.
Of course, similar arguments apply also to later hidden layers: if the
weights in later hidden layers are initiali]ed using normali]ed
*aussians, then activations will often be very close to or , and
learning will proceed very slowly.

,s there some way we can choose better initiali]ations for the
weights and biases, so that we don
t get this kind of saturation, and
so avoid a learning slowdown" 6uppose we have a neuron with
input weights. Then we shall initiali]e those weights as *aussian
random variables with mean and standard deviation . That
is, we
ll squash the *aussians down, making it less likely that our
neuron will saturate. :e
ll continue to choose the bias as a
*aussian with mean and standard deviation , for reasons ,
ll
return to in a moment. :ith these choices, the weighted sum

 will again be a *aussian random variable with mean
, but it
ll be much more sharply peaked than it was before.

6uppose, as we did earlier, that of the inputs are]ero and

:e discussed this in more detail in Chapter �,
where we used the equations of backpropagation
to show that weights input to saturated neurons
learned slowly.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

are . Then it
s easy to show �see the e[ercise below� that has a
*aussian distribution with mean and standard deviation

. This is much more sharply peaked than before, so
much so that even the graph below understates the situation, since
,
ve had to rescale the vertical a[is, when compared to the earlier
graph:

��� ��� ��� � �� �� ��

���

6uch a neuron is much less likely to saturate, and correspondingly
much less likely to have problems with a learning slowdown.

([erFise

9erify that the standard deviation of in the
paragraph above is . ,t may help to know that: �a� the
variance of a sum of independent random variables is the sum
of the variances of the individual random variables� and �b� the
variance is the square of the standard deviation.

, stated above that we
ll continue to initiali]e the biases as before, as
*aussian random variables with a mean of and a standard
deviation of . This is okay, because it doesn
t make it too much
more likely that our neurons will saturate. ,n fact, it doesn
t much
matter how we initiali]e the biases, provided we avoid the problem
with saturation. 6ome people go so far as to initiali]e all the biases
to , and rely on gradient descent to learn appropriate biases. %ut
since it
s unlikely to make much difference, we
ll continue with the
same initiali]ation procedure as before.

/et
s compare the results for both our old and new approaches to
weight initiali]ation, using the 0N,6T digit classification task. $s

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

before, we
ll use hidden neurons, a mini-batch si]e of , a
regulari]ation parameter , and the cross-entropy cost
function. :e will decrease the learning rate slightly from to

, since that makes the results a little more easily visible in the
graphs. :e can train using the old method of weight initiali]ation:

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

!!!�import�network�
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�ODUJHBZHLJKWBLQLWLDOL]HU��

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD� �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

:e can also train using the new approach to weight initiali]ation.
This is actually even easier, since QHWZRUN�
s default way of
initiali]ing the weights is using this new approach. That means we
can omit the QHW�ODUJHBZHLJKWBLQLWLDOL]HU�� call above:

!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD� �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

3lotting the results, we obtain:

,n both cases, we end up with a classification accuracy somewhat
over �� percent. The final classification accuracy is almost e[actly
the same in the two cases. %ut the new initiali]ation technique
brings us there much, much faster. $t the end of the first epoch of
training the old approach to weight initiali]ation has a classification
accuracy under �� percent, while the new approach is already
almost �� percent. :hat appears to be going on is that our new

The program used to generate this and the ne[t
graph is weightBinitiali]ation.py.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

approach to weight initiali]ation starts us off in a much better
regime, which lets us get good results much more quickly. The same
phenomenon is also seen if we plot results with hidden
neurons:

,n this case, the two curves don
t quite meet. +owever, my
e[periments suggest that with just a few more epochs of training
�not shown� the accuracies become almost e[actly the same. 6o on
the basis of these e[periments it looks as though the improved
weight initiali]ation only speeds up learning, it doesn
t change the
final performance of our networks. +owever, in Chapter � we
ll see
e[amples of neural networks where the long-run behaviour is
significantly better with the weight initiali]ation. Thus it
s
not only the speed of learning which is improved, it
s sometimes
also the final performance.

The approach to weight initiali]ation helps improve the way
our neural nets learn. Other techniques for weight initiali]ation
have also been proposed, many building on this basic idea. , won
t
review the other approaches here, since works well enough
for our purposes. ,f you
re interested in looking further, ,
recommend looking at the discussion on pages 1� and 1� of a ��1�
paper by <oshua %engio, as well as the references therein.

3roEleP

&onnecting regulari]ation and tKe improYed metKod
oI ZeigKt initiali]ation /� regulari]ation sometimes
automatically gives us something similar to the new approach

3ractical 5ecommendations for *radient-%ased
Training of Deep $rchitectures, by <oshua
%engio ���1��.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

to weight initiali]ation. 6uppose we are using the old approach
to weight initiali]ation. 6ketch a heuristic argument that: �1�
supposing is not too small, the first epochs of training will be
dominated almost entirely by weight decay� ��� provided
the weights will decay by a factor of per epoch� and
��� supposing is not too large, the weight decay will tail off
when the weights are down to a si]e around , where is
the total number of weights in the network. $rgue that these
conditions are all satisfied in the e[amples graphed in this
section.

+andwriting reFognition reYisited� tKe
Fode
/et
s implement the ideas we
ve discussed in this chapter. :e
ll
develop a new program, QHWZRUN��S\, which is an improved version
of the program QHWZRUN�S\ we developed in Chapter 1. ,f you haven
t
looked at QHWZRUN�S\ in a while then you may find it helpful to
spend a few minutes quickly reading over the earlier discussion. ,t
s
only �� lines of code, and is easily understood.

$s was the case in QHWZRUN�S\, the star of QHWZRUN��S\ is the NHWZRUN
class, which we use to represent our neural networks. :e initiali]e
an instance of NHWZRUN with a list of VL]HV for the respective layers in
the network, and a choice for the FRVW to use, defaulting to the
cross-entropy:

class�Network�REMHFW��

����def�BBLQLWBB�VHOI��VL]HV��FRVW &URVV(QWURS\&RVW��
��������VHOI�QXPBOD\HUV� �OHQ�VL]HV�

��������VHOI�VL]HV� �VL]HV

��������VHOI�GHIDXOWBZHLJKWBLQLWLDOL]HU��

��������VHOI�FRVW FRVW

The first couple of lines of the BBLQLWBB method are the same as in
QHWZRUN�S\, and are pretty self-e[planatory. %ut the ne[t two lines
are new, and we need to understand what they
re doing in detail.

/et
s start by e[amining the GHIDXOWBZHLJKWBLQLWLDOL]HU method.
This makes use of our new and improved approach to weight
initiali]ation. $s we
ve seen, in that approach the weights input to a
neuron are initiali]ed as *aussian random variables with mean �
and standard deviation divided by the square root of the number

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �6/�2

of connections input to the neuron. $lso in this method we
ll
initiali]e the biases, using *aussian random variables with mean
and standard deviation . +ere
s the code:

����def�GHIDXOWBZHLJKWBLQLWLDOL]HU�VHOI��
��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VHOI�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[��QS�VTUW�[��

������������������������for�[��\�in�]LS�VHOI�VL]HV>���@��VHOI�VL]HV>��@�@

To understand the code, it may help to recall that QS is the Numpy
library for doing linear algebra. :e
ll LPSRUW Numpy at the
beginning of our program. $lso, notice that we don
t initiali]e any
biases for the first layer of neurons. :e avoid doing this because the
first layer is an input layer, and so any biases would not be used. :e
did e[actly the same thing in QHWZRUN�S\.

Complementing the GHIDXOWBZHLJKWBLQLWLDOL]HU we
ll also include a
ODUJHBZHLJKWBLQLWLDOL]HU method. This method initiali]es the
weights and biases using the old approach from Chapter 1, with
both weights and biases initiali]ed as *aussian random variables
with mean and standard deviation . The code is, of course, only a
tiny bit different from the GHIDXOWBZHLJKWBLQLWLDOL]HU:

����def�ODUJHBZHLJKWBLQLWLDOL]HU�VHOI��
��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VHOI�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[��

������������������������for�[��\�in�]LS�VHOI�VL]HV>���@��VHOI�VL]HV>��@�@

,
ve included the ODUJHBZHLJKWBLQLWLDOL]HU method mostly as a
convenience to make it easier to compare the results in this chapter
to those in Chapter 1. , can
t think of many practical situations
where , would recommend using it�

The second new thing in NHWZRUN
s BBLQLWBB method is that we now
initiali]e a FRVW attribute. To understand how that works, let
s look
at the class we use to represent the cross-entropy cost:

class�&ross(ntropy&ost�REMHFW��

����#VWDWLFPHWKRG

����def�IQ�D��\��
��������return�QS�VXP�QS�QDQBWRBQXP��\QS�ORJ�D�����\�QS�ORJ���D���

����#VWDWLFPHWKRG

����def�GHOWD�]��D��\��
��������return��D�\�

/et
s break this down. The first thing to observe is that even though
the cross-entropy is, mathematically speaking, a function, we
ve
implemented it as a 3ython class, not a 3ython function. :hy have

,f you
re not familiar with 3ython
s static
methods you can ignore the #VWDWLFPHWKRG
decorators, and just treat IQ and GHOWD as
ordinary methods. ,f you
re curious about
details, all #VWDWLFPHWKRG does is tell the
3ython interpreter that the method which
follows doesn
t depend on the object in any way.
That
s why VHOI isn
t passed as a parameter to
the IQ and GHOWD methods.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

, made that choice" The reason is that the cost plays two different
roles in our network. The obvious role is that it
s a measure of how
well an output activation, D, matches the desired output, \. This role
is captured by the &URVV(QWURS\&RVW�IQ method. �Note, by the way,
that the QS�QDQBWRBQXP call inside &URVV(QWURS\&RVW�IQ ensures that
Numpy deals correctly with the log of numbers very close to]ero.�
%ut there
s also a second way the cost function enters our network.
5ecall from Chapter � that when running the backpropagation
algorithm we need to compute the network
s output error, . The
form of the output error depends on the choice of cost function:
different cost function, different form for the output error. For the
cross-entropy the output error is, as we saw in (quation ����,

For this reason we define a second method,
&URVV(QWURS\&RVW�GHOWD, whose purpose is to tell our network how
to compute the output error. $nd then we bundle these two
methods up into a single class containing everything our networks
need to know about the cost function.

,n a similar way, QHWZRUN��S\ also contains a class to represent the
quadratic cost function. This is included for comparison with the
results of Chapter 1, since going forward we
ll mostly use the cross
entropy. The code is just below. The 4XDGUDWLF&RVW�IQ method is a
straightforward computation of the quadratic cost associated to the
actual output, D, and the desired output, \. The value returned by
4XDGUDWLF&RVW�GHOWD is based on the e[pression ���� for the output
error for the quadratic cost, which we derived back in Chapter �.

class�4uadratic&ost�REMHFW��

����#VWDWLFPHWKRG

����def�IQ�D��\��
��������return����QS�OLQDOJ�QRUP�D�\��

����#VWDWLFPHWKRG

����def�GHOWD�]��D��\��
��������return��D�\���VLJPRLGBSULPH�]�

:e
ve now understood the main differences between QHWZRUN��S\
and QHWZRUN�S\. ,t
s all pretty simple stuff. There are a number of
smaller changes, which ,
ll discuss below, including the
implementation of /� regulari]ation. %efore getting to that, let
s
look at the complete code for QHWZRUN��S\. <ou don
t need to read
all the code in detail, but it is worth understanding the broad

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

structure, and in particular reading the documentation strings, so
you understand what each piece of the program is doing. Of course,
you
re also welcome to delve as deeply as you wish� ,f you get lost,
you may wish to continue reading the prose below, and return to
the code later. $nyway, here
s the code:

"""network2.py

~~~~~~~~~~~~~~

An improved version of network.py, implementing the stochastic

gradient descent learning algorithm for a feedforward neural network.

Improvements include the addition of the cross-entropy cost function,

regularization, and better initialization of network weights.  Note

that I have focused on making the code simple, easily readable, and

easily modifiable.  It is not optimized, and omits many desirable

features.

"""

#### Libraries

# Standard library

import�Mson
import�random
import�sys

# Third-party libraries

import�numpy�as�np

#### Define the Tuadratic and cross-entropy cost functions

class�4uadratic&ost�REMHFW��

����#VWDWLFPHWKRG

����def�IQ�D��\��
��������"""Return the cost associated with an output ``a`` and desired output

        ``y``.

        """

��������return����QS�OLQDOJ�QRUP�D�\��

����#VWDWLFPHWKRG

����def�GHOWD�]��D��\��
��������"""Return the error delta from the output layer."""

��������return��D�\���VLJPRLGBSULPH�]�

class�&ross(ntropy&ost�REMHFW��

����#VWDWLFPHWKRG

����def�IQ�D��\��
��������"""Return the cost associated with an output ``a`` and desired output

        ``y``.  Note that np.nan_to_num is used to ensure numerical

        stability.  In particular, if both ``a`` and ``y`` have a 1.0

        in the same slot, then the expression (1-y)*np.log(1-a)

        returns nan.  The np.nan_to_num ensures that that is converted

        to the correct value (0.0).

        """

��������return�QS�VXP�QS�QDQBWRBQXP��\QS�ORJ�D�����\�QS�ORJ���D���

����#VWDWLFPHWKRG

����def�GHOWD�]��D��\��
��������"""Return the error delta from the output layer.  Note that the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

        parameter ``z`` is not used by the method.  It is included in

        the method's parameters in order to make the interface

        consistent with the delta method for other cost classes.

        """

��������return��D�\�

#### Main Network class

class�Network�REMHFW��

����def�BBLQLWBB�VHOI��VL]HV��FRVW &URVV(QWURS\&RVW��
��������"""The list ``sizes`` contains the number of neurons in the respective

        layers of the network.  For example, if the list was [2, 3, 1]

        then it would be a three-layer network, with the first layer

        containing 2 neurons, the second layer 3 neurons, and the

        third layer 1 neuron.  The biases and weights for the network

        are initialized randomly, using

        ``self.default_weight_initializer`` (see docstring for that

        method).

        """

��������VHOI�QXPBOD\HUV� �OHQ�VL]HV�

��������VHOI�VL]HV� �VL]HV

��������VHOI�GHIDXOWBZHLJKWBLQLWLDOL]HU��

��������VHOI�FRVW FRVW

����def�GHIDXOWBZHLJKWBLQLWLDOL]HU�VHOI��
��������"""Initialize each weight using a Gaussian distribution with mean 0

        and standard deviation 1 over the sTuare root of the number of

        weights connecting to the same neuron.  Initialize the biases

        using a Gaussian distribution with mean 0 and standard

        deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        """

��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VHOI�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[��QS�VTUW�[�

������������������������for�[��\�in�]LS�VHOI�VL]HV>���@��VHOI�VL]HV>��@�@

����def�ODUJHBZHLJKWBLQLWLDOL]HU�VHOI��
��������"""Initialize the weights using a Gaussian distribution with mean 0

        and standard deviation 1.  Initialize the biases using a

        Gaussian distribution with mean 0 and standard deviation 1.

        Note that the first layer is assumed to be an input layer, and

        by convention we won't set any biases for those neurons, since

        biases are only ever used in computing the outputs from later

        layers.

        This weight and bias initializer uses the same approach as in

        Chapter 1, and is included for purposes of comparison.  It

        will usually be better to use the default weight initializer

        instead.

        """

��������VHOI�ELDVHV� �>QS�UDQGRP�UDQGQ�\�����for�\�in�VHOI�VL]HV>��@@
��������VHOI�ZHLJKWV� �>QS�UDQGRP�UDQGQ�\��[�

������������������������for�[��\�in�]LS�VHOI�VL]HV>���@��VHOI�VL]HV>��@�@

����def�IHHGIRUZDUG�VHOI��D��
��������"""Return the output of the network if ``a`` is input."""

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������D� �VLJPRLG�QS�GRW�Z��D��E�

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 60/�2

��������return�D

����def�6*D�VHOI��WUDLQLQJBGDWD��HSRFKV��PLQLBEDWFKBVL]H��HWD�
������������OPEGD� �����

������������HYDOXDWLRQBGDWD NRQH�

������������PRQLWRUBHYDOXDWLRQBFRVW )DOVH�

������������PRQLWRUBHYDOXDWLRQBDFFXUDF\ )DOVH�

������������PRQLWRUBWUDLQLQJBFRVW )DOVH�

������������PRQLWRUBWUDLQLQJBDFFXUDF\ )DOVH��

��������"""Train the neural network using mini-batch stochastic gradient

        descent.  The ``training_data`` is a list of tuples ``(x, y)``

        representing the training inputs and the desired outputs.  The

        other non-optional parameters are self-explanatory, as is the

        regularization parameter ``lmbda``.  The method also accepts

        ``evaluation_data``, usually either the validation or test

        data.  :e can monitor the cost and accuracy on either the

        evaluation data or the training data, by setting the

        appropriate flags.  The method returns a tuple containing four

        lists� the (per-epoch) costs on the evaluation data, the

        accuracies on the evaluation data, the costs on the training

        data, and the accuracies on the training data.  All values are

        evaluated at the end of each training epoch.  So, for example,

        if we train for 30 epochs, then the first element of the tuple

        will be a 30-element list containing the cost on the

        evaluation data at the end of each epoch. Note that the lists

        are empty if the corresponding flag is not set.

        """

��������if�HYDOXDWLRQBGDWD��QBGDWD� �OHQ�HYDOXDWLRQBGDWD�
��������Q� �OHQ�WUDLQLQJBGDWD�

��������HYDOXDWLRQBFRVW��HYDOXDWLRQBDFFXUDF\� �>@��>@

��������WUDLQLQJBFRVW��WUDLQLQJBDFFXUDF\� �>@��>@

��������for�M�in�[UDQJH�HSRFKV��
������������UDQGRP�VKXIIOH�WUDLQLQJBGDWD�

������������PLQLBEDWFKHV� �>

����������������WUDLQLQJBGDWD>N�N�PLQLBEDWFKBVL]H@

����������������for�N�in�[UDQJH����Q��PLQLBEDWFKBVL]H�@
������������for�PLQLBEDWFK�in�PLQLBEDWFKHV�
����������������VHOI�XSGDWHBPLQLBEDWFK�

��������������������PLQLBEDWFK��HWD��OPEGD��OHQ�WUDLQLQJBGDWD��

������������print��(SRFK��s�WUDLQLQJ�FRPSOHWH����M
������������if�PRQLWRUBWUDLQLQJBFRVW�
����������������FRVW� �VHOI�WRWDOBFRVW�WUDLQLQJBGDWD��OPEGD�

����������������WUDLQLQJBFRVW�DSSHQG�FRVW�

����������������print��&RVW�RQ�WUDLQLQJ�GDWD��^`��IRUPDW�FRVW�
������������if�PRQLWRUBWUDLQLQJBDFFXUDF\�
����������������DFFXUDF\� �VHOI�DFFXUDF\�WUDLQLQJBGDWD��FRQYHUW 7UXH�

����������������WUDLQLQJBDFFXUDF\�DSSHQG�DFFXUDF\�

����������������print��AFFXUDF\�RQ�WUDLQLQJ�GDWD��^`���^`��IRUPDW�
��������������������DFFXUDF\��Q�

������������if�PRQLWRUBHYDOXDWLRQBFRVW�
����������������FRVW� �VHOI�WRWDOBFRVW�HYDOXDWLRQBGDWD��OPEGD��FRQYHUW 7UXH�

����������������HYDOXDWLRQBFRVW�DSSHQG�FRVW�

����������������print��&RVW�RQ�HYDOXDWLRQ�GDWD��^`��IRUPDW�FRVW�
������������if�PRQLWRUBHYDOXDWLRQBDFFXUDF\�
����������������DFFXUDF\� �VHOI�DFFXUDF\�HYDOXDWLRQBGDWD�

����������������HYDOXDWLRQBDFFXUDF\�DSSHQG�DFFXUDF\�

����������������print��AFFXUDF\�RQ�HYDOXDWLRQ�GDWD��^`���^`��IRUPDW�
��������������������VHOI�DFFXUDF\�HYDOXDWLRQBGDWD���QBGDWD�

������������print
��������return�HYDOXDWLRQBFRVW��HYDOXDWLRQBDFFXUDF\��?
������������WUDLQLQJBFRVW��WUDLQLQJBDFFXUDF\

����def�XSGDWHBPLQLBEDWFK�VHOI��PLQLBEDWFK��HWD��OPEGD��Q��
��������"""Update the network's weights and biases by applying gradient

        descent using backpropagation to a single mini batch.  The

        ``mini_batch`` is a list of tuples ``(x, y)``, ``eta`` is the

        learning rate, ``lmbda`` is the regularization parameter, and

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 61/�2

        ``n`` is the total size of the training data set.

        """

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������for�[��\�in�PLQLBEDWFK�
������������GHOWDBQDEODBE��GHOWDBQDEODBZ� �VHOI�EDFNSURS�[��\�

������������QDEODBE� �>QE�GQE�for�QE��GQE�in�]LS�QDEODBE��GHOWDBQDEODBE�@
������������QDEODBZ� �>QZ�GQZ�for�QZ��GQZ�in�]LS�QDEODBZ��GHOWDBQDEODBZ�@
��������VHOI�ZHLJKWV� �>���HWD�OPEGD�Q��Z��HWD�OHQ�PLQLBEDWFK��QZ

������������������������for�Z��QZ�in�]LS�VHOI�ZHLJKWV��QDEODBZ�@
��������VHOI�ELDVHV� �>E��HWD�OHQ�PLQLBEDWFK��QE

�����������������������for�E��QE�in�]LS�VHOI�ELDVHV��QDEODBE�@

����def�EDFNSURS�VHOI��[��\��
��������"""Return a tuple ``(nabla_b, nabla_w)`` representing the

        gradient for the cost function C_x.  ``nabla_b`` and

        ``nabla_w`` are layer-by-layer lists of numpy arrays, similar

        to ``self.biases`` and ``self.weights``."""

��������QDEODBE� �>QS�]HURV�E�VKDSH��for�E�in�VHOI�ELDVHV@
��������QDEODBZ� �>QS�]HURV�Z�VKDSH��for�Z�in�VHOI�ZHLJKWV@
��������# feedforward

��������DFWLYDWLRQ� �[

��������DFWLYDWLRQV� �>[@�# list to store all the activations, layer by layer

��������]V� �>@�# list to store all the z vectors, layer by layer

��������for�E��Z�in�]LS�VHOI�ELDVHV��VHOI�ZHLJKWV��
������������]� �QS�GRW�Z��DFWLYDWLRQ��E

������������]V�DSSHQG�]�

������������DFWLYDWLRQ� �VLJPRLG�]�

������������DFWLYDWLRQV�DSSHQG�DFWLYDWLRQ�

��������# backward pass

��������GHOWD� ��VHOI�FRVW��GHOWD�]V>��@��DFWLYDWLRQV>��@��\�

��������QDEODBE>��@� �GHOWD

��������QDEODBZ>��@� �QS�GRW�GHOWD��DFWLYDWLRQV>��@�WUDQVSRVH���

��������# Note that the variable l in the loop below is used a little

��������# differently to the notation in Chapter 2 of the book.  Here,

��������# l = 1 means the last layer of neurons, l = 2 is the

��������# second-last layer, and so on.  It's a renumbering of the

��������# scheme in the book, used here to take advantage of the fact

��������# that Python can use negative indices in lists.

��������for�O�in�[UDQJH����VHOI�QXPBOD\HUV��
������������]� �]V>�O@

������������VS� �VLJPRLGBSULPH�]�

������������GHOWD� �QS�GRW�VHOI�ZHLJKWV>�O��@�WUDQVSRVH����GHOWD���VS

������������QDEODBE>�O@� �GHOWD

������������QDEODBZ>�O@� �QS�GRW�GHOWD��DFWLYDWLRQV>�O��@�WUDQVSRVH���

��������return��QDEODBE��QDEODBZ�

����def�DFFXUDF\�VHOI��GDWD��FRQYHUW )DOVH��
��������"""Return the number of inputs in ``data`` for which the neural

        network outputs the correct result. The neural network's

        output is assumed to be the index of whichever neuron in the

        final layer has the highest activation.

        The flag ``convert`` should be set to False if the data set is

        validation or test data (the usual case), and to True if the

        data set is the training data. The need for this flag arises

        due to differences in the way the results ``y`` are

        represented in the different data sets.  In particular, it

        flags whether we need to convert between the different

        representations.  It may seem strange to use different

        representations for the different data sets.  :hy not use the

        same representation for all three data sets"  It's done for

        efficiency reasons -- the program usually evaluates the cost

        on the training data and the accuracy on other data sets.

        These are different types of computations, and using different

        representations speeds things up.  More details on the

        representations can be found in

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 62/�2

        mnist_loader.load_data_wrapper.

        """

��������if�FRQYHUW�
������������UHVXOWV� �>�QS�DUJPD[�VHOI�IHHGIRUZDUG�[����QS�DUJPD[�\��

�����������������������for��[��\��in�GDWD@
��������else�
������������UHVXOWV� �>�QS�DUJPD[�VHOI�IHHGIRUZDUG�[����\�

������������������������for��[��\��in�GDWD@
��������return�VXP�LQW�[�  �\��for��[��\��in�UHVXOWV�

����def�WRWDOBFRVW�VHOI��GDWD��OPEGD��FRQYHUW )DOVH��
��������"""Return the total cost for the data set ``data``.  The flag

        ``convert`` should be set to False if the data set is the

        training data (the usual case), and to True if the data set is

        the validation or test data.  See comments on the similar (but

        reversed) convention for the ``accuracy`` method, above.

        """

��������FRVW� ����

��������for�[��\�in�GDWD�
������������D� �VHOI�IHHGIRUZDUG�[�

������������if�FRQYHUW��\� �YHFWRUL]HGBUHVXOW�\�
������������FRVW�� �VHOI�FRVW�IQ�D��\��OHQ�GDWD�

��������FRVW�� �����OPEGD�OHQ�GDWD��VXP�

������������QS�OLQDOJ�QRUP�Z���for�Z�in�VHOI�ZHLJKWV�
��������return�FRVW

����def�VDYH�VHOI��ILOHQDPH��
��������"""Save the neural network to the file ``filename``."""

��������GDWD� �^�VL]HV���VHOI�VL]HV�

�����������������ZHLJKWV���>Z�WROLVW���for�Z�in�VHOI�ZHLJKWV@�
�����������������ELDVHV���>E�WROLVW���for�E�in�VHOI�ELDVHV@�
�����������������FRVW���VWU�VHOI�FRVW�BBQDPHBB�`

��������I� �RSHQ�ILOHQDPH���Z��

��������MVRQ�GXPS�GDWD��I�

��������I�FORVH��

#### Loading a Network

def�ORDG�ILOHQDPH��
����"""Load a neural network from the file ``filename``.  Returns an

    instance of Network.

    """

����I� �RSHQ�ILOHQDPH���U��

����GDWD� �MVRQ�ORDG�I�

����I�FORVH��

����FRVW� �JHWDWWU�V\V�PRGXOHV>BBQDPHBB@��GDWD>�FRVW�@�

����QHW� �NHWZRUN�GDWD>�VL]HV�@��FRVW FRVW�

����QHW�ZHLJKWV� �>QS�DUUD\�Z��for�Z�in�GDWD>�ZHLJKWV�@@
����QHW�ELDVHV� �>QS�DUUD\�E��for�E�in�GDWD>�ELDVHV�@@
����return�QHW

#### Miscellaneous functions

def�YHFWRUL]HGBUHVXOW�M��
����"""Return a 10-dimensional unit vector with a 1.0 in the j'th position

    and zeroes elsewhere.  This is used to convert a digit (0...9)

    into a corresponding desired output from the neural network.

    """

����H� �QS�]HURV���������

����H>M@� ����

����return�H

def�VLJPRLG�]��
����"""The sigmoid function."""

����return����������QS�H[S��]��

def�VLJPRLGBSULPH�]��

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

����"""Derivative of the sigmoid function."""

����return�VLJPRLG�]����VLJPRLG�]��

One of the more interesting changes in the code is to include /�
regulari]ation. $lthough this is a major conceptual change, it
s so
trivial to implement that it
s easy to miss in the code. For the most
part it just involves passing the parameter OPEGD to various
methods, notably the NHWZRUN�6*D method. The real work is done in
a single line of the program, the fourth-last line of the
NHWZRUN�XSGDWHBPLQLBEDWFK method. That
s where we modify the
gradient descent update rule to include weight decay. %ut although
the modification is tiny, it has a big impact on results�

This is, by the way, common when implementing new techniques in
neural networks. :e
ve spent thousands of words discussing
regulari]ation. ,t
s conceptually quite subtle and difficult to
understand. $nd yet it was trivial to add to our program� ,t occurs
surprisingly often that sophisticated techniques can be
implemented with small changes to code.

$nother small but important change to our code is the addition of
several optional flags to the stochastic gradient descent method,
NHWZRUN�6*D. These flags make it possible to monitor the cost and
accuracy either on the WUDLQLQJBGDWD or on a set of HYDOXDWLRQBGDWD
which can be passed to NHWZRUN�6*D. :e
ve used these flags often
earlier in the chapter, but let me give an e[ample of how it works,
just to remind you:

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

!!!�import�network�
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@��FRVW QHWZRUN��&URVV(QWURS\&RVW�

!!!�QHW�6*D�WUDLQLQJBGDWD��������������

����OPEGD� �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD�

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

����PRQLWRUBHYDOXDWLRQBFRVW 7UXH�

����PRQLWRUBWUDLQLQJBDFFXUDF\ 7UXH�

����PRQLWRUBWUDLQLQJBFRVW 7UXH�

+ere, we
re setting the HYDOXDWLRQBGDWD to be the YDOLGDWLRQBGDWD.
%ut we could also have monitored performance on the WHVWBGDWD or
any other data set. :e also have four flags telling us to monitor the
cost and accuracy on both the HYDOXDWLRQBGDWD and the
WUDLQLQJBGDWD. Those flags are )DOVH by default, but they
ve been
turned on here in order to monitor our NHWZRUN
s performance.
Furthermore, QHWZRUN��S\
s NHWZRUN�6*D method returns a four-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

element tuple representing the results of the monitoring. :e can
use this as follows:

!!!�HYDOXDWLRQBFRVW��HYDOXDWLRQBDFFXUDF\��

����WUDLQLQJBFRVW��WUDLQLQJBDFFXUDF\� �QHW�6*D�WUDLQLQJBGDWD��������������

����OPEGD� �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD�

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

����PRQLWRUBHYDOXDWLRQBFRVW 7UXH�

����PRQLWRUBWUDLQLQJBDFFXUDF\ 7UXH�

����PRQLWRUBWUDLQLQJBFRVW 7UXH�

6o, for e[ample, HYDOXDWLRQBFRVW will be a ��-element list
containing the cost on the evaluation data at the end of each epoch.
This sort of information is e[tremely useful in understanding a
network
s behaviour. ,t can, for e[ample, be used to draw graphs
showing how the network learns over time. ,ndeed, that
s e[actly
how , constructed all the graphs earlier in the chapter. Note,
however, that if any of the monitoring flags are not set, then the
corresponding element in the tuple will be the empty list.

Other additions to the code include a NHWZRUN�VDYH method, to save
NHWZRUN objects to disk, and a function to ORDG them back in again
later. Note that the saving and loading is done using -6ON, not
3ython
s SLFNOH or F3LFNOH modules, which are the usual way we
save and load objects to and from disk in 3ython. 8sing -6ON
requires more code than SLFNOH or F3LFNOH would. To understand
why ,
ve used -6ON, imagine that at some time in the future we
decided to change our NHWZRUN class to allow neurons other than
sigmoid neurons. To implement that change we
d most likely
change the attributes defined in the NHWZRUN�BBLQLWBB method. ,f
we
ve simply pickled the objects that would cause our ORDG function
to fail. 8sing -6ON to do the seriali]ation e[plicitly makes it easy to
ensure that old NHWZRUNs will still ORDG.

There are many other minor changes in the code for QHWZRUN��S\,
but they
re all simple variations on QHWZRUN�S\. The net result is to
e[pand our ��-line program to a far more capable 1�� lines.

3roElePs

0odify the code above to implement /1 regulari]ation, and use
/1 regulari]ation to classify 0N,6T digits using a  hidden
neuron network. Can you find a regulari]ation parameter that
enables you to do better than running unregulari]ed"

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

Take a look at the NHWZRUN�FRVWBGHULYDWLYH method in
QHWZRUN�S\. That method was written for the quadratic cost.
+ow would you rewrite the method for the cross-entropy cost"
Can you think of a problem that might arise in the cross-
entropy version" ,n QHWZRUN��S\ we
ve eliminated the
NHWZRUN�FRVWBGHULYDWLYH method entirely, instead
incorporating its functionality into the &URVV(QWURS\&RVW�GHOWD
method. +ow does this solve the problem you
ve just
identified"

+ow to FKoose a neural network
s
K\per�paraPeters"
8p until now , haven
t e[plained how ,
ve been choosing values for
hyper-parameters such as the learning rate, , the regulari]ation
parameter, , and so on. ,
ve just been supplying values which work
pretty well. ,n practice, when you
re using neural nets to attack a
problem, it can be difficult to find good hyper-parameters. ,magine,
for e[ample, that we
ve just been introduced to the 0N,6T
problem, and have begun working on it, knowing nothing at all
about what hyper-parameters to use. /et
s suppose that by good
fortune in our first e[periments we choose many of the hyper-
parameters in the same way as was done earlier this chapter: ��
hidden neurons, a mini-batch si]e of 1�, training for �� epochs
using the cross-entropy. %ut we choose a learning rate  and
regulari]ation parameter . +ere
s what , saw on one such
run:

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

!!!�import�network�
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@�

!!!�QHW�6*D�WUDLQLQJBGDWD����������������OPEGD� ��������

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD��������������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD�������������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD��������������

���

(SRFK����WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD��������������

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 66/�2

(SRFK����WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD�������������

(SRFK����WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD�������������

Our classification accuracies are no better than chance� Our
network is acting as a random noise generator�

�:ell, that
s easy to fi[,� you might say, �just decrease the learning
rate and regulari]ation hyper-parameters�. 8nfortunately, you
don
t a priori know those are the hyper-parameters you need to
adjust. 0aybe the real problem is that our �� hidden neuron
network will never work well, no matter how the other hyper-
parameters are chosen" 0aybe we really need at least 1�� hidden
neurons" Or ��� hidden neurons" Or multiple hidden layers" Or a
different approach to encoding the output" 0aybe our network is
learning, but we need to train for more epochs" 0aybe the mini-
batches are too small" 0aybe we
d do better switching back to the
quadratic cost function" 0aybe we need to try a different approach
to weight initiali]ation" $nd so on, on and on and on. ,t
s easy to
feel lost in hyper-parameter space. This can be particularly
frustrating if your network is very large, or uses a lot of training
data, since you may train for hours or days or weeks, only to get no
result. ,f the situation persists, it damages your confidence. 0aybe
neural networks are the wrong approach to your problem" 0aybe
you should quit your job and take up beekeeping"

,n this section , e[plain some heuristics which can be used to set
the hyper-parameters in a neural network. The goal is to help you
develop a workflow that enables you to do a pretty good job setting
hyper-parameters. Of course, , won
t cover everything about hyper-
parameter optimi]ation. That
s a huge subject, and it
s not, in any
case, a problem that is ever completely solved, nor is there universal
agreement amongst practitioners on the right strategies to use.
There
s always one more trick you can try to eke out a bit more
performance from your network. %ut the heuristics in this section
should get you started.

%road strateg\� :hen using neural networks to attack a new
problem the first challenge is to get an\ non-trivial learning, i.e., for
the network to achieve results better than chance. This can be
surprisingly difficult, especially when confronting a new class of

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

problem. /et
s look at some strategies you can use if you
re having
this kind of trouble.

6uppose, for e[ample, that you
re attacking 0N,6T for the first
time. <ou start out enthusiastic, but are a little discouraged when
your first network fails completely, as in the e[ample above. The
way to go is to strip the problem down. *et rid of all the training
and validation images e[cept images which are �s or 1s. Then try to
train a network to distinguish �s from 1s. Not only is that an
inherently easier problem than distinguishing all ten digits, it also
reduces the amount of training data by �� percent, speeding up
training by a factor of �. That enables much more rapid
e[perimentation, and so gives you more rapid insight into how to
build a good network.

<ou can further speed up e[perimentation by stripping your
network down to the simplest network likely to do meaningful
learning. ,f you believe a >�������@ network can likely do better-
than-chance classification of 0N,6T digits, then begin your
e[perimentation with such a network. ,t
ll be much faster than
training a >�����������@ network, and you can build back up to the
latter.

<ou can get another speed up in e[perimentation by increasing the
frequency of monitoring. ,n QHWZRUN��S\ we monitor performance
at the end of each training epoch. :ith ��,��� images per epoch,
that means waiting a little while - about ten seconds per epoch, on
my laptop, when training a >�����������@ network - before getting
feedback on how well the network is learning. Of course, ten
seconds isn
t very long, but if you want to trial do]ens of hyper-
parameter choices it
s annoying, and if you want to trial hundreds
or thousands of choices it starts to get debilitating. :e can get
feedback more quickly by monitoring the validation accuracy more
often, say, after every 1,��� training images. Furthermore, instead
of using the full 1�,��� image validation set to monitor
performance, we can get a much faster estimate using just 1��
validation images. $ll that matters is that the network sees enough
images to do real learning, and to get a pretty good rough estimate
of performance. Of course, our program QHWZRUN��S\ doesn
t
currently do this kind of monitoring. %ut as a kludge to achieve a
similar effect for the purposes of illustration, we
ll strip down our

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

training data to just the first 1,��� 0N,6T training images. /et
s try
it and see what happens. �To keep the code below simple , haven
t
implemented the idea of using only � and 1 images. Of course, that
can be done with just a little more work.�

!!!�QHW� �QHWZRUN��NHWZRUN�>�������@�

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@����������������OPEGD� ���������?

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD>����@��?

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

���

:e
re still getting pure noise� %ut there
s a big win: we
re now
getting feedback in a fraction of a second, rather than once every
ten seconds or so. That means you can more quickly e[periment
with other choices of hyper-parameter, or even conduct
e[periments trialling many different choices of hyper-parameter
nearly simultaneously.

,n the above e[ample , left  as , as we used earlier. %ut
since we changed the number of training e[amples we should really
change  to keep the weight decay the same. That means changing 
to . ,f we do that then this is what happens:

!!!�QHW� �QHWZRUN��NHWZRUN�>�������@�

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@����������������OPEGD� �������?

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD>����@��?

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

���

$hah� :e have a signal. Not a terribly good signal, but a signal
nonetheless. That
s something we can build on, modifying the
hyper-parameters to try to get further improvement. 0aybe we
guess that our learning rate needs to be higher. �$s you perhaps
reali]e, that
s a silly guess, for reasons we
ll discuss shortly, but

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6�/�2

please bear with me.� 6o to test our guess we try dialing  up to 
:

!!!�QHW� �QHWZRUN��NHWZRUN�>�������@�

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@�����������������OPEGD� �������?

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD>����@��?

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

���

That
s no good� ,t suggests that our guess was wrong, and the
problem wasn
t that the learning rate was too low. 6o instead we try
dialing  down to :

!!!�QHW� �QHWZRUN��NHWZRUN�>�������@�

!!!�QHW�6*D�WUDLQLQJBGDWD>�����@���������������OPEGD� �������?

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD>����@��?

����PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

(SRFK���WUDLQLQJ�FRPSOHWH

AFFXUDF\�RQ�HYDOXDWLRQ�GDWD����������

���

That
s better� $nd so we can continue, individually adjusting each
hyper-parameter, gradually improving performance. Once we
ve
e[plored to find an improved value for , then we move on to find a
good value for . Then e[periment with a more comple[
architecture, say a network with 1� hidden neurons. Then adjust the
values for  and  again. Then increase to �� hidden neurons. $nd
then adjust other hyper-parameters some more. $nd so on, at each
stage evaluating performance using our held-out validation data,
and using those evaluations to find better and better hyper-
parameters. $s we do so, it typically takes longer to witness the
impact due to modifications of the hyper-parameters, and so we can
gradually decrease the frequency of monitoring.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

This all looks very promising as a broad strategy. +owever, , want
to return to that initial stage of finding hyper-parameters that
enable a network to learn anything at all. ,n fact, even the above
discussion conveys too positive an outlook. ,t can be immensely
frustrating to work with a network that
s learning nothing. <ou can
tweak hyper-parameters for days, and still get no meaningful
response. $nd so ,
d like to re-emphasi]e that during the early
stages you should make sure you can get quick feedback from
e[periments. ,ntuitively, it may seem as though simplifying the
problem and the architecture will merely slow you down. ,n fact, it
speeds things up, since you much more quickly find a network with
a meaningful signal. Once you
ve got such a signal, you can often get
rapid improvements by tweaking the hyper-parameters. $s with
many things in life, getting started can be the hardest thing to do.

Okay, that
s the broad strategy. /et
s now look at some specific
recommendations for setting hyper-parameters. , will focus on the
learning rate, , the /� regulari]ation parameter, , and the mini-
batch si]e. +owever, many of the remarks apply also to other hyper-
parameters, including those associated to network architecture,
other forms of regulari]ation, and some hyper-parameters we
ll
meet later in the book, such as the momentum co-efficient.

/earning rate� 6uppose we run three 0N,6T networks with three
different learning rates, ,  and ,
respectively. :e
ll set the other hyper-parameters as for the
e[periments in earlier sections, running over �� epochs, with a
mini-batch si]e of 1�, and with . :e
ll also return to using
the full  training images. +ere
s a graph showing the
behaviour of the training cost as we train: The graph was generated by multipleBeta.py.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

:ith  the cost decreases smoothly until the final epoch.
:ith  the cost initially decreases, but after about  epochs
it is near saturation, and thereafter most of the changes are merely
small and apparently random oscillations. Finally, with  the
cost makes large oscillations right from the start. To understand the
reason for the oscillations, recall that stochastic gradient descent is
supposed to step us gradually down into a valley of the cost
function,

+owever, if  is too large then the steps will be so large that they
may actually overshoot the minimum, causing the algorithm to
climb up out of the valley instead. That
s likely what
s causing the
cost to oscillate when . :hen we choose  the initial
steps do take us toward a minimum of the cost function, and it
s
only once we get near that minimum that we start to suffer from the

This picture is helpful, but it
s intended as an
intuition-building illustration of what may go on,
not as a complete, e[haustive e[planation.
%riefly, a more complete e[planation is as
follows: gradient descent uses a first-order
appro[imation to the cost function as a guide to
how to decrease the cost. For large , higher-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

overshooting problem. $nd when we choose  we don
t
suffer from this problem at all during the first  epochs. Of course,
choosing  so small creates another problem, namely, that it slows
down stochastic gradient descent. $n even better approach would
be to start with , train for  epochs, and then switch to 

. :e
ll discuss such variable learning rate schedules later.
For now, though, let
s stick to figuring out how to find a single good
value for the learning rate, .

:ith this picture in mind, we can set  as follows. First, we estimate
the threshold value for  at which the cost on the training data
immediately begins decreasing, instead of oscillating or increasing.
This estimate doesn
t need to be too accurate. <ou can estimate the
order of magnitude by starting with . ,f the cost decreases
during the first few epochs, then you should successively try 

 until you find a value for  where the cost oscillates
or increases during the first few epochs. $lternately, if the cost
oscillates or increases during the first few epochs when ,
then try  until you find a value for  where the
cost decreases during the first few epochs. Following this procedure
will give us an order of magnitude estimate for the threshold value
of . <ou may optionally refine your estimate, to pick out the largest
value of  at which the cost decreases during the first few epochs,
say  or  �there
s no need for this to be super-accurate�.
This gives us an estimate for the threshold value of .

Obviously, the actual value of  that you use should be no larger
than the threshold value. ,n fact, if the value of  is to remain usable
over many epochs then you likely want to use a value for  that is
smaller, say, a factor of two below the threshold. 6uch a choice will
typically allow you to train for many epochs, without causing too
much of a slowdown in learning.

,n the case of the 0N,6T data, following this strategy leads to an
estimate of  for the order of magnitude of the threshold value of 

. $fter some more refinement, we obtain a threshold value .
Following the prescription above, this suggests using  as
our value for the learning rate. ,n fact, , found that using 
worked well enough over  epochs that for the most part , didn
t
worry about using a lower value of .

order terms in the cost function become more
important, and may dominate the behaviour,
causing gradient descent to break down. This is
especially likely as we approach minima and
quasi-minima of the cost function, since near
such points the gradient becomes small, making
it easier for higher-order terms to dominate
behaviour.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

This all seems quite straightforward. +owever, using the training
cost to pick  appears to contradict what , said earlier in this
section, namely, that we
d pick hyper-parameters by evaluating
performance using our held-out validation data. ,n fact, we
ll use
validation accuracy to pick the regulari]ation hyper-parameter, the
mini-batch si]e, and network parameters such as the number of
layers and hidden neurons, and so on. :hy do things differently for
the learning rate" Frankly, this choice is my personal aesthetic
preference, and is perhaps somewhat idiosyncratic. The reasoning
is that the other hyper-parameters are intended to improve the final
classification accuracy on the test set, and so it makes sense to
select them on the basis of validation accuracy. +owever, the
learning rate is only incidentally meant to impact the final
classification accuracy. ,ts primary purpose is really to control the
step si]e in gradient descent, and monitoring the training cost is the
best way to detect if the step si]e is too big. :ith that said, this is a
personal aesthetic preference. (arly on during learning the training
cost usually only decreases if the validation accuracy improves, and
so in practice it
s unlikely to make much difference which criterion
you use.

8se earl\ stopping to determine tKe numEer oI training
epocKs� $s we discussed earlier in the chapter, early stopping
means that at the end of each epoch we should compute the
classification accuracy on the validation data. :hen that stops
improving, terminate. This makes setting the number of epochs
very simple. ,n particular, it means that we don
t need to worry
about e[plicitly figuring out how the number of epochs depends on
the other hyper-parameters. ,nstead, that
s taken care of
automatically. Furthermore, early stopping also automatically
prevents us from overfitting. This is, of course, a good thing,
although in the early stages of e[perimentation it can be helpful to
turn off early stopping, so you can see any signs of overfitting, and
use it to inform your approach to regulari]ation.

To implement early stopping we need to say more precisely what it
means that the classification accuracy has stopped improving. $s
we
ve seen, the accuracy can jump around quite a bit, even when the
overall trend is to improve. ,f we stop the first time the accuracy
decreases then we
ll almost certainly stop when there are more
improvements to be had. $ better rule is to terminate if the best

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

classification accuracy doesn
t improve for quite some time.
6uppose, for e[ample, that we
re doing 0N,6T. Then we might elect
to terminate if the classification accuracy hasn
t improved during
the last ten epochs. This ensures that we don
t stop too soon, in
response to bad luck in training, but also that we
re not waiting
around forever for an improvement that never comes.

This no-improvement-in-ten rule is good for initial e[ploration of
0N,6T. +owever, networks can sometimes plateau near a
particular classification accuracy for quite some time, only to then
begin improving again. ,f you
re trying to get really good
performance, the no-improvement-in-ten rule may be too
aggressive about stopping. ,n that case, , suggest using the no-
improvement-in-ten rule for initial e[perimentation, and gradually
adopting more lenient rules, as you better understand the way your
network trains: no-improvement-in-twenty, no-improvement-in-
fifty, and so on. Of course, this introduces a new hyper-parameter
to optimi]e� ,n practice, however, it
s usually easy to set this hyper-
parameter to get pretty good results. 6imilarly, for problems other
than 0N,6T, the no-improvement-in-ten rule may be much too
aggressive or not nearly aggressive enough, depending on the
details of the problem. +owever, with a little e[perimentation it
s
usually easy to find a pretty good strategy for early stopping.

:e haven
t used early stopping in our 0N,6T e[periments to date.
The reason is that we
ve been doing a lot of comparisons between
different approaches to learning. For such comparisons it
s helpful
to use the same number of epochs in each case. +owever, it
s well
worth modifying QHWZRUN��S\ to implement early stopping:

3roEleP

0odify QHWZRUN��S\ so that it implements early stopping using
a no-improvement-in-  epochs strategy, where  is a parameter
that can be set.

Can you think of a rule for early stopping otKer than no-
improvement-in- " ,deally, the rule should compromise
between getting high validation accuracies and not training too
long. $dd your rule to QHWZRUN��S\, and run three e[periments
comparing the validation accuracies and number of epochs of
training to no-improvement-in- .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

/earning rate scKedule� :e
ve been holding the learning rate 
constant. +owever, it
s often advantageous to vary the learning rate.
(arly on during the learning process it
s likely that the weights are
badly wrong. $nd so it
s best to use a large learning rate that causes
the weights to change quickly. /ater, we can reduce the learning
rate as we make more fine-tuned adjustments to our weights.

+ow should we set our learning rate schedule" 0any approaches
are possible. One natural approach is to use the same basic idea as
early stopping. The idea is to hold the learning rate constant until
the validation accuracy starts to get worse. Then decrease the
learning rate by some amount, say a factor of two or ten. :e repeat
this many times, until, say, the learning rate is a factor of 1,��� �or
1,���� times lower than the initial value. Then we terminate.

$ variable learning schedule can improve performance, but it also
opens up a world of possible choices for the learning schedule.
Those choices can be a headache - you can spend forever trying to
optimi]e your learning schedule. For first e[periments my
suggestion is to use a single, constant value for the learning rate.
That
ll get you a good first appro[imation. /ater, if you want to
obtain the best performance from your network, it
s worth
e[perimenting with a learning schedule, along the lines ,
ve
described.

([erFise

0odify QHWZRUN��S\ so that it implements a learning schedule
that: halves the learning rate each time the validation accuracy
satisfies the no-improvement-in-  rule� and terminates when
the learning rate has dropped to  of its original value.

7Ke regulari]ation parameter,  � , suggest starting initially
with no regulari]ation � �, and determining a value for , as
above. 8sing that choice of , we can then use the validation data to
select a good value for . 6tart by trialling , and then
increase or decrease by factors of , as needed to improve
performance on the validation data. Once you
ve found a good order
of magnitude, you can fine tune your value of . That done, you
should return and re-optimi]e  again.

([erFise

$ readable recent paper which demonstrates
the benefits of variable learning rates in
attacking 0N,6T is Deep, %ig, 6imple Neural
Nets ([cel on +andwritten Digit 5ecognition, by
Dan Claudiu Cireɇan, 8eli 0eier, /uca 0aria
*ambardella, and -�rgen 6chmidhuber ���1��.

, don
t have a good principled justification for
using this as a starting value. ,f anyone knows of
a good principled discussion of where to start
with , ,
d appreciate hearing it
�mn#michaelnielsen.org�.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �6/�2

,t
s tempting to use gradient descent to try to learn good values
for hyper-parameters such as  and . Can you think of an
obstacle to using gradient descent to determine " Can you
think of an obstacle to using gradient descent to determine "

+oZ I selected K\per�parameters earlier in tKis EooN� ,f
you use the recommendations in this section you
ll find that you get
values for  and  which don
t always e[actly match the values ,
ve
used earlier in the book. The reason is that the book has narrative
constraints that have sometimes made it impractical to optimi]e the
hyper-parameters. Think of all the comparisons we
ve made of
different approaches to learning, e.g., comparing the quadratic and
cross-entropy cost functions, comparing the old and new methods
of weight initiali]ation, running with and without regulari]ation,
and so on. To make such comparisons meaningful, ,
ve usually tried
to keep hyper-parameters constant across the approaches being
compared �or to scale them in an appropriate way�. Of course,
there
s no reason for the same hyper-parameters to be optimal for
all the different approaches to learning, so the hyper-parameters
,
ve used are something of a compromise.

$s an alternative to this compromise, , could have tried to optimi]e
the heck out of the hyper-parameters for every single approach to
learning. ,n principle that
d be a better, fairer approach, since then
we
d see the best from every approach to learning. +owever, we
ve
made do]ens of comparisons along these lines, and in practice ,
found it too computationally e[pensive. That
s why ,
ve adopted the
compromise of using pretty good �but not necessarily optimal�
choices for the hyper-parameters.

0ini�EatcK si]e� +ow should we set the mini-batch si]e" To
answer this question, let
s first suppose that we
re doing online
learning, i.e., that we
re using a mini-batch si]e of .

The obvious worry about online learning is that using mini-batches
which contain just a single training e[ample will cause significant
errors in our estimate of the gradient. ,n fact, though, the errors
turn out to not be such a problem. The reason is that the individual
gradient estimates don
t need to be super-accurate. $ll we need is
an estimate accurate enough that our cost function tends to keep
decreasing. ,t
s as though you are trying to get to the North

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

0agnetic 3ole, but have a wonky compass that
s 1�-�� degrees off
each time you look at it. 3rovided you stop to check the compass
frequently, and the compass gets the direction right on average,
you
ll end up at the North 0agnetic 3ole just fine.

%ased on this argument, it sounds as though we should use online
learning. ,n fact, the situation turns out to be more complicated
than that. ,n a problem in the last chapter , pointed out that it
s
possible to use matri[ techniques to compute the gradient update
for all e[amples in a mini-batch simultaneously, rather than
looping over them. Depending on the details of your hardware and
linear algebra library this can make it quite a bit faster to compute
the gradient estimate for a mini-batch of �for e[ample� si]e ,
rather than computing the mini-batch gradient estimate by looping
over the  training e[amples separately. ,t might take �say� only 

 times as long, rather than  times as long.

Now, at first it seems as though this doesn
t help us that much.
:ith our mini-batch of si]e  the learning rule for the weights
looks like:

where the sum is over training e[amples in the mini-batch. This is
versus

for online learning. (ven if it only takes  times as long to do the
mini-batch update, it still seems likely to be better to do online
learning, because we
d be updating so much more frequently.
6uppose, however, that in the mini-batch case we increase the
learning rate by a factor , so the update rule becomes

That
s a lot like doing  separate instances of online learning with
a learning rate of . %ut it only takes  times as long as doing a
single instance of online learning. Of course, it
s not truly the same
as  instances of online learning, since in the mini-batch the 


s are all evaluated for the same set of weights, as opposed to
the cumulative learning that occurs in the online case. 6till, it seems

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

distinctly possible that using the larger mini-batch would speed
things up.

:ith these factors in mind, choosing the best mini-batch si]e is a
compromise. Too small, and you don
t get to take full advantage of
the benefits of good matri[ libraries optimi]ed for fast hardware.
Too large and you
re simply not updating your weights often
enough. :hat you need is to choose a compromise value which
ma[imi]es the speed of learning. Fortunately, the choice of mini-
batch si]e at which the speed is ma[imi]ed is relatively independent
of the other hyper-parameters �apart from the overall architecture�,
so you don
t need to have optimi]ed those hyper-parameters in
order to find a good mini-batch si]e. The way to go is therefore to
use some acceptable �but not necessarily optimal� values for the
other hyper-parameters, and then trial a number of different mini-
batch si]es, scaling  as above. 3lot the validation accuracy versus
tiPe �as in, real elapsed time, not epoch��, and choose whichever
mini-batch si]e gives you the most rapid improvement in
performance. :ith the mini-batch si]e chosen you can then proceed
to optimi]e the other hyper-parameters.

Of course, as you
ve no doubt reali]ed, , haven
t done this
optimi]ation in our work. ,ndeed, our implementation doesn
t use
the faster approach to mini-batch updates at all. ,
ve simply used a
mini-batch si]e of  without comment or e[planation in nearly all
e[amples. %ecause of this, we could have sped up learning by
reducing the mini-batch si]e. , haven
t done this, in part because ,
wanted to illustrate the use of mini-batches beyond si]e , and in
part because my preliminary e[periments suggested the speedup
would be rather modest. ,n practical implementations, however, we
would most certainly implement the faster approach to mini-batch
updates, and then make an effort to optimi]e the mini-batch si]e, in
order to ma[imi]e our overall speed.

$utomated tecKniTues� ,
ve been describing these heuristics as
though you
re optimi]ing your hyper-parameters by hand. +and-
optimi]ation is a good way to build up a feel for how neural
networks behave. +owever, and unsurprisingly, a great deal of work
has been done on automating the process. $ common technique is
grid searFK, which systematically searches through a grid in hyper-
parameter space. $ review of both the achievements and the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

limitations of grid search �with suggestions for easily-implemented
alternatives� may be found in a ��1� paper by -ames %ergstra and
<oshua %engio. 0any more sophisticated approaches have also
been proposed. , won
t review all that work here, but do want to
mention a particularly promising ��1� paper which used a %ayesian
approach to automatically optimi]e hyper-parameters. The code
from the paper is publicly available, and has been used with some
success by other researchers.

Summing up� Following the rules-of-thumb ,
ve described won
t
give you the absolute best possible results from your neural
network. %ut it will likely give you a good start and a basis for
further improvements. ,n particular, ,
ve discussed the hyper-
parameters largely independently. ,n practice, there are
relationships between the hyper-parameters. <ou may e[periment
with , feel that you
ve got it just right, then start to optimi]e for ,
only to find that it
s messing up your optimi]ation for . ,n practice,
it helps to bounce backward and forward, gradually closing in good
values. $bove all, keep in mind that the heuristics ,
ve described are
rules of thumb, not rules cast in stone. <ou should be on the
lookout for signs that things aren
t working, and be willing to
e[periment. ,n particular, this means carefully monitoring your
network
s behaviour, especially the validation accuracy.

The difficulty of choosing hyper-parameters is e[acerbated by the
fact that the lore about how to choose hyper-parameters is widely
spread, across many research papers and software programs, and
often is only available inside the heads of individual practitioners.
There are many, many papers setting out �sometimes
contradictory� recommendations for how to proceed. +owever,
there are a few particularly useful papers that synthesi]e and distill
out much of this lore. <oshua %engio has a ��1� paper that gives
some practical recommendations for using backpropagation and
gradient descent to train neural networks, including deep neural
nets. %engio discusses many issues in much more detail than , have,
including how to do more systematic hyper-parameter searches.
$nother good paper is a 1��� paper by <ann /eCun, /pon %ottou,
*enevieve Orr and .laus-5obert 0�ller. %oth these papers appear
in an e[tremely useful ��1� book that collects many tricks
commonly used in neural nets. The book is e[pensive, but many of
the articles have been placed online by their respective authors

5andom search for hyper-parameter
optimi]ation, by -ames %ergstra and <oshua
%engio ���1��.

3ractical %ayesian optimi]ation of machine
learning algorithms, by -asper 6noek, +ugo
/arochelle, and 5yan $dams.

3ractical recommendations for gradient-based
training of deep architectures, by <oshua %engio
���1��.

(fficient %ack3rop, by <ann /eCun, /pon
%ottou, *enevieve Orr and .laus-5obert 0�ller
�1����

Neural Networks: Tricks of the Trade, edited by
*rpgoire 0ontavon, *eneviqve Orr, and .laus-

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

with, one presumes, the blessing of the publisher, and may be
located using a search engine.

One thing that becomes clear as you read these articles and,
especially, as you engage in your own e[periments, is that hyper-
parameter optimi]ation is not a problem that is ever completely
solved. There
s always another trick you can try to improve
performance. There is a saying common among writers that books
are never finished, only abandoned. The same is also true of neural
network optimi]ation: the space of hyper-parameters is so large
that one never really finishes optimi]ing, one only abandons the
network to posterity. 6o your goal should be to develop a workflow
that enables you to quickly do a pretty good job on the optimi]ation,
while leaving you the fle[ibility to try more detailed optimi]ations,
if that
s important.

The challenge of setting hyper-parameters has led some people to
complain that neural networks require a lot of work when
compared with other machine learning techniques. ,
ve heard many
variations on the following complaint: �<es, a well-tuned neural
network may get the best performance on the problem. On the
other hand, , can try a random forest >or 690 or  insert your own
favorite technique@ and it just works. , don
t have time to figure out
just the right neural network.� Of course, from a practical point of
view it
s good to have easy-to-apply techniques. This is particularly
true when you
re just getting started on a problem, and it may not
be obvious whether machine learning can help solve the problem at
all. On the other hand, if getting optimal performance is important,
then you may need to try approaches that require more specialist
knowledge. :hile it would be nice if machine learning were always
easy, there is no a priori reason it should be trivially simple.

2tKer teFKniTues
(ach technique developed in this chapter is valuable to know in its
own right, but that
s not the only reason ,
ve e[plained them. The
larger point is to familiari]e you with some of the problems which
can occur in neural networks, and with a style of analysis which can
help overcome those problems. ,n a sense, we
ve been learning how
to think about neural nets. Over the remainder of this chapter ,
briefly sketch a handful of other techniques. These sketches are less

5obert 0�ller.
欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

in-depth than the earlier discussions, but should convey some
feeling for the diversity of techniques available for use in neural
networks.

9ariations on stoFKastiF gradient desFent

6tochastic gradient descent by backpropagation has served us well
in attacking the 0N,6T digit classification problem. +owever, there
are many other approaches to optimi]ing the cost function, and
sometimes those other approaches offer performance superior to
mini-batch stochastic gradient descent. ,n this section , sketch two
such approaches, the +essian and momentum techniques.

+essian tecKniTue� To begin our discussion it helps to put
neural networks aside for a bit. ,nstead, we
re just going to consider
the abstract problem of minimi]ing a cost function  which is a
function of many variables, , so . %y Taylor
s
theorem, the cost function can be appro[imated near a point  by

:e can rewrite this more compactly as

where  is the usual gradient vector, and  is a matri[ known as
the +essian Patri[, whose th entry is . 6uppose we
appro[imate  by discarding the higher-order terms represented by

 above,

8sing calculus we can show that the e[pression on the right-hand
side can be minimi]ed by choosing

3rovided �1��� is a good appro[imate e[pression for the cost
function, then we
d e[pect that moving from the point  to 

 should significantly decrease the cost

6trictly speaking, for this to be a minimum, and
not merely an e[tremum, we need to assume
that the +essian matri[ is positive definite.
,ntuitively, this means that the function  looks
like a valley locally, not a mountain or a saddle.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

function. That suggests a possible algorithm for minimi]ing the
cost:

Choose a starting point, .

8pdate  to a new point , where the +essian 
and  are computed at .

8pdate  to a new point , where the
+essian  and  are computed at .

,n practice, �1��� is only an appro[imation, and it
s better to take
smaller steps. :e do this by repeatedly changing  by an amount 

, where  is known as the learning rate.

This approach to minimi]ing a cost function is known as the
+essian teFKniTue or +essian optiPi]ation. There are theoretical
and empirical results showing that +essian methods converge on a
minimum in fewer steps than standard gradient descent. ,n
particular, by incorporating information about second-order
changes in the cost function it
s possible for the +essian approach
to avoid many pathologies that can occur in gradient descent.
Furthermore, there are versions of the backpropagation algorithm
which can be used to compute the +essian.

,f +essian optimi]ation is so great, why aren
t we using it in our
neural networks" 8nfortunately, while it has many desirable
properties, it has one very undesirable property: it
s very difficult to
apply in practice. 3art of the problem is the sheer si]e of the
+essian matri[. 6uppose you have a neural network with 
weights and biases. Then the corresponding +essian matri[ will
contain  entries. That
s a lot of entries� $nd that
makes computing  e[tremely difficult in practice. +owever,
that doesn
t mean that it
s not useful to understand. ,n fact, there
are many variations on gradient descent which are inspired by
+essian optimi]ation, but which avoid the problem with overly-
large matrices. /et
s take a look at one such technique, momentum-
based gradient descent.

0omentum�Eased gradient descent� ,ntuitively, the
advantage +essian optimi]ation has is that it incorporates not just

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

information about the gradient, but also information about how the
gradient is changing. 0omentum-based gradient descent is based
on a similar intuition, but avoids large matrices of second
derivatives. To understand the momentum technique, think back to
our original picture of gradient descent, in which we considered a
ball rolling down into a valley. $t the time, we observed that
gradient descent is, despite its name, only loosely similar to a ball
falling to the bottom of a valley. The momentum technique modifies
gradient descent in two ways that make it more similar to the
physical picture. First, it introduces a notion of �velocity� for the
parameters we
re trying to optimi]e. The gradient acts to change the
velocity, not �directly� the �position�, in much the same way as
physical forces change the velocity, and only indirectly affect
position. 6econd, the momentum method introduces a kind of
friction term, which tends to gradually reduce the velocity.

/et
s give a more precise mathematical description. :e introduce
velocity variables , one for each corresponding 
variable. Then we replace the gradient descent update rule 

 by

,n these equations,  is a hyper-parameter which controls the
amount of damping or friction in the system. To understand the
meaning of the equations it
s helpful to first consider the case where

, which corresponds to no friction. :hen that
s the case,
inspection of the equations shows that the �force�  is now
modifying the velocity, , and the velocity is controlling the rate of
change of . ,ntuitively, we build up the velocity by repeatedly
adding gradient terms to it. That means that if the gradient is in
�roughly� the same direction through several rounds of learning, we
can build up quite a bit of steam moving in that direction. Think, for
e[ample, of what happens if we
re moving straight down a slope:

,n a neural net the  variables would, of
course, include all weights and biases.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

:ith each step the velocity gets larger down the slope, so we move
more and more quickly to the bottom of the valley. This can enable
the momentum technique to work much faster than standard
gradient descent. Of course, a problem is that once we reach the
bottom of the valley we will overshoot. Or, if the gradient should
change rapidly, then we could find ourselves moving in the wrong
direction. That
s the reason for the  hyper-parameter in �1���. ,
said earlier that  controls the amount of friction in the system� to
be a little more precise, you should think of  as the amount of
friction in the system. :hen , as we
ve seen, there is no
friction, and the velocity is completely driven by the gradient .
%y contrast, when  there
s a lot of friction, the velocity can
t
build up, and (quations �1��� and �1��� reduce to the usual
equation for gradient descent, . ,n practice, using
a value of  intermediate between  and  can give us much of the
benefit of being able to build up speed, but without causing
overshooting. :e can choose such a value for  using the held-out
validation data, in much the same way as we select  and .

,
ve avoided naming the hyper-parameter  up to now. The reason
is that the standard name for  is badly chosen: it
s called the
PoPentuP Fo�eIIiFient. This is potentially confusing, since  is not
at all the same as the notion of momentum from physics. 5ather, it
is much more closely related to friction. +owever, the term
momentum co-efficient is widely used, so we will continue to use it.

$ nice thing about the momentum technique is that it takes almost
no work to modify an implementation of gradient descent to

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

incorporate momentum. :e can still use backpropagation to
compute the gradients, just as before, and use ideas such as
sampling stochastically chosen mini-batches. ,n this way, we can
get some of the advantages of the +essian technique, using
information about how the gradient is changing. %ut it
s done
without the disadvantages, and with only minor modifications to
our code. ,n practice, the momentum technique is commonly used,
and often speeds up learning.

([erFise

:hat would go wrong if we used  in the momentum
technique"

:hat would go wrong if we used  in the momentum
technique"

3roEleP

$dd momentum-based stochastic gradient descent to
QHWZRUN��S\.

2tKer approacKes to minimi]ing tKe cost Iunction� 0any
other approaches to minimi]ing the cost function have been
developed, and there isn
t universal agreement on which is the best
approach. $s you go deeper into neural networks it
s worth digging
into the other techniques, understanding how they work, their
strengths and weaknesses, and how to apply them in practice. $
paper , mentioned earlier introduces and compares several of
these techniques, including conjugate gradient descent and the
%F*6 method �see also the closely related limited-memory %F*6
method, known as /-%F*6�. $nother technique which has recently
shown promising results is Nesterov
s accelerated gradient
technique, which improves on the momentum technique. +owever,
for many problems, plain stochastic gradient descent works well,
especially if momentum is used, and so we
ll stick to stochastic
gradient descent through the remainder of this book.

2tKer Podels oI artiÀFial neuron

8p to now we
ve built our neural networks using sigmoid neurons.
,n principle, a network built from sigmoid neurons can compute

(fficient %ack3rop, by <ann /eCun, /pon
%ottou, *enevieve Orr and .laus-5obert 0�ller
�1����.

6ee, for e[ample, On the importance of
initiali]ation and momentum in deep learning,
by ,lya 6utskever, -ames 0artens, *eorge Dahl,
and *eoffrey +inton ���1��.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �6/�2

any function. ,n practice, however, networks built using other
model neurons sometimes outperform sigmoid networks.
Depending on the application, networks based on such alternate
models may learn faster, generali]e better to test data, or perhaps
do both. /et me mention a couple of alternate model neurons, to
give you the flavor of some variations in common use.

3erhaps the simplest variation is the tanh �pronounced �tanch��
neuron, which replaces the sigmoid function by the hyperbolic
tangent function. The output of a tanh neuron with input , weight
vector , and bias  is given by

where  is, of course, the hyperbolic tangent function. ,t turns
out that this is very closely related to the sigmoid neuron. To see
this, recall that the  function is defined by

:ith a little algebra it can easily be verified that

that is,  is just a rescaled version of the sigmoid function. :e
can also see graphically that the  function has the same shape as
the sigmoid function,

�� �� �� �� � � � � �

����

����

���

���

���

]

tanh function

One difference between tanh neurons and sigmoid neurons is that
the output from tanh neurons ranges from -1 to 1, not � to 1. This
means that if you
re going to build a network based on tanh neurons
you may need to normali]e your outputs �and, depending on the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

details of the application, possibly your inputs� a little differently
than in sigmoid networks.

6imilar to sigmoid neurons, a network of tanh neurons can, in
principle, compute any function mapping inputs to the range -1 to
1. Furthermore, ideas such as backpropagation and stochastic
gradient descent are as easily applied to a network of tanh neurons
as to a network of sigmoid neurons.

([erFise

3rove the identity in (quation �111�.

:hich type of neuron should you use in your networks, the tanh or
sigmoid" $ priori the answer is not obvious, to put it mildly�
+owever, there are theoretical arguments and some empirical
evidence to suggest that the tanh sometimes performs better. /et
me briefly give you the flavor of one of the theoretical arguments for
tanh neurons. 6uppose we
re using sigmoid neurons, so all
activations in our network are positive. /et
s consider the weights 

 input to the th neuron in the th layer. The rules for
backpropagation �see here� tell us that the associated gradient will
be . %ecause the activations are positive the sign of this
gradient will be the same as the sign of . :hat this means is that
if  is positive then all the weights  will decrease during
gradient descent, while if  is negative then all the weights 
will increase during gradient descent. ,n other words, all weights to
the same neuron must either increase together or decrease together.
That
s a problem, since some of the weights may need to increase
while others need to decrease. That can only happen if some of the
input activations have different signs. That suggests replacing the
sigmoid by an activation function, such as , which allows both
positive and negative activations. ,ndeed, because  is symmetric
about ]ero, , we might even e[pect that, roughly
speaking, the activations in hidden layers would be equally
balanced between positive and negative. That would help ensure
that there is no systematic bias for the weight updates to be one way
or the other.

+ow seriously should we take this argument" :hile the argument
is suggestive, it
s a heuristic, not a rigorous proof that tanh neurons
outperform sigmoid neurons. 3erhaps there are other properties of

There are some technical caveats to this
statement for both tanh and sigmoid neurons, as
well as for the rectified linear neurons discussed
below. +owever, informally it
s usually fine to
think of neural networks as being able to
appro[imate any function to arbitrary accuracy.

6ee, for e[ample, (fficient %ack3rop, by <ann
/eCun, /pon %ottou, *enevieve Orr and .laus-
5obert 0�ller �1����, and 8nderstanding the
difficulty of training deep feedforward networks,
by ;avier *lorot and <oshua %engio ���1��.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

the sigmoid neuron which compensate for this problem" ,ndeed, for
many tasks the tanh is found empirically to provide only a small or
no improvement in performance over sigmoid neurons.
8nfortunately, we don
t yet have hard-and-fast rules to know which
neuron types will learn fastest, or give the best generali]ation
performance, for any particular application.

$nother variation on the sigmoid neuron is the reFtiIied linear
neuron or reFtiIied linear unit. The output of a rectified linear unit
with input , weight vector , and bias  is given by

*raphically, the rectifying function  looks like this:

�� �� �� �� � � � � � �

��

��

��

��

�

�

�

�

�

�

]

ma[��, ]�

Obviously such neurons are quite different from both sigmoid and
tanh neurons. +owever, like the sigmoid and tanh neurons,
rectified linear units can be used to compute any function, and they
can be trained using ideas such as backpropagation and stochastic
gradient descent.

:hen should you use rectified linear units instead of sigmoid or
tanh neurons" 6ome recent work on image recognition has found
considerable benefit in using rectified linear units through much of
the network. +owever, as with tanh neurons, we do not yet have a
really deep understanding of when, e[actly, rectified linear units are
preferable, nor why. To give you the flavor of some of the issues,
recall that sigmoid neurons stop learning when they saturate, i.e.,
when their output is near either  or . $s we
ve seen repeatedly in
this chapter, the problem is that  terms reduce the gradient, and
that slows down learning. Tanh neurons suffer from a similar

6ee, for e[ample, :hat is the %est 0ulti-6tage
$rchitecture for Object 5ecognition", by .evin
-arrett, .oray .avukcuoglu, 0arc
$urelio
5an]ato and <ann /eCun ������, Deep 6parse
5ecti¿er Neural Networks, by ;avier *lorot,
$ntoine %ordes, and <oshua %engio ���11�, and
,mageNet Classification with Deep
Convolutional Neural Networks, by $le[
.ri]hevsky, ,lya 6utskever, and *eoffrey +inton
���1��. Note that these papers fill in important
details about how to set up the output layer, cost
function, and regulari]ation in networks using
rectified linear units. ,
ve glossed over all these
details in this brief account. The papers also
discuss in more detail the benefits and
drawbacks of using rectified linear units.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html ��/�2

problem when they saturate. %y contrast, increasing the weighted
input to a rectified linear unit will never cause it to saturate, and so
there is no corresponding learning slowdown. On the other hand,
when the weighted input to a rectified linear unit is negative, the
gradient vanishes, and so the neuron stops learning entirely. These
are just two of the many issues that make it non-trivial to
understand when and why rectified linear units perform better than
sigmoid or tanh neurons.

,
ve painted a picture of uncertainty here, stressing that we do not
yet have a solid theory of how activation functions should be
chosen. ,ndeed, the problem is harder even than , have described,
for there are infinitely many possible activation functions. :hich is
the best for any given problem" :hich will result in a network
which learns fastest" :hich will give the highest test accuracies" ,
am surprised how little really deep and systematic investigation has
been done of these questions. ,deally, we
d have a theory which tells
us, in detail, how to choose �and perhaps modify-on-the-fly� our
activation functions. On the other hand, we shouldn
t let the lack of
a full theory stop us� :e have powerful tools already at hand, and
can make a lot of progress with those tools. Through the remainder
of this book ,
ll continue to use sigmoid neurons as our go-to
neuron, since they
re powerful and provide concrete illustrations of
the core ideas about neural nets. %ut keep in the back of your mind
that these same ideas can be applied to other types of neuron, and
that there are sometimes advantages in doing so.

2n stories in neural networks

Question: +ow do \ou approaFK utili]ing and
researFKing PaFKine learning teFKniTues tKat are

supported alPost entirel\ ePpiriFall\� as opposed to

PatKePatiFall\" $lso in wKat situations KaYe \ou notiFed

soPe oI tKese teFKniTues Iail"

$nsZer� <ou have to reali]e that our theoretical tools are
very weak. 6ometimes, we have good mathematical
intuitions for why a particular technique should work.
6ometimes our intuition ends up being wrong >...@ The
questions become: how well does my method work on this

$nother informative paper is 5ectified /inear
8nits ,mprove 5estricted %olt]mann 0achines,
by 9inod Nair and *eoffrey +inton ���1��,
which demonstrates the benefits of using
rectified linear units in a somewhat different
approach to neural networks.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�2

particular problem, and how large is the set of problems
on which it works well.

� 4uestion and answer witK neural networks researFKer

<ann Le&un

Once, attending a conference on the foundations of quantum
mechanics, , noticed what seemed to me a most curious verbal
habit: when talks finished, questions from the audience often began
with �,
m very sympathetic to your point of view, but >...@�.
4uantum foundations was not my usual field, and , noticed this
style of questioning because at other scientific conferences ,
d rarely
or never heard a questioner e[press their sympathy for the point of
view of the speaker. $t the time, , thought the prevalence of the
question suggested that little genuine progress was being made in
quantum foundations, and people were merely spinning their
wheels. /ater, , reali]ed that assessment was too harsh. The
speakers were wrestling with some of the hardest problems human
minds have ever confronted. Of course progress was slow� %ut there
was still value in hearing updates on how people were thinking,
even if they didn
t always have unarguable new progress to report.

<ou may have noticed a verbal tic similar to �,
m very sympathetic
>...@� in the current book. To e[plain what we
re seeing ,
ve often
fallen back on saying �+euristically, >...@�, or �5oughly speaking,
>...@�, following up with a story to e[plain some phenomenon or
other. These stories are plausible, but the empirical evidence ,
ve
presented has often been pretty thin. ,f you look through the
research literature you
ll see that stories in a similar style appear in
many research papers on neural nets, often with thin supporting
evidence. :hat should we think about such stories"

,n many parts of science - especially those parts that deal with
simple phenomena - it
s possible to obtain very solid, very reliable
evidence for quite general hypotheses. %ut in neural networks there
are large numbers of parameters and hyper-parameters, and
e[tremely comple[ interactions between them. ,n such
e[traordinarily comple[ systems it
s e[ceedingly difficult to
establish reliable general statements. 8nderstanding neural
networks in their full generality is a problem that, like quantum
foundations, tests the limits of the human mind. ,nstead, we often

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �1/�2

make do with evidence for or against a few specific instances of a
general statement. $s a result those statements sometimes later
need to be modified or abandoned, when new evidence comes to
light.

One way of viewing this situation is that any heuristic story about
neural networks carries with it an implied challenge. For e[ample,
consider the statement , quoted earlier, e[plaining why dropout
works: �This technique reduces comple[ co-adaptations of
neurons, since a neuron cannot rely on the presence of particular
other neurons. ,t is, therefore, forced to learn more robust features
that are useful in conjunction with many different random subsets
of the other neurons.� This is a rich, provocative statement, and one
could build a fruitful research program entirely around unpacking
the statement, figuring out what in it is true, what is false, what
needs variation and refinement. ,ndeed, there is now a small
industry of researchers who are investigating dropout �and many
variations�, trying to understand how it works, and what its limits
are. $nd so it goes with many of the heuristics we
ve discussed.
(ach heuristic is not just a �potential� e[planation, it
s also a
challenge to investigate and understand in more detail.

Of course, there is not time for any single person to investigate all
these heuristic e[planations in depth. ,t
s going to take decades �or
longer� for the community of neural networks researchers to
develop a really powerful, evidence-based theory of how neural
networks learn. Does this mean you should reject heuristic
e[planations as unrigorous, and not sufficiently evidence-based"
No� ,n fact, we need such heuristics to inspire and guide our
thinking. ,t
s like the great age of e[ploration: the early e[plorers
sometimes e[plored �and made new discoveries� on the basis of
beliefs which were wrong in important ways. /ater, those mistakes
were corrected as we filled in our knowledge of geography. :hen
you understand something poorly - as the e[plorers understood
geography, and as we understand neural nets today - it
s more
important to e[plore boldly than it is to be rigorously correct in
every step of your thinking. $nd so you should view these stories as
a useful guide to how to think about neural nets, while retaining a
healthy awareness of the limitations of such stories, and carefully
keeping track of just how strong the evidence is for any given line of
reasoning. 3ut another way, we need good stories to help motivate

From ,mageNet Classification with Deep
Convolutional Neural Networks by $le[
.ri]hevsky, ,lya 6utskever, and *eoffrey +inton
���1��.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �2/�2

and inspire us, and rigorous in-depth investigation in order to
uncover the real facts of the matter.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1/�0

One of the most striking facts about neural networks is that they
can compute any function at all. That is, suppose someone hands
you some complicated, wiggly function, :

No matter what the function, there is guaranteed to be a neural
network so that for every possible input, , the value  �or some
close appro[imation� is output from the network, e.g.:

This result holds even if the function has many inputs, 
, and many outputs. For instance, here
s a network

computing a function with  inputs and  outputs:

&+$37(R��

$�YLsuDO�prooI�WKDW�neurDO�neWs�cDn�coPpuWe�Dn\�IuncWLon

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2/�0

This result tells us that neural networks have a kind of uniYersalit\.
No matter what function we want to compute, we know that there is
a neural network which can do the job.

:hat
s more, this universality theorem holds even if we restrict our
networks to have just a single layer intermediate between the input
and the output neurons - a so-called single hidden layer. 6o even
very simple network architectures can be e[tremely powerful.

The universality theorem is well known by people who use neural
networks. %ut why it
s true is not so widely understood. 0ost of the
e[planations available are quite technical. For instance, one of the
original papers proving the result did so using the +ahn-%anach
theorem, the 5ies] 5epresentation theorem, and some Fourier
analysis. ,f you
re a mathematician the argument is not difficult to
follow, but it
s not so easy for most people. That
s a pity, since the
underlying reasons for universality are simple and beautiful.

,n this chapter , give a simple and mostly visual e[planation of the
universality theorem. :e
ll go step by step through the underlying
ideas. <ou
ll understand why it
s true that neural networks can
compute any function. <ou
ll understand some of the limitations of
the result. $nd you
ll understand how the result relates to deep
neural networks.

To follow the material in the chapter, you do not need to have read
earlier chapters in this book. ,nstead, the chapter is structured to be
enjoyable as a self-contained essay. 3rovided you have just a little
basic familiarity with neural networks, you should be able to follow

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

$ppro[imation by superpositions of a sigmoidal
function, by *eorge Cybenko �1����. The result
was very much in the air at the time, and several
groups proved closely related results. Cybenko
s
paper contains a useful discussion of much of
that work. $nother important early paper is
0ultilayer feedforward networks are universal
appro[imators, by .urt +ornik, 0a[well
6tinchcombe, and +albert :hite �1����. This
paper uses the 6tone-:eierstrass theorem to
arrive at similar results.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

the e[planation. , will, however, provide occasional links to earlier
material, to help fill in any gaps in your knowledge.

8niversality theorems are a commonplace in computer science, so
much so that we sometimes forget how astonishing they are. %ut it
s
worth reminding ourselves: the ability to compute an arbitrary
function is truly remarkable. $lmost any process you can imagine
can be thought of as function computation. Consider the problem of
naming a piece of music based on a short sample of the piece. That
can be thought of as computing a function. Or consider the problem
of translating a Chinese te[t into (nglish. $gain, that can be
thought of as computing a function. Or consider the problem of
taking an mp� movie file and generating a description of the plot of
the movie, and a discussion of the quality of the acting. $gain, that
can be thought of as a kind of function computation. 8niversality
means that, in principle, neural networks can do all these things
and many more.

Of course, just because we know a neural network e[ists that can
�say� translate Chinese te[t into (nglish, that doesn
t mean we have
good techniques for constructing or even recogni]ing such a
network. This limitation applies also to traditional universality
theorems for models such as %oolean circuits. %ut, as we
ve seen
earlier in the book, neural networks have powerful algorithms for
learning functions. That combination of learning algorithms �
universality is an attractive mi[. 8p to now, the book has focused
on the learning algorithms. ,n this chapter, we focus on
universality, and what it means.

7wo FaYeats
%efore e[plaining why the universality theorem is true, , want to
mention two caveats to the informal statement �a neural network
can compute any function�.

First, this doesn
t mean that a network can be used to e[aFtl\
compute any function. 5ather, we can get an appro[iPation that is
as good as we want. %y increasing the number of hidden neurons
we can improve the appro[imation. For instance, earlier ,
illustrated a network computing some function  using three
hidden neurons. For most functions only a low-quality

$ctually, computing one of many functions,
since there are often many acceptable
translations of a given piece of te[t.

Ditto the remark about translation and there
being many possible functions.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

appro[imation will be possible using three hidden neurons. %y
increasing the number of hidden neurons �say, to five� we can
typically get a better appro[imation:

$nd we can do still better by further increasing the number of
hidden neurons.

To make this statement more precise, suppose we
re given a
function  which we
d like to compute to within some desired
accuracy . The guarantee is that by using enough hidden
neurons we can always find a neural network whose output 
satisfies , for all inputs . ,n other words, the
appro[imation will be good to within the desired accuracy for every
possible input.

The second caveat is that the class of functions which can be
appro[imated in the way described are the Fontinuous functions. ,f
a function is discontinuous, i.e., makes sudden, sharp jumps, then it
won
t in general be possible to appro[imate using a neural net. This
is not surprising, since our neural networks compute continuous
functions of their input. +owever, even if the function we
d really
like to compute is discontinuous, it
s often the case that a
continuous appro[imation is good enough. ,f that
s so, then we can
use a neural network. ,n practice, this is not usually an important
limitation.

6umming up, a more precise statement of the universality theorem
is that neural networks with a single hidden layer can be used to
appro[imate any continuous function to any desired precision. ,n

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

this chapter we
ll actually prove a slightly weaker version of this
result, using two hidden layers instead of one. ,n the problems ,
ll
briefly outline how the e[planation can, with a few tweaks, be
adapted to give a proof which uses only a single hidden layer.

8niYersalit\ witK one input and one
output
To understand why the universality theorem is true, let
s start by
understanding how to construct a neural network which
appro[imates a function with just one input and one output:

,t turns out that this is the core of the problem of universality. Once
we
ve understood this special case it
s actually pretty easy to e[tend
to functions with many inputs and many outputs.

To build insight into how to construct a network to compute , let
s
start with a network containing just a single hidden layer, with two
hidden neurons, and an output layer containing a single output
neuron:

To get a feel for how components in the network work, let
s focus on
the top hidden neuron. ,n the diagram below, click on the weight, 

, and drag the mouse a little ways to the right to increase . <ou

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6/�0

can immediately see how the function computed by the top hidden
neuron changes:

$s we learnt earlier in the book, what
s being computed by the
hidden neuron is , where  is the sigmoid
function. 8p to now, we
ve made frequent use of this algebraic
form. %ut for the proof of universality we will obtain more insight
by ignoring the algebra entirely, and instead manipulating and
observing the shape shown in the graph. This won
t just give us a
better feel for what
s going on, it will also give us a proof of
universality that applies to activation functions other than the
sigmoid function.

To get started on this proof, try clicking on the bias, , in the
diagram above, and dragging to the right to increase it. <ou
ll see
that as the bias increases the graph moves to the left, but its shape
doesn
t change.

Ne[t, click and drag to the left in order to decrease the bias. <ou
ll
see that as the bias decreases the graph moves to the right, but,
again, its shape doesn
t change.

Ne[t, decrease the weight to around  or . <ou
ll see that as you
decrease the weight, the curve broadens out. <ou might need to
change the bias as well, in order to keep the curve in-frame.

Finally, increase the weight up past . $s you do, the curve
gets steeper, until eventually it begins to look like a step function.
Try to adjust the bias so the step occurs near . The following
short clip shows what your result should look like. Click on the play
button to play �or replay� the video:

6trictly speaking, the visual approach ,
m
taking isn
t what
s traditionally thought of as a
proof. %ut , believe the visual approach gives
more insight into why the result is true than a
traditional proof. $nd, of course, that kind of
insight is the real purpose behind a proof.
Occasionally, there will be small gaps in the
reasoning , present: places where , make a visual
argument that is plausible, but not quite
rigorous. ,f this bothers you, then consider it a
challenge to fill in the missing steps. %ut don
t
lose sight of the real purpose: to understand why
the universality theorem is true.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

:e can simplify our analysis quite a bit by increasing the weight so
much that the output really is a step function, to a very good
appro[imation. %elow ,
ve plotted the output from the top hidden
neuron when the weight is . Note that this plot is static, and
you can
t change parameters such as the weight.

,t
s actually quite a bit easier to work with step functions than
general sigmoid functions. The reason is that in the output layer we
add up contributions from all the hidden neurons. ,t
s easy to
analy]e the sum of a bunch of step functions, but rather more
difficult to reason about what happens when you add up a bunch of
sigmoid shaped curves. $nd so it makes things much easier to
assume that our hidden neurons are outputting step functions.
0ore concretely, we do this by fi[ing the weight  to be some very
large value, and then setting the position of the step by modifying
the bias. Of course, treating the output as a step function is an
appro[imation, but it
s a very good appro[imation, and for now
we
ll treat it as e[act. ,
ll come back later to discuss the impact of
deviations from this appro[imation.

$t what value of  does the step occur" 3ut another way, how does
the position of the step depend upon the weight and bias"

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

To answer this question, try modifying the weight and bias in the
diagram above �you may need to scroll back a bit�. Can you figure
out how the position of the step depends on  and " :ith a little
work you should be able to convince yourself that the position of the
step is proportional to , and inYersel\ proportional to .

,n fact, the step is at position , as you can see by modifying
the weight and bias in the following diagram:

,t will greatly simplify our lives to describe hidden neurons using
just a single parameter, , which is the step position, . Try
modifying  in the following diagram, in order to get used to the
new parameteri]ation:

$s noted above, we
ve implicitly set the weight  on the input to be
some large value - big enough that the step function is a very good
appro[imation. :e can easily convert a neuron parameteri]ed in
this way back into the conventional model, by choosing the bias 

.

8p to now we
ve been focusing on the output from just the top
hidden neuron. /et
s take a look at the behavior of the entire
network. ,n particular, we
ll suppose the hidden neurons are

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/�0

computing step functions parameteri]ed by step points  �top
neuron� and  �bottom neuron�. $nd they
ll have respective output
weights  and . +ere
s the network:

:hat
s being plotted on the right is the weigKted output 
from the hidden layer. +ere,  and  are the outputs from the top
and bottom hidden neurons, respectively. These outputs are
denoted with s because they
re often known as the neurons

aFtiYations.

Try increasing and decreasing the step point  of the top hidden
neuron. *et a feel for how this changes the weighted output from
the hidden layer. ,t
s particularly worth understanding what
happens when  goes past . <ou
ll see that the graph changes
shape when this happens, since we have moved from a situation
where the top hidden neuron is the first to be activated to a
situation where the bottom hidden neuron is the first to be
activated.

6imilarly, try manipulating the step point  of the bottom hidden
neuron, and get a feel for how this changes the combined output
from the hidden neurons.

Try increasing and decreasing each of the output weights. Notice
how this rescales the contribution from the respective hidden
neurons. :hat happens when one of the weights is ]ero"

Finally, try setting  to be  and  to be . <ou get a �bump�
function, which starts at point , ends at point , and has height 

. For instance, the weighted output might look like this:

Note, by the way, that the output from the
whole network is , where  is
the bias on the output neuron. Obviously, this
isn
t the same as the weighted output from the
hidden layer, which is what we
re plotting here.
:e
re going to focus on the weighted output
from the hidden layer right now, and only later
will we think about how that relates to the
output from the whole network.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 10/�0

Of course, we can rescale the bump to have any height at all. /et
s
use a single parameter, , to denote the height. To reduce clutter ,
ll
also remove the � � and � � notations.

Try changing the value of  up and down, to see how the height of
the bump changes. Try changing the height so it
s negative, and
observe what happens. $nd try changing the step points to see how
that changes the shape of the bump.

<ou
ll notice, by the way, that we
re using our neurons in a way that
can be thought of not just in graphical terms, but in more
conventional programming terms, as a kind of LI�WKHQ�HOVH
statement, e.g.:

����if�LQSXW�! �VWHS�SRLQW�
��������DGG���WR�WKH�ZHLJKWHG�RXWSXW

����else�
��������DGG���WR�WKH�ZHLJKWHG�RXWSXW

For the most part ,
m going to stick with the graphical point of view.
%ut in what follows you may sometimes find it helpful to switch
points of view, and think about things in terms of LI�WKHQ�HOVH.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 11/�0

:e can use our bump-making trick to get two bumps, by gluing two
pairs of hidden neurons together into the same network:

,
ve suppressed the weights here, simply writing the  values for
each pair of hidden neurons. Try increasing and decreasing both 
values, and observe how it changes the graph. 0ove the bumps
around by changing the step points.

0ore generally, we can use this idea to get as many peaks as we
want, of any height. ,n particular, we can divide the interval 
up into a large number, , of subintervals, and use  pairs of
hidden neurons to set up peaks of any desired height. /et
s see how
this works for . That
s quite a few neurons, so ,
m going to
pack things in a bit. $pologies for the comple[ity of the diagram: ,
could hide the comple[ity by abstracting away further, but , think
it
s worth putting up with a little comple[ity, for the sake of getting
a more concrete feel for how these networks work.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 12/�0

<ou can see that there are five pairs of hidden neurons. The step
points for the respective pairs of neurons are , then ,
and so on, out to . These values are fi[ed - they make it so we
get five evenly spaced bumps on the graph.

(ach pair of neurons has a value of  associated to it. 5emember,
the connections output from the neurons have weights  and 
�not marked�. Click on one of the  values, and drag the mouse to
the right or left to change the value. $s you do so, watch the
function change. %y changing the output weights we
re actually
designing the function�

Contrariwise, try clicking on the graph, and dragging up or down to
change the height of any of the bump functions. $s you change the
heights, you can see the corresponding change in  values. $nd,
although it
s not shown, there is also a change in the corresponding
output weights, which are  and .

,n other words, we can directly manipulate the function appearing
in the graph on the right, and see that reflected in the  values on
the left. $ fun thing to do is to hold the mouse button down and
drag the mouse from one side of the graph to the other. $s you do

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

this you draw out a function, and get to watch the parameters in the
neural network adapt.

Time for a challenge.

/et
s think back to the function , plotted at the beginning of the
chapter:

, didn
t say it at the time, but what , plotted is actually the function

plotted over  from  to , and with the  a[is taking values from  to
.

That
s obviously not a trivial function.

<ou
re going to figure out how to compute it using a neural
network.

,n our networks above we
ve been analy]ing the weighted
combination  output from the hidden neurons. :e now
know how to get a lot of control over this quantity. %ut, as , noted
earlier, this quantity is not what
s output from the network. :hat
s
output from the network is  where  is the bias on the
output neuron. ,s there some way we can achieve control over the
actual output from the network"

The solution is to design a neural network whose hidden layer has a
weighted output given by , where  is just the inverse of
the  function. That is, we want the weighted output from the
hidden layer to be:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

,f we can do this, then the output from the network as a whole will
be a good appro[imation to .

<our challenge, then, is to design a neural network to appro[imate
the goal function shown just above. To learn as much as possible, ,
want you to solve the problem twice. The first time, please click on
the graph, directly adjusting the heights of the different bump
functions. <ou should find it fairly easy to get a good match to the
goal function. +ow well you
re doing is measured by the aYerage
deYiation between the goal function and the function the network is
actually computing. <our challenge is to drive the average deviation
as low as possible. <ou complete the challenge when you drive the
average deviation to  or below.

Once you
ve done that, click on �5eset� to randomly re-initiali]e the
bumps. The second time you solve the problem, resist the urge to
click on the graph. ,nstead, modify the  values on the left-hand
side, and again attempt to drive the average deviation to  or
below.

Note that , have set the bias on the output
neuron to .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

<ou
ve now figured out all the elements necessary for the network
to appro[imately compute the function � ,t
s only a coarse
appro[imation, but we could easily do much better, merely by
increasing the number of pairs of hidden neurons, allowing more
bumps.

,n particular, it
s easy to convert all the data we have found back
into the standard parameteri]ation used for neural networks. /et
me just recap quickly how that works.

The first layer of weights all have some large, constant value, say 
.

The biases on the hidden neurons are just . 6o, for instance,
for the second hidden neuron  becomes 

.

The final layer of weights are determined by the  values. 6o, for
instance, the value you
ve chosen above for the first ,  ,

means that the output weights from the top two hidden neurons are
 and , respectively. $nd so on, for the entire layer of output

weights.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 16/�0

Finally, the bias on the output neuron is .

That
s everything: we now have a complete description of a neural
network which does a pretty good job computing our original goal
function. $nd we understand how to improve the quality of the
appro[imation by improving the number of hidden neurons.

:hat
s more, there was nothing special about our original goal
function, . :e could
have used this procedure for any continuous function from  to 

. ,n essence, we
re using our single-layer neural networks to
build a lookup table for the function. $nd we
ll be able to build on
this idea to provide a general proof of universality.

0an\ input YariaEles
/et
s e[tend our results to the case of many input variables. This
sounds complicated, but all the ideas we need can be understood in
the case of just two inputs. 6o let
s address the two-input case.

:e
ll start by considering what happens when we have two inputs
to a neuron:

+ere, we have inputs  and , with corresponding weights  and 
, and a bias  on the neuron. /et
s set the weight  to , and then

play around with the first weight, , and the bias, , to see how
they affect the output from the neuron:

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

$s you can see, with  the input  makes no difference to the
output from the neuron. ,t
s as though  is the only input.

*iven this, what do you think happens when we increase the weight 
 to , with  remaining " ,f you don
t immediately see

the answer, ponder the question for a bit, and see if you can figure
out what happens. Then try it out and see if you
re right. ,
ve shown
what happens in the following movie:

-ust as in our earlier discussion, as the input weight gets larger the
output approaches a step function. The difference is that now the
step function is in three dimensions. $lso as before, we can move
the location of the step point around by modifying the bias. The
actual location of the step point is .

/et
s redo the above using the position of the step as the parameter:

+ere, we assume the weight on the  input has some large value -
,
ve used  - and the weight . The number on the
neuron is the step point, and the little  above the number reminds
us that the step is in the  direction. Of course, it
s also possible to
get a step function in the  direction, by making the weight on the 
input very large �say, �, and the weight on the  equal to ,
i.e., :

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

The number on the neuron is again the step point, and in this case
the little  above the number reminds us that the step is in the 
direction. , could have e[plicitly marked the weights on the  and 
inputs, but decided not to, since it would make the diagram rather
cluttered. %ut do keep in mind that the little  marker implicitly
tells us that the  weight is large, and the  weight is .

:e can use the step functions we
ve just constructed to compute a
three-dimensional bump function. To do this, we use two neurons,
each computing a step function in the  direction. Then we combine
those step functions with weight  and , respectively, where  is
the desired height of the bump. ,t
s all illustrated in the following
diagram:

Try changing the value of the height, . Observe how it relates to the
weights in the network. $nd see how it changes the height of the
bump function on the right.

$lso, try changing the step point  associated to the top hidden
neuron. :itness how it changes the shape of the bump. :hat
happens when you move it past the step point  associated to the
bottom hidden neuron"

:e
ve figured out how to make a bump function in the  direction.
Of course, we can easily make a bump function in the  direction, by
using two step functions in the  direction. 5ecall that we do this by

=

=

Output

=

=

:eighted output from hidden layer

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/�0

making the weight large on the  input, and the weight  on the 
input. +ere
s the result:

This looks nearly identical to the earlier network� The only thing
e[plicitly shown as changing is that there
s now little  markers on
our hidden neurons. That reminds us that they
re producing  step
functions, not  step functions, and so the weight is very large on
the  input, and ]ero on the  input, not vice versa. $s before, ,
decided not to show this e[plicitly, in order to avoid clutter.

/et
s consider what happens when we add up two bump functions,
one in the  direction, the other in the  direction, both of height :

To simplify the diagram ,
ve dropped the connections with ]ero
weight. For now, ,
ve left in the little  and  markers on the hidden
neurons, to remind you in what directions the bump functions are
being computed. :e
ll drop even those markers later, since they
re
implied by the input variable.

Try varying the parameter . $s you can see, this causes the output
weights to change, and also the heights of both the  and  bump
functions.

:hat we
ve built looks a little like a tower function:

=

=

:eighted output from hidden layer

=

=

:eighted output from hidden layer

Tower function

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 20/�0

,f we could build such tower functions, then we could use them to
appro[imate arbitrary functions, just by adding up many towers of
different heights, and in different locations:

Of course, we haven
t yet figured out how to build a tower function.
:hat we have constructed looks like a central tower, of height ,
with a surrounding plateau, of height .

%ut we can make a tower function. 5emember that earlier we saw
neurons can be used to implement a type of LI�WKHQ�HOVH
statement:

����if�LQSXW�! �WKUHVKROG��
��������RXWSXW��

����else�
��������RXWSXW��

That was for a neuron with just a single input. :hat we want is to
apply a similar idea to the combined output from the hidden
neurons:

����if�FRPELQHG�RXWSXW�IURP�KLGGHQ�QHXURQV�! �WKUHVKROG�
��������RXWSXW��

����else�
��������RXWSXW��

,f we choose the WKUHVKROG appropriately - say, a value of ,
which is sandwiched between the height of the plateau and the
height of the central tower - we could squash the plateau down to
]ero, and leave just the tower standing.

Can you see how to do this" Try e[perimenting with the following
network to figure it out. Note that we
re now plotting the output

=

=

=

=

0any towers

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 21/�0

from the entire network, not just the weighted output from the
hidden layer. This means we add a bias term to the weighted output
from the hidden layer, and apply the sigma function. Can you find
values for  and  which produce a tower" This is a bit tricky, so if
you think about this for a while and remain stuck, here
s two hints:
�1� To get the output neuron to show the right kind of LI�WKHQ�HOVH
behaviour, we need the input weights �all  or � to be large� and
��� the value of  determines the scale of the LI�WKHQ�HOVH
threshold.

:ith our initial parameters, the output looks like a flattened
version of the earlier diagram, with its tower and plateau. To get the
desired behaviour, we increase the parameter  until it becomes
large. That gives the LI�WKHQ�HOVH thresholding behaviour. 6econd,
to get the threshold right, we
ll choose . Try it, and see
how it works�

+ere
s what it looks like, when we use :

(ven for this relatively modest value of , we get a pretty good tower
function. $nd, of course, we can make it as good as we want by
increasing  still further, and keeping the bias as .

=

=

Output

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 22/�0

/et
s try gluing two such networks together, in order to compute
two different tower functions. To make the respective roles of the
two sub-networks clear ,
ve put them in separate bo[es, below: each
bo[ computes a tower function, using the technique described
above. The graph on the right shows the weighted output from the
seFond hidden layer, that is, it
s a weighted combination of tower
functions.

,n particular, you can see that by modifying the weights in the final
layer you can change the height of the output towers.

The same idea can be used to compute as many towers as we like.
:e can also make them as thin as we like, and whatever height we
like. $s a result, we can ensure that the weighted output from the
second hidden layer appro[imates any desired function of two
variables:

=

=

:eighted output

=

=

0any towers

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

,n particular, by making the weighted output from the second
hidden layer a good appro[imation to , we ensure the output
from our network will be a good appro[imation to any desired
function, .

:hat about functions of more than two variables"

/et
s try three variables . The following network can be used
to compute a tower function in four dimensions:

+ere, the  denote inputs to the network. The  and so on
are step points for neurons - that is, all the weights in the first layer
are large, and the biases are set to give the step points .
The weights in the second layer alternate , where  is some
very large number. $nd the output bias is .

This network computes a function which is  provided three
conditions are met:  is between  and �  is between  and �
and  is between  and . The network is  everywhere else. That
is, it
s a kind of tower which is  in a little region of input space, and 

 everywhere else.

%y gluing together many such networks we can get as many towers
as we want, and so appro[imate an arbitrary function of three
variables. ([actly the same idea works in  dimensions. The only
change needed is to make the output bias , in order to
get the right kind of sandwiching behavior to level the plateau.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

Okay, so we now know how to use neural networks to appro[imate
a real-valued function of many variables. :hat about vector-valued
functions " Of course, such a function can be
regarded as just  separate real-valued functions, 

, and so on. 6o we create a network
appro[imating , another network for , and so on. $nd then we
simply glue all the networks together. 6o that
s also easy to cope
with.

3roEleP

:e
ve seen how to use networks with two hidden layers to
appro[imate an arbitrary function. Can you find a proof
showing that it
s possible with just a single hidden layer" $s a
hint, try working in the case of just two input variables, and
showing that: �a� it
s possible to get step functions not just in
the  or  directions, but in an arbitrary direction� �b� by adding
up many of the constructions from part �a� it
s possible to
appro[imate a tower function which is circular in shape, rather
than rectangular� �c� using these circular towers, it
s possible to
appro[imate an arbitrary function. To do part �c� it may help to
use ideas from a bit later in this chapter.

([tension Ee\ond sigPoid neurons
:e
ve proved that networks made up of sigmoid neurons can
compute any function. 5ecall that in a sigmoid neuron the inputs 

 result in the output , where  are the
weights,  is the bias, and  is the sigmoid function:

:hat if we consider a different type of neuron, one using some
other activation function, :

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

That is, we
ll assume that if our neurons has inputs ,
weights  and bias , then the output is .

:e can use this activation function to get a step function, just as we
did with the sigmoid. Try ramping up the weight in the following,
say to :

-ust as with the sigmoid, this causes the activation function to
contract, and ultimately it becomes a very good appro[imation to a
step function. Try changing the bias, and you
ll see that we can set
the position of the step to be wherever we choose. $nd so we can
use all the same tricks as before to compute any desired function.

:hat properties does  need to satisfy in order for this to work"
:e do need to assume that  is well-defined as  and 

. These two limits are the two values taken on by our step
function. :e also need to assume that these limits are different
from one another. ,f they weren
t, there
d be no step, simply a flat
graph� %ut provided the activation function  satisfies these
properties, neurons based on such an activation function are
universal for computation.

3roElePs

(arlier in the book we met another type of neuron known as a
rectified linear unit. ([plain why such neurons don
t satisfy the
conditions just given for universality. Find a proof of

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 26/�0

universality showing that rectified linear units are universal for
computation.

6uppose we consider linear neurons, i.e., neurons with the
activation function . ([plain why linear neurons don
t
satisfy the conditions just given for universality. 6how that
such neurons can
t be used to do universal computation.

)i[ing up tKe step IunFtions
8p to now, we
ve been assuming that our neurons can produce step
functions e[actly. That
s a pretty good appro[imation, but it is only
an appro[imation. ,n fact, there will be a narrow window of failure,
illustrated in the following graph, in which the function behaves
very differently from a step function:

,n these windows of failure the e[planation ,
ve given for
universality will fail.

Now, it
s not a terrible failure. %y making the weights input to the
neurons big enough we can make these windows of failure as small
as we like. Certainly, we can make the window much narrower than
,
ve shown above - narrower, indeed, than our eye could see. 6o
perhaps we might not worry too much about this problem.

Nonetheless, it
d be nice to have some way of addressing the
problem.

,n fact, the problem turns out to be easy to fi[. /et
s look at the fi[
for neural networks computing functions with just one input and
one output. The same ideas work also to address the problem when
there are more inputs and outputs.

,n particular, suppose we want our network to compute some
function, . $s before, we do this by trying to design our network so

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

that the weighted output from our hidden layer of neurons is 
:

,f we were to do this using the technique described earlier, we
d use
the hidden neurons to produce a sequence of bump functions:

$gain, ,
ve e[aggerated the si]e of the windows of failure, in order
to make them easier to see. ,t should be pretty clear that if we add
all these bump functions up we
ll end up with a reasonable
appro[imation to , e[cept within the windows of failure.

6uppose that instead of using the appro[imation just described, we
use a set of hidden neurons to compute an appro[imation to KalI
our original goal function, i.e., to . Of course, this looks
just like a scaled down version of the last graph:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

$nd suppose we use another set of hidden neurons to compute an
appro[imation to , but with the bases of the bumps
sKiIted by half the width of a bump:

Now we have two different appro[imations to . ,f we add
up the two appro[imations we
ll get an overall appro[imation to 

. That overall appro[imation will still have failures in small
windows. %ut the problem will be much less than before. The
reason is that points in a failure window for one appro[imation
won
t be in a failure window for the other. $nd so the
appro[imation will be a factor roughly  better in those windows.

:e could do even better by adding up a large number, , of
overlapping appro[imations to the function . 3rovided
the windows of failure are narrow enough, a point will only ever be
in one window of failure. $nd provided we
re using a large enough
number  of overlapping appro[imations, the result will be an
e[cellent overall appro[imation.

&onFlusion

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2�/�0

The e[planation for universality we
ve discussed is certainly not a
practical prescription for how to compute using neural networks� ,n
this, it
s much like proofs of universality for NAND gates and the like.
For this reason, ,
ve focused mostly on trying to make the
construction clear and easy to follow, and not on optimi]ing the
details of the construction. +owever, you may find it a fun and
instructive e[ercise to see if you can improve the construction.

$lthough the result isn
t directly useful in constructing networks,
it
s important because it takes off the table the question of whether
any particular function is computable using a neural network. The
answer to that question is always �yes�. 6o the right question to ask
is not whether any particular function is computable, but rather
what
s a good way to compute the function.

The universality construction we
ve developed uses just two hidden
layers to compute an arbitrary function. Furthermore, as we
ve
discussed, it
s possible to get the same result with just a single
hidden layer. *iven this, you might wonder why we would ever be
interested in deep networks, i.e., networks with many hidden
layers. Can
t we simply replace those networks with shallow, single
hidden layer networks"

:hile in principle that
s possible, there are good practical reasons
to use deep networks. $s argued in Chapter 1, deep networks have a
hierarchical structure which makes them particularly well adapted
to learn the hierarchies of knowledge that seem to be useful in
solving real-world problems. 3ut more concretely, when attacking
problems such as image recognition, it helps to use a system that
understands not just individual pi[els, but also increasingly more
comple[ concepts: from edges to simple geometric shapes, all the
way up through comple[, multi-object scenes. ,n later chapters,
we
ll see evidence suggesting that deep networks do a better job
than shallow networks at learning such hierarchies of knowledge.
To sum up: universality tells us that neural networks can compute
any function� and empirical evidence suggests that deep networks
are the networks best adapted to learn the functions useful in
solving many real-world problems.

.

&Kapter acNnoZledgments� Thanks to -en
Dodd and Chris Olah for many discussions about
universality in neural networks. 0y thanks, in
particular, to Chris for suggesting the use of a
lookup table to prove universality. The
interactive visual form of the chapter is inspired
by the work of people such as 0ike %ostock,
$mit 3atel, %ret 9ictor, and 6teven :ittens.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ�� /DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �0/�0

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1/1�

,magine you
re an engineer who has been asked to design a
computer from scratch. One day you
re working away in your office,
designing logical circuits, setting out AND gates, OR gates, and so on,

when your boss walks in with bad news. The customer has just
added a surprising design requirement: the circuit for the entire
computer must be just two layers deep:

<ou
re dumbfounded, and tell your boss: �The customer is cra]y��

<our boss replies: �, think they
re cra]y, too. %ut what the customer
wants, they get.�

,n fact, there
s a limited sense in which the customer isn
t cra]y.
6uppose you
re allowed to use a special logical gate which lets you
AND together as many inputs as you want. $nd you
re also allowed a

many-input NAND gate, that is, a gate which can AND multiple

inputs and then negate the output. :ith these special gates it turns
out to be possible to compute any function at all using a circuit
that
s just two layers deep.

%ut just because something is possible doesn
t make it a good idea.
,n practice, when solving circuit design problems �or most any kind
of algorithmic problem�, we usually start by figuring out how to
solve sub-problems, and then gradually integrate the solutions. ,n
other words, we build up to a solution through multiple layers of
abstraction.

&+$37(R��

:K\�Dre�Geep�neurDO�neWZorNs�KDrG�Wo�WrDLn"

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 2/1�

For instance, suppose we
re designing a logical circuit to multiply
two numbers. Chances are we want to build it up out of sub-circuits
doing operations like adding two numbers. The sub-circuits for
adding two numbers will, in turn, be built up out of sub-sub-circuits
for adding two bits. 9ery roughly speaking our circuit will look like:

That is, our final circuit contains at least three layers of circuit
elements. ,n fact, it
ll probably contain more than three layers, as
we break the sub-tasks down into smaller units than ,
ve described.
%ut you get the general idea.

6o deep circuits make the process of design easier. %ut they
re not
just helpful for design. There are, in fact, mathematical proofs
showing that for some functions very shallow circuits require
e[ponentially more circuit elements to compute than do deep
circuits. For instance, a famous series of papers in the early 1���s
showed that computing the parity of a set of bits requires
e[ponentially many gates, if done with a shallow circuit. On the
other hand, if you use deeper circuits it
s easy to compute the parity
using a small circuit: you just compute the parity of pairs of bits,
then use those results to compute the parity of pairs of pairs of bits,
and so on, building up quickly to the overall parity. Deep circuits
thus can be intrinsically much more powerful than shallow circuits.

8p to now, this book has approached neural networks like the cra]y
customer. $lmost all the networks we
ve worked with have just a
single hidden layer of neurons �plus the input and output layers�:

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

The history is somewhat comple[, so , won
t
give detailed references. 6ee -ohan +nstad
s
��1� paper On the correlation of parity and
small-depth circuits for an account of the early
history and references.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

These simple networks have been remarkably useful: in earlier
chapters we used networks like this to classify handwritten digits
with better than �� percent accuracy� Nonetheless, intuitively we
d
e[pect networks with many more hidden layers to be more
powerful:

6uch networks could use the intermediate layers to build up
multiple layers of abstraction, just as we do in %oolean circuits. For
instance, if we
re doing visual pattern recognition, then the neurons
in the first layer might learn to recogni]e edges, the neurons in the
second layer could learn to recogni]e more comple[ shapes, say
triangle or rectangles, built up from edges. The third layer would
then recogni]e still more comple[ shapes. $nd so on. These
multiple layers of abstraction seem likely to give deep networks a
compelling advantage in learning to solve comple[ pattern
recognition problems. 0oreover, just as in the case of circuits, there
are theoretical results suggesting that deep networks are
intrinsically more powerful than shallow networks.

+ow can we train such deep networks" ,n this chapter, we
ll try
training deep networks using our workhorse learning algorithm -
stochastic gradient descent by backpropagation. %ut we
ll run into

For certain problems and network architectures
this is proved in On the number of response
regions of deep feed forward networks with
piece-wise linear activations, by 5a]van
3ascanu, *uido 0ont~far, and <oshua %engio
���1��. 6ee also the more informal discussion in
section � of /earning deep architectures for $,,
by <oshua %engio ������.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

trouble, with our deep networks not performing much �if at all�
better than shallow networks.

That failure seems surprising in the light of the discussion above.
5ather than give up on deep networks, we
ll dig down and try to
understand what
s making our deep networks hard to train. :hen
we look closely, we
ll discover that the different layers in our deep
network are learning at vastly different speeds. ,n particular, when
later layers in the network are learning well, early layers often get
stuck during training, learning almost nothing at all. This stuckness
isn
t simply due to bad luck. 5ather, we
ll discover there are
fundamental reasons the learning slowdown occurs, connected to
our use of gradient-based learning techniques.

$s we delve into the problem more deeply, we
ll learn that the
opposite phenomenon can also occur: the early layers may be
learning well, but later layers can become stuck. ,n fact, we
ll find
that there
s an intrinsic instability associated to learning by
gradient descent in deep, many-layer neural networks. This
instability tends to result in either the early or the later layers
getting stuck during training.

This all sounds like bad news. %ut by delving into these difficulties,
we can begin to gain insight into what
s required to train deep
networks effectively. $nd so these investigations are good
preparation for the ne[t chapter, where we
ll use deep learning to
attack image recognition problems.

7Ke YanisKing gradient proEleP
6o, what goes wrong when we try to train a deep network"

To answer that question, let
s first revisit the case of a network with
just a single hidden layer. $s per usual, we
ll use the 0N,6T digit
classification problem as our playground for learning and
e[perimentation.

,f you wish, you can follow along by training networks on your
computer. ,t is also, of course, fine to just read along. ,f you do wish
to follow live, then you
ll need 3ython �.�, Numpy, and a copy of the
code, which you can get by cloning the relevant repository from the
command line:

, introduced the 0N,6T problem and data here
and here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

JLW�FORQH�KWWSV���JLWKXE�FRP�PQLHOVHQ�QHXUDO�QHWZRUNV�DQG�GHHS�OHDUQLQJ�JLW

,f you don
t use JLW then you can download the data and code here.
<ou
ll need to change into the VUF subdirectory.

Then, from a 3ython shell we load the 0N,6T data:

!!!�import�mnist_loader
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �?

����PQLVWBORDGHU�ORDGBGDWDBZUDSSHU��

:e set up our network:

!!!�import�network�
!!!�QHW� �QHWZRUN��NHWZRUN�>�����������@�

This network has ��� neurons in the input layer, corresponding to
the  pi[els in the input image. :e use �� hidden
neurons, as well as 1� output neurons, corresponding to the 1�
possible classifications for the 0N,6T digits �
�
, 
1
, 
�
, , 
�
�.

/et
s try training our network for �� complete epochs, using mini-
batches of 1� training e[amples at a time, a learning rate ,
and regulari]ation parameter . $s we train we
ll monitor the
classification accuracy on the YDOLGDWLRQBGDWD:

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

:e get a classification accuracy of ��.�� percent �or thereabouts -
it
ll vary a bit from run to run�, comparable to our earlier results
with a similar configuration.

Now, let
s add another hidden layer, also with �� neurons in it, and
try training with the same hyper-parameters:

!!!�QHW� �QHWZRUN��NHWZRUN�>���������������@�

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

This gives an improved classification accuracy, ��.�� percent.
That
s encouraging: a little more depth is helping. /et
s add another
��-neuron hidden layer:

!!!�QHW� �QHWZRUN��NHWZRUN�>�������������������@�

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

That doesn
t help at all. ,n fact, the result drops back down to ��.��
percent, close to our original shallow network. $nd suppose we
insert one further hidden layer:

Note that the networks is likely to take some
minutes to train, depending on the speed of your
machine. 6o if you
re running the code you may
wish to continue reading and return later, not
wait for the code to finish e[ecuting.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 6/1�

!!!�QHW� �QHWZRUN��NHWZRUN�>�����������������������@�

!!!�QHW�6*D�WUDLQLQJBGDWD���������������OPEGD �����

����HYDOXDWLRQBGDWD YDOLGDWLRQBGDWD��PRQLWRUBHYDOXDWLRQBDFFXUDF\ 7UXH�

The classification accuracy drops again, to ��.�� percent. That
s
probably not a statistically significant drop, but it
s not
encouraging, either.

This behaviour seems strange. ,ntuitively, e[tra hidden layers ought
to make the network able to learn more comple[ classification
functions, and thus do a better job classifying. Certainly, things
shouldn
t get worse, since the e[tra layers can, in the worst case,
simply do nothing. %ut that
s not what
s going on.

6o what is going on" /et
s assume that the e[tra hidden layers really
could help in principle, and the problem is that our learning
algorithm isn
t finding the right weights and biases. :e
d like to
figure out what
s going wrong in our learning algorithm, and how to
do better.

To get some insight into what
s going wrong, let
s visuali]e how the
network learns. %elow, ,
ve plotted part of a 
network, i.e., a network with two hidden layers, each containing 
hidden neurons. (ach neuron in the diagram has a little bar on it,
representing how quickly that neuron is changing as the network
learns. $ big bar means the neuron
s weights and bias are changing
rapidly, while a small bar means the weights and bias are changing
slowly. 0ore precisely, the bars denote the gradient  for each
neuron, i.e., the rate of change of the cost with respect to the
neuron
s bias. %ack in Chapter � we saw that this gradient quantity
controlled not just how rapidly the bias changes during learning,
but also how rapidly the weights input to the neuron change, too.
Don
t worry if you don
t recall the details: the thing to keep in mind
is simply that these bars show how quickly each neuron
s weights
and bias are changing as the network learns.

To keep the diagram simple, ,
ve shown just the top si[ neurons in
the two hidden layers. ,
ve omitted the input neurons, since they
ve
got no weights or biases to learn. ,
ve also omitted the output
neurons, since we
re doing layer-wise comparisons, and it makes
most sense to compare layers with the same number of neurons.
The results are plotted at the very beginning of training, i.e.,
immediately after the network is initiali]ed. +ere they are:

6ee this later problem to understand how to
build a hidden layer that does nothing.

The data plotted is generated using the program
generateBgradient.py. The same program is also

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

The network was initiali]ed randomly, and so it
s not surprising
that there
s a lot of variation in how rapidly the neurons learn. 6till,
one thing that jumps out is that the bars in the second hidden layer
are mostly much larger than the bars in the first hidden layer. $s a
result, the neurons in the second hidden layer will learn quite a bit
faster than the neurons in the first hidden layer. ,s this merely a
coincidence, or are the neurons in the second hidden layer likely to
learn faster than neurons in the first hidden layer in general"

To determine whether this is the case, it helps to have a global way
of comparing the speed of learning in the first and second hidden
layers. To do this, let
s denote the gradient as , i.e., the
gradient for the th neuron in the th layer. :e can think of the
gradient  as a vector whose entries determine how quickly the
first hidden layer learns, and  as a vector whose entries determine
how quickly the second hidden layer learns. :e
ll then use the
lengths of these vectors as �rough�� global measures of the speed at
which the layers are learning. 6o, for instance, the length 
measures the speed at which the first hidden layer is learning, while
the length  measures the speed at which the second hidden
layer is learning.

used to generate the results quoted later in this
section.

%ack in Chapter � we referred to this as the
error, but here we
ll adopt the informal term
�gradient�. , say �informal� because of course
this doesn
t e[plicitly include the partial
derivatives of the cost with respect to the
weights, .

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

:ith these definitions, and in the same configuration as was plotted
above, we find  and . 6o this confirms
our earlier suspicion: the neurons in the second hidden layer really
are learning much faster than the neurons in the first hidden layer.

:hat happens if we add more hidden layers" ,f we have three
hidden layers, in a  network, then the respective
speeds of learning turn out to be �.�1�, �.���, and �.���. $gain,
earlier hidden layers are learning much slower than later hidden
layers. 6uppose we add yet another layer with  hidden neurons.
,n that case, the respective speeds of learning are �.���, �.�1�,
�.���, and �.���. The pattern holds: early layers learn slower than
later layers.

:e
ve been looking at the speed of learning at the start of training,
that is, just after the networks are initiali]ed. +ow does the speed of
learning change as we train our networks" /et
s return to look at the
network with just two hidden layers. The speed of learning changes
as follows:

To generate these results, , used batch gradient descent with just
1,��� training images, trained over ��� epochs. This is a bit
different than the way we usually train - ,
ve used no mini-batches,
and just 1,��� training images, rather than the full ��,��� image
training set. ,
m not trying to do anything sneaky, or pull the wool
over your eyes, but it turns out that using mini-batch stochastic
gradient descent gives much noisier �albeit very similar, when you
average away the noise� results. 8sing the parameters ,
ve chosen is

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html �/1�

an easy way of smoothing the results out, so we can see what
s going
on.

,n any case, as you can see the two layers start out learning at very
different speeds �as we already know�. The speed in both layers
then drops very quickly, before rebounding. %ut through it all, the
first hidden layer learns much more slowly than the second hidden
layer.

:hat about more comple[ networks" +ere
s the results of a similar
e[periment, but this time with three hidden layers �a 

 network�:

$gain, early hidden layers learn much more slowly than later
hidden layers. Finally, let
s add a fourth hidden layer �a 

 network�, and see what happens when we
train:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 10/1�

$gain, early hidden layers learn much more slowly than later
hidden layers. ,n this case, the first hidden layer is learning roughly
1�� times slower than the final hidden layer. No wonder we were
having trouble training these networks earlier�

:e have here an important observation: in at least some deep
neural networks, the gradient tends to get smaller as we move
backward through the hidden layers. This means that neurons in
the earlier layers learn much more slowly than neurons in later
layers. $nd while we
ve seen this in just a single network, there are
fundamental reasons why this happens in many neural networks.
The phenomenon is known as the YanisKing gradient proEleP.

:hy does the vanishing gradient problem occur" $re there ways we
can avoid it" $nd how should we deal with it in training deep neural
networks" ,n fact, we
ll learn shortly that it
s not inevitable,
although the alternative is not very attractive, either: sometimes the
gradient gets much larger in earlier layers� This is the e[ploding
gradient proEleP, and it
s not much better news than the vanishing
gradient problem. 0ore generally, it turns out that the gradient in
deep neural networks is unstaEle, tending to either e[plode or
vanish in earlier layers. This instability is a fundamental problem
for gradient-based learning in deep neural networks. ,t
s something
we need to understand, and, if possible, take steps to address.

One response to vanishing �or unstable� gradients is to wonder if
they
re really such a problem. 0omentarily stepping away from
neural nets, imagine we were trying to numerically minimi]e a
function  of a single variable. :ouldn
t it be good news if the
derivative  was small" :ouldn
t that mean we were already
near an e[tremum" ,n a similar way, might the small gradient in
early layers of a deep network mean that we don
t need to do much
adjustment of the weights and biases"

Of course, this isn
t the case. 5ecall that we randomly initiali]ed the
weight and biases in the network. ,t is e[tremely unlikely our initial
weights and biases will do a good job at whatever it is we want our
network to do. To be concrete, consider the first layer of weights in
a  network for the 0N,6T problem. The random
initiali]ation means the first layer throws away most information
about the input image. (ven if later layers have been e[tensively

6ee *radient flow in recurrent nets: the
difficulty of learning long-term dependencies, by
6epp +ochreiter, <oshua %engio, 3aolo Frasconi,
and -�rgen 6chmidhuber ����1�. This paper
studied recurrent neural nets, but the essential
phenomenon is the same as in the feedforward
networks we are studying. 6ee also 6epp
+ochreiter
s earlier Diploma Thesis,
8ntersuchungen ]u dynamischen neuronalen
Net]en �1��1, in *erman�.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 11/1�

trained, they will still find it e[tremely difficult to identify the input
image, simply because they don
t have enough information. $nd so
it can
t possibly be the case that not much learning needs to be done
in the first layer. ,f we
re going to train deep networks, we need to
figure out how to address the vanishing gradient problem.

:Kat
s Fausing tKe YanisKing gradient
proEleP" 8nstaEle gradients in deep
neural nets
To get insight into why the vanishing gradient problem occurs, let
s
consider the simplest deep neural network: one with just a single
neuron in each layer. +ere
s a network with three hidden layers:

+ere,  are the weights,  are the biases, and  is
some cost function. -ust to remind you how this works, the output 
from the th neuron is , where  is the usual sigmoid activation
function, and  is the weighted input to the neuron.
,
ve drawn the cost  at the end to emphasi]e that the cost is a
function of the network
s output, : if the actual output from the
network is close to the desired output, then the cost will be low,
while if it
s far away, the cost will be high.

:e
re going to study the gradient  associated to the first
hidden neuron. :e
ll figure out an e[pression for , and by
studying that e[pression we
ll understand why the vanishing
gradient problem occurs.

,
ll start by simply showing you the e[pression for . ,t looks
forbidding, but it
s actually got a simple structure, which ,
ll
describe in a moment. +ere
s the e[pression �ignore the network,
for now, and note that  is just the derivative of the  function�:

The structure in the e[pression is as follows: there is a  term in
the product for each neuron in the network� a weight  term for

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 12/1�

each weight in the network� and a final  term, corresponding
to the cost function at the end. Notice that ,
ve placed each term in
the e[pression above the corresponding part of the network. 6o the
network itself is a mnemonic for the e[pression.

<ou
re welcome to take this e[pression for granted, and skip to the
discussion of how it relates to the vanishing gradient problem.
There
s no harm in doing this, since the e[pression is a special case
of our earlier discussion of backpropagation. %ut there
s also a
simple e[planation of why the e[pression is true, and so it
s fun
�and perhaps enlightening� to take a look at that e[planation.

,magine we make a small change  in the bias . That will set off
a cascading series of changes in the rest of the network. First, it
causes a change  in the output from the first hidden neuron.
That, in turn, will cause a change  in the weighted input to the
second hidden neuron. Then a change  in the output from the
second hidden neuron. $nd so on, all the way through to a change 

 in the cost at the output. :e have

This suggests that we can figure out an e[pression for the gradient 
 by carefully tracking the effect of each step in this cascade.

To do this, let
s think about how  causes the output  from the
first hidden neuron to change. :e have ,
so

That  term should look familiar: it
s the first term in our
claimed e[pression for the gradient . ,ntuitively, this term
converts a change  in the bias into a change  in the output
activation. That change  in turn causes a change in the weighted
input  to the second hidden neuron:

Combining our e[pressions for  and , we see how the change
in the bias  propagates along the network to affect :

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

$gain, that should look familiar: we
ve now got the first two terms
in our claimed e[pression for the gradient .

:e can keep going in this fashion, tracking the way changes
propagate through the rest of the network. $t each neuron we pick
up a  term, and through each weight we pick up a  term. The
end result is an e[pression relating the final change  in cost to
the initial change  in the bias:

Dividing by  we do indeed get the desired e[pression for the
gradient:

:K\ tKe YanisKing gradient proElem occurs� To understand
why the vanishing gradient problem occurs, let
s e[plicitly write out
the entire e[pression for the gradient:

([cepting the very last term, this e[pression is a product of terms of
the form . To understand how each of those terms behave,
let
s look at a plot of the function :

�� �� �� �� � � � � �

����

����

����

����

����

����

]

Derivative of sigmoid function

The derivative reaches a ma[imum at . Now, if we use
our standard approach to initiali]ing the weights in the network,
then we
ll choose the weights using a *aussian with mean  and
standard deviation . 6o the weights will usually satisfy .
3utting these observations together, we see that the terms 

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

will usually satisfy . $nd when we take a product of
many such terms, the product will tend to e[ponentially decrease:
the more terms, the smaller the product will be. This is starting to
smell like a possible e[planation for the vanishing gradient
problem.

To make this all a bit more e[plicit, let
s compare the e[pression for 
 to an e[pression for the gradient with respect to a later bias,

say . Of course, we haven
t e[plicitly worked out an
e[pression for , but it follows the same pattern described
above for . +ere
s the comparison of the two e[pressions:

The two e[pressions share many terms. %ut the gradient 
includes two e[tra terms each of the form . $s we
ve seen,
such terms are typically less than  in magnitude. $nd so the
gradient  will usually be a factor of  �or more� smaller than 

. This is the essential origin of the vanishing gradient
problem.

Of course, this is an informal argument, not a rigorous proof that
the vanishing gradient problem will occur. There are several
possible escape clauses. ,n particular, we might wonder whether the
weights  could grow during training. ,f they do, it
s possible the
terms  in the product will no longer satisfy .
,ndeed, if the terms get large enough - greater than  - then we will
no longer have a vanishing gradient problem. ,nstead, the gradient
will actually grow e[ponentially as we move backward through the
layers. ,nstead of a vanishing gradient problem, we
ll have an
e[ploding gradient problem.

7Ke e[ploding gradient proElem� /et
s look at an e[plicit
e[ample where e[ploding gradients occur. The e[ample is
somewhat contrived: ,
m going to fi[ parameters in the network in
just the right way to ensure we get an e[ploding gradient. %ut even

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

though the e[ample is contrived, it has the virtue of firmly
establishing that e[ploding gradients aren
t merely a hypothetical
possibility, they really can happen.

There are two steps to getting an e[ploding gradient. First, we
choose all the weights in the network to be large, say 

. 6econd, we
ll choose the biases so that
the  terms are not too small. That
s actually pretty easy to do:
all we need do is choose the biases to ensure that the weighted input
to each neuron is  �and so �. 6o, for instance, we
want . :e can achieve this by setting 

. :e can use the same idea to select the other biases.
:hen we do this, we see that all the terms  are equal to 

. :ith these choices we get an e[ploding gradient.

7Ke unstaEle gradient proElem� The fundamental problem
here isn
t so much the vanishing gradient problem or the e[ploding
gradient problem. ,t
s that the gradient in early layers is the product
of terms from all the later layers. :hen there are many layers, that
s
an intrinsically unstable situation. The only way all layers can learn
at close to the same speed is if all those products of terms come
close to balancing out. :ithout some mechanism or underlying
reason for that balancing to occur, it
s highly unlikely to happen
simply by chance. ,n short, the real problem here is that neural
networks suffer from an unstaEle gradient proEleP. $s a result, if
we use standard gradient-based learning techniques, different
layers in the network will tend to learn at wildly different speeds.

([erFise

,n our discussion of the vanishing gradient problem, we made
use of the fact that . 6uppose we used a different
activation function, one whose derivative could be much larger.
:ould that help us avoid the unstable gradient problem"

7Ke preYalence oI tKe YanisKing gradient proElem� :e
ve
seen that the gradient can either vanish or e[plode in the early
layers of a deep network. ,n fact, when using sigmoid neurons the
gradient will usually vanish. To see why, consider again the
e[pression . To avoid the vanishing gradient problem we
need . <ou might think this could happen easily if  is
very large. +owever, it
s more difficult than it looks. The reason is

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 16/1�

that the  term also depends on : , where  is
the input activation. 6o when we make  large, we need to be
careful that we
re not simultaneously making  small. That
turns out to be a considerable constraint. The reason is that when
we make  large we tend to make  very large. /ooking at the
graph of  you can see that this puts us off in the �wings� of the 
function, where it takes very small values. The only way to avoid
this is if the input activation falls within a fairly narrow range of
values �this qualitative e[planation is made quantitative in the first
problem below�. 6ometimes that will chance to happen. 0ore often,
though, it does not happen. $nd so in the generic case we have
vanishing gradients.

3roElePs

Consider the product . 6uppose .
�1� $rgue that this can only ever occur if . ��� 6upposing
that , consider the set of input activations  for which 

. 6how that the set of  satisfying that
constraint can range over an interval no greater in width than

��� 6how numerically that the above e[pression bounding the
width of the range is greatest at , where it takes a value

. $nd so even given that everything lines up just
perfectly, we still have a fairly narrow range of input activations
which can avoid the vanishing gradient problem.

Identit\ neuron� Consider a neuron with a single input, , a
corresponding weight, , a bias , and a weight  on the
output. 6how that by choosing the weights and bias
appropriately, we can ensure  for .
6uch a neuron can thus be used as a kind of identity neuron,
that is, a neuron whose output is the same �up to rescaling by a
weight factor� as its input. +int� ,t Kelps to rewrite 

� to assuPe   is sPall� and to use a 7a\lor series

e[pansion in  �

8nstaEle gradients in Pore FoPple[
networks

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

:e
ve been studying toy networks, with just one neuron in each
hidden layer. :hat about more comple[ deep networks, with many
neurons in each hidden layer"

,n fact, much the same behaviour occurs in such networks. ,n the
earlier chapter on backpropagation we saw that the gradient in the 
th layer of an  layer network is given by:

+ere,  is a diagonal matri[ whose entries are the  values
for the weighted inputs to the th layer. The  are the weight
matrices for the different layers. $nd  is the vector of partial
derivatives of  with respect to the output activations.

This is a much more complicated e[pression than in the single-
neuron case. 6till, if you look closely, the essential form is very
similar, with lots of pairs of the form . :hat
s more, the
matrices  have small entries on the diagonal, none larger than 

. 3rovided the weight matrices  aren
t too large, each additional
term  tends to make the gradient vector smaller, leading
to a vanishing gradient. 0ore generally, the large number of terms
in the product tends to lead to an unstable gradient, just as in our
earlier e[ample. ,n practice, empirically it is typically found in
sigmoid networks that gradients vanish e[ponentially quickly in
earlier layers. $s a result, learning slows down in those layers. This
slowdown isn
t merely an accident or an inconvenience: it
s a
fundamental consequence of the approach we
re taking to learning.

2tKer oEstaFles to deep learning

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

,n this chapter we
ve focused on vanishing gradients - and, more
generally, unstable gradients - as an obstacle to deep learning. ,n
fact, unstable gradients are just one obstacle to deep learning, albeit
an important fundamental obstacle. 0uch ongoing research aims to
better understand the challenges that can occur when training deep
networks. , won
t comprehensively summari]e that work here, but
just want to briefly mention a couple of papers, to give you the
flavor of some of the questions people are asking.

$s a first e[ample, in ��1� *lorot and %engio found evidence
suggesting that the use of sigmoid activation functions can cause
problems training deep networks. ,n particular, they found
evidence that the use of sigmoids will cause the activations in the
final hidden layer to saturate near  early in training, substantially
slowing down learning. They suggested some alternative activation
functions, which appear not to suffer as much from this saturation
problem.

$s a second e[ample, in ��1� 6utskever, 0artens, Dahl and
+inton studied the impact on deep learning of both the random
weight initiali]ation and the momentum schedule in momentum-
based stochastic gradient descent. ,n both cases, making good
choices made a substantial difference in the ability to train deep
networks.

These e[amples suggest that �:hat makes deep networks hard to
train"� is a comple[ question. ,n this chapter, we
ve focused on the
instabilities associated to gradient-based learning in deep networks.
The results in the last two paragraphs suggest that there is also a
role played by the choice of activation function, the way weights are
initiali]ed, and even details of how learning by gradient descent is
implemented. $nd, of course, choice of network architecture and
other hyper-parameters is also important. Thus, many factors can
play a role in making deep networks hard to train, and
understanding all those factors is still a subject of ongoing research.
This all seems rather downbeat and pessimism-inducing. %ut the
good news is that in the ne[t chapter we
ll turn that around, and
develop several approaches to deep learning that to some e[tent
manage to overcome or route around all these challenges.

8nderstanding the difficulty of training deep
feedforward neural networks, by ;avier *lorot
and <oshua %engio ���1��. 6ee also the earlier
discussion of the use of sigmoids in (fficient
%ack3rop, by <ann /eCun, /pon %ottou,
*enevieve Orr and .laus-5obert 0�ller �1����.

On the importance of initiali]ation and
momentum in deep learning, by ,lya 6utskever,
-ames 0artens, *eorge Dahl and *eoffrey
+inton ���1��.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap�.html 1�/1�

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1/��

,n the last chapter we learned that deep neural networks are often
much harder to train than shallow neural networks. That
s
unfortunate, since we have good reason to believe that iI we could
train deep nets they
d be much more powerful than shallow nets.
%ut while the news from the last chapter is discouraging, we won
t
let it stop us. ,n this chapter, we
ll develop techniques which can be
used to train deep networks, and apply them in practice. :e
ll also
look at the broader picture, briefly reviewing recent progress on
using deep nets for image recognition, speech recognition, and
other applications. $nd we
ll take a brief, speculative look at what
the future may hold for neural nets, and for artificial intelligence.

The chapter is a long one. To help you navigate, let
s take a tour.
The sections are only loosely coupled, so provided you have some
basic familiarity with neural nets, you can jump to whatever most
interests you.

The main part of the chapter is an introduction to one of the most
widely used types of deep network: deep convolutional networks.
:e
ll work through a detailed e[ample - code and all - of using
convolutional nets to solve the problem of classifying handwritten
digits from the 0N,6T data set:

:e
ll start our account of convolutional networks with the shallow
networks used to attack this problem earlier in the book. Through
many iterations we
ll build up more and more powerful networks.
$s we go we
ll e[plore many powerful techniques: convolutions,
pooling, the use of *38s to do far more training than we did with
our shallow networks, the algorithmic e[pansion of our training
data �to reduce overfitting�, the use of the dropout technique �also
to reduce overfitting�, the use of ensembles of networks, and others.
The result will be a system that offers near-human performance. Of
the 1�,��� 0N,6T test images - images not seen during training� -
our system will classify �,��� correctly. +ere
s a peek at the ��
images which are misclassified. Note that the correct classification

&+$37(R��

'eep�OeDrnLnJ

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2/��

is in the top right� our program
s classification is in the bottom
right:

0any of these are tough even for a human to classify. Consider, for
e[ample, the third image in the top row. To me it looks more like a
��� than an ���, which is the official classification. Our network also
thinks it
s a ���. This kind of �error� is at the very least
understandable, and perhaps even commendable. :e conclude our
discussion of image recognition with a survey of some of the
spectacular recent progress using networks �particularly
convolutional nets� to do image recognition.

The remainder of the chapter discusses deep learning from a
broader and less detailed perspective. :e
ll briefly survey other
models of neural networks, such as recurrent neural nets and long
short-term memory units, and how such models can be applied to
problems in speech recognition, natural language processing, and
other areas. $nd we
ll speculate about the future of neural networks
and deep learning, ranging from ideas like intention-driven user
interfaces, to the role of deep learning in artificial intelligence.

The chapter builds on the earlier chapters in the book, making use
of and integrating ideas such as backpropagation, regulari]ation,
the softma[ function, and so on. +owever, to read the chapter you
don
t need to have worked in detail through all the earlier chapters.
,t will, however, help to have read Chapter 1, on the basics of neural

*oodfellow, and $aron Courville

%y 0ichael Nielsen � -an ��1�

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

networks. :hen , use concepts from Chapters � to �, , provide links
so you can familiari]e yourself, if necessary.

,t
s worth noting what the chapter is not. ,t
s not a tutorial on the
latest and greatest neural networks libraries. Nor are we going to be
training deep networks with do]ens of layers to solve problems at
the very leading edge. 5ather, the focus is on understanding some
of the core principles behind deep neural networks, and applying
them in the simple, easy-to-understand conte[t of the 0N,6T
problem. 3ut another way: the chapter is not going to bring you
right up to the frontier. 5ather, the intent of this and earlier
chapters is to focus on fundamentals, and so to prepare you to
understand a wide range of current work.

The chapter is currently in beta. , welcome notification of typos,
bugs, minor errors, and major misconceptions. 3lease drop me a
line at mn#michaelnielsen.org if you spot such an error.

,ntroduFing FonYolutional networks
,n earlier chapters, we taught our neural networks to do a pretty
good job recogni]ing images of handwritten digits:

:e did this using networks in which adjacent network layers are
fully connected to one another. That is, every neuron in the network
is connected to every neuron in adjacent layers:

,n particular, for each pi[el in the input image, we encoded the
pi[el
s intensity as the value for a corresponding neuron in the
input layer. For the  pi[el images we
ve been using, this
means our network has  � � input neurons. :e then

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

trained the network
s weights and biases so that the network
s
output would - we hope� - correctly identify the input image: 
�
, 
1
,

�
, ..., 
�
, or 
�
.

Our earlier networks work pretty well: we
ve obtained a
classification accuracy better than �� percent, using training and
test data from the 0N,6T handwritten digit data set. %ut upon
reflection, it
s strange to use networks with fully-connected layers to
classify images. The reason is that such a network architecture does
not take into account the spatial structure of the images. For
instance, it treats input pi[els which are far apart and close together
on e[actly the same footing. 6uch concepts of spatial structure must
instead be inferred from the training data. %ut what if, instead of
starting with a network architecture which is taEula rasa, we used
an architecture which tries to take advantage of the spatial
structure" ,n this section , describe FonYolutional neural
networks. These networks use a special architecture which is
particularly well-adapted to classify images. 8sing this architecture
makes convolutional networks fast to train. This, in turns, helps us
train deep, many-layer networks, which are very good at classifying
images. Today, deep convolutional networks or some close variant
are used in most neural networks for image recognition.

Convolutional neural networks use three basic ideas: loFal reFeptiYe
Iields, sKared weigKts, and pooling. /et
s look at each of these ideas
in turn.

/ocal receptiYe Iields� ,n the fully-connected layers shown
earlier, the inputs were depicted as a vertical line of neurons. ,n a
convolutional net, it
ll help to think instead of the inputs as a 
square of neurons, whose values correspond to the  pi[el
intensities we
re using as inputs:

The origins of convolutional neural networks go
back to the 1���s. %ut the seminal paper
establishing the modern subject of convolutional
networks was a 1��� paper, �*radient-based
learning applied to document recognition�, by
<ann /eCun, /pon %ottou, <oshua %engio, and
3atrick +affner. /eCun has since made an
interesting remark on the terminology for
convolutional nets: �The >biological@ neural
inspiration in models like convolutional nets is
very tenuous. That
s why , call them

convolutional nets
 not 
convolutional neural
nets
, and why we call the nodes 
units
 and not

neurons
 �. Despite this remark, convolutional
nets use many of the same ideas as the neural
networks we
ve studied up to now: ideas such as
backpropagation, gradient descent,
regulari]ation, non-linear activation functions,
and so on. $nd so we will follow common
practice, and consider them a type of neural
network. , will use the terms �convolutional
neural network� and �convolutional net�work��
interchangeably. , will also use the terms �
>artificial@ neuron� and �unit� interchangeably.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

$s per usual, we
ll connect the input pi[els to a layer of hidden
neurons. %ut we won
t connect every input pi[el to every hidden
neuron. ,nstead, we only make connections in small, locali]ed
regions of the input image.

To be more precise, each neuron in the first hidden layer will be
connected to a small region of the input neurons, say, for e[ample,
a  region, corresponding to  input pi[els. 6o, for a particular
hidden neuron, we might have connections that look like this:

That region in the input image is called the loFal reFeptiYe Iield for
the hidden neuron. ,t
s a little window on the input pi[els. (ach
connection learns a weight. $nd the hidden neuron learns an
overall bias as well. <ou can think of that particular hidden neuron
as learning to analy]e its particular local receptive field.

:e then slide the local receptive field across the entire input image.
For each local receptive field, there is a different hidden neuron in
the first hidden layer. To illustrate this concretely, let
s start with a
local receptive field in the top-left corner:

Then we slide the local receptive field over by one pi[el to the right
�i.e., by one neuron�, to connect to a second hidden neuron:

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 6/��

$nd so on, building up the first hidden layer. Note that if we have a 
 input image, and  local receptive fields, then there will

be  neurons in the hidden layer. This is because we can only
move the local receptive field  neurons across �or  neurons
down�, before colliding with the right-hand side �or bottom� of the
input image.

,
ve shown the local receptive field being moved by one pi[el at a
time. ,n fact, sometimes a different stride lengtK is used. For
instance, we might move the local receptive field  pi[els to the
right �or down�, in which case we
d say a stride length of  is used.
,n this chapter we
ll mostly stick with stride length , but it
s worth
knowing that people sometimes e[periment with different stride
lengths.

SKared ZeigKts and Eiases� ,
ve said that each hidden neuron
has a bias and  weights connected to its local receptive field.
:hat , did not yet mention is that we
re going to use the saPe
weights and bias for each of the  hidden neurons. ,n other
words, for the th hidden neuron, the output is:

+ere,  is the neural activation function - perhaps the sigmoid
function we used in earlier chapters.  is the shared value for the
bias.  is a  array of shared weights. $nd, finally, we use 
to denote the input activation at position .

This means that all the neurons in the first hidden layer detect
e[actly the same feature, just at different locations in the input
image. To see why this makes sense, suppose the weights and bias
are such that the hidden neuron can pick out, say, a vertical edge in

$s was done in earlier chapters, if we
re
interested in trying different stride lengths then
we can use validation data to pick out the stride
length which gives the best performance. For
more details, see the earlier discussion of how to
choose hyper-parameters in a neural network.
The same approach may also be used to choose
the si]e of the local receptive field - there is, of
course, nothing special about using a  local
receptive field. ,n general, larger local receptive
fields tend to be helpful when the input images
are significantly larger than the  pi[el
0N,6T images.

, haven
t precisely defined the notion of a
feature. ,nformally, think of the feature detected
by a hidden neuron as the kind of input pattern
that will cause the neuron to activate: it might be
an edge in the image, for instance, or maybe
some other type of shape.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

a particular local receptive field. That ability is also likely to be
useful at other places in the image. $nd so it is useful to apply the
same feature detector everywhere in the image. To put it in slightly
more abstract terms, convolutional networks are well adapted to
the translation invariance of images: move a picture of a cat �say� a
little ways, and it
s still an image of a cat.

For this reason, we sometimes call the map from the input layer to
the hidden layer a Ieature Pap. :e call the weights defining the
feature map the sKared weigKts. $nd we call the bias defining the
feature map in this way the sKared Eias. The shared weights and
bias are often said to define a kernel or Iilter. ,n the literature,
people sometimes use these terms in slightly different ways, and for
that reason ,
m not going to be more precise� rather, in a moment,
we
ll look at some concrete e[amples.

The network structure ,
ve described so far can detect just a single
kind of locali]ed feature. To do image recognition we
ll need more
than one feature map. $nd so a complete convolutional layer
consists of several different feature maps:

,n the e[ample shown, there are  feature maps. (ach feature map
is defined by a set of  shared weights, and a single shared bias.
The result is that the network can detect  different kinds of
features, with each feature being detectable across the entire image.

,
ve shown just  feature maps, to keep the diagram above simple.
+owever, in practice convolutional networks may use more �and
perhaps many more� feature maps. One of the early convolutional
networks, /eNet-�, used  feature maps, each associated to a 
local receptive field, to recogni]e 0N,6T digits. 6o the e[ample
illustrated above is actually pretty close to /eNet-�. ,n the e[amples
we develop later in the chapter we
ll use convolutional layers with 

,n fact, for the 0N,6T digit classification
problem we
ve been studying, the images are
centered and si]e-normali]ed. 6o 0N,6T has
less translation invariance than images found �in
the wild�, so to speak. 6till, features like edges
and corners are likely to be useful across much of
the input space.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

and  feature maps. /et
s take a quick peek at some of the features
which are learned:

The  images correspond to  different feature maps �or filters, or
kernels�. (ach map is represented as a  block image,
corresponding to the  weights in the local receptive field.
:hiter blocks mean a smaller �typically, more negative� weight, so
the feature map responds less to corresponding input pi[els. Darker
blocks mean a larger weight, so the feature map responds more to
the corresponding input pi[els. 9ery roughly speaking, the images
above show the type of features the convolutional layer responds to.

6o what can we conclude from these feature maps" ,t
s clear there is
spatial structure here beyond what we
d e[pect at random: many of
the features have clear sub-regions of light and dark. That shows
our network really is learning things related to the spatial structure.
+owever, beyond that, it
s difficult to see what these feature
detectors are learning. Certainly, we
re not learning �say� the *abor
filters which have been used in many traditional approaches to
image recognition. ,n fact, there
s now a lot of work on better
understanding the features learnt by convolutional networks. ,f
you
re interested in following up on that work, , suggest starting
with the paper 9isuali]ing and 8nderstanding Convolutional
Networks by 0atthew =eiler and 5ob Fergus ���1��.

$ big advantage of sharing weights and biases is that it greatly
reduces the number of parameters involved in a convolutional
network. For each feature map we need  shared weights,
plus a single shared bias. 6o each feature map requires 
parameters. ,f we have  feature maps that
s a total of 

 parameters defining the convolutional layer. %y

The feature maps illustrated come from the
final convolutional network we train, see here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �/��

comparison, suppose we had a fully connected first layer, with 
 input neurons, and a relatively modest  hidden

neurons, as we used in many of the e[amples earlier in the book.
That
s a total of  weights, plus an e[tra  biases, for a total
of  parameters. ,n other words, the fully-connected layer
would have more than  times as many parameters as the
convolutional layer.

Of course, we can
t really do a direct comparison between the
number of parameters, since the two models are different in
essential ways. %ut, intuitively, it seems likely that the use of
translation invariance by the convolutional layer will reduce the
number of parameters it needs to get the same performance as the
fully-connected model. That, in turn, will result in faster training
for the convolutional model, and, ultimately, will help us build deep
networks using convolutional layers.

,ncidentally, the name FonYolutional comes from the fact that the
operation in (quation �1��� is sometimes known as a FonYolution.
$ little more precisely, people sometimes write that equation as 

, where  denotes the set of output activations
from one feature map,  is the set of input activations, and  is
called a convolution operation. :e
re not going to make any deep
use of the mathematics of convolutions, so you don
t need to worry
too much about this connection. %ut it
s worth at least knowing
where the name comes from.

3ooling la\ers� ,n addition to the convolutional layers just
described, convolutional neural networks also contain pooling
la\ers. 3ooling layers are usually used immediately after
convolutional layers. :hat the pooling layers do is simplify the
information in the output from the convolutional layer.

,n detail, a pooling layer takes each feature map output from the
convolutional layer and prepares a condensed feature map. For
instance, each unit in the pooling layer may summari]e a region of
�say�  neurons in the previous layer. $s a concrete e[ample,
one common procedure for pooling is known as Pa[�pooling. ,n
ma[-pooling, a pooling unit simply outputs the ma[imum
activation in the  input region, as illustrated in the following
diagram:

The nomenclature is being used loosely here. ,n
particular, ,
m using �feature map� to mean not
the function computed by the convolutional
layer, but rather the activation of the hidden
neurons output from the layer. This kind of mild
abuse of nomenclature is pretty common in the
research literature.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 10/��

Note that since we have  neurons output from the
convolutional layer, after pooling we have  neurons.

$s mentioned above, the convolutional layer usually involves more
than a single feature map. :e apply ma[-pooling to each feature
map separately. 6o if there were three feature maps, the combined
convolutional and ma[-pooling layers would look like:

:e can think of ma[-pooling as a way for the network to ask
whether a given feature is found anywhere in a region of the image.
,t then throws away the e[act positional information. The intuition
is that once a feature has been found, its e[act location isn
t as
important as its rough location relative to other features. $ big
benefit is that there are many fewer pooled features, and so this
helps reduce the number of parameters needed in later layers.

0a[-pooling isn
t the only technique used for pooling. $nother
common approach is known as L� pooling. +ere, instead of taking
the ma[imum activation of a  region of neurons, we take the
square root of the sum of the squares of the activations in the 
region. :hile the details are different, the intuition is similar to
ma[-pooling: /� pooling is a way of condensing information from
the convolutional layer. ,n practice, both techniques have been
widely used. $nd sometimes people use other types of pooling
operation. ,f you
re really trying to optimi]e performance, you may
use validation data to compare several different approaches to

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 11/��

pooling, and choose the approach which works best. %ut we
re not
going to worry about that kind of detailed optimi]ation.

3utting it all togetKer� :e can now put all these ideas together
to form a complete convolutional neural network. ,t
s similar to the
architecture we were just looking at, but has the addition of a layer
of  output neurons, corresponding to the  possible values for
0N,6T digits �
�
, 
1
, 
�
, etF�:

The network begins with  input neurons, which are used to
encode the pi[el intensities for the 0N,6T image. This is then
followed by a convolutional layer using a  local receptive field
and  feature maps. The result is a layer of  hidden
feature neurons. The ne[t step is a ma[-pooling layer, applied to 

 regions, across each of the  feature maps. The result is a layer
of  hidden feature neurons.

The final layer of connections in the network is a fully-connected
layer. That is, this layer connects eYer\ neuron from the ma[-
pooled layer to every one of the  output neurons. This fully-
connected architecture is the same as we used in earlier chapters.
Note, however, that in the diagram above, ,
ve used a single arrow,
for simplicity, rather than showing all the connections. Of course,
you can easily imagine the connections.

This convolutional architecture is quite different to the
architectures used in earlier chapters. %ut the overall picture is
similar: a network made of many simple units, whose behaviors are
determined by their weights and biases. $nd the overall goal is still
the same: to use training data to train the network
s weights and
biases so that the network does a good job classifying input digits.

,n particular, just as earlier in the book, we will train our network
using stochastic gradient descent and backpropagation. This mostly

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 12/��

proceeds in e[actly the same way as in earlier chapters. +owever,
we do need to make few modifications to the backpropagation
procedure. The reason is that our earlier derivation of
backpropagation was for networks with fully-connected layers.
Fortunately, it
s straightforward to modify the derivation for
convolutional and ma[-pooling layers. ,f you
d like to understand
the details, then , invite you to work through the following problem.
%e warned that the problem will take some time to work through,
unless you
ve really internali]ed the earlier derivation of
backpropagation �in which case it
s easy�.

3roEleP

%acNpropagation in a conYolutional netZorN The core
equations of backpropagation in a network with fully-
connected layers are �%31�-�%3�� �link�. 6uppose we have a
network containing a convolutional layer, a ma[-pooling layer,
and a fully-connected output layer, as in the network discussed
above. +ow are the equations of backpropagation modified"

&onYolutional neural networks in
praFtiFe
:e
ve now seen the core ideas behind convolutional neural
networks. /et
s look at how they work in practice, by implementing
some convolutional networks, and applying them to the 0N,6T
digit classification problem. The program we
ll use to do this is
called QHWZRUN��S\, and it
s an improved version of the programs
QHWZRUN�S\ and QHWZRUN��S\ developed in earlier chapters. ,f you
wish to follow along, the code is available on *it+ub. Note that we
ll
work through the code for QHWZRUN��S\ itself in the ne[t section. ,n
this section, we
ll use QHWZRUN��S\ as a library to build convolutional
networks.

The programs QHWZRUN�S\ and QHWZRUN��S\ were implemented using
3ython and the matri[ library Numpy. Those programs worked
from first principles, and got right down into the details of
backpropagation, stochastic gradient descent, and so on. %ut now
that we understand those details, for QHWZRUN��S\ we
re going to use
a machine learning library known as Theano. 8sing Theano makes
it easy to implement backpropagation for convolutional neural

Note also that QHWZRUN��S\ incorporates
ideas from the Theano library
s documentation
on convolutional neural nets �notably the
implementation of /eNet-��, from 0isha Denil
s
implementation of dropout, and from Chris
Olah.

6ee Theano: $ C38 and *38 0ath ([pression
Compiler in 3ython, by -ames %ergstra, Olivier
%reuleu[, Frederic %astien, 3ascal /amblin,

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

networks, since it automatically computes all the mappings
involved. Theano is also quite a bit faster than our earlier code
�which was written to be easy to understand, not fast�, and this
makes it practical to train more comple[ networks. ,n particular,
one great feature of Theano is that it can run code on either a C38
or, if available, a *38. 5unning on a *38 provides a substantial
speedup and, again, helps make it practical to train more comple[
networks.

,f you wish to follow along, then you
ll need to get Theano running
on your system. To install Theano, follow the instructions at the
project
s homepage. The e[amples which follow were run using
Theano �.�. 6ome were run under 0ac O6 ; <osemite, with no
*38. 6ome were run on 8buntu 1�.��, with an N9,D,$ *38. $nd
some of the e[periments were run under both. To get QHWZRUN��S\
running you
ll need to set the *38 flag to either 7UXH or )DOVH �as
appropriate� in the QHWZRUN��S\ source. %eyond that, to get Theano
up and running on a *38 you may find the instructions here
helpful. There are also tutorials on the web, easily found using
*oogle, which can help you get things working. ,f you don
t have a
*38 available locally, then you may wish to look into $ma]on :eb
6ervices (C� *� spot instances. Note that even with a *38 the code
will take some time to e[ecute. 0any of the e[periments take from
minutes to hours to run. On a C38 it may take days to run the most
comple[ of the e[periments. $s in earlier chapters, , suggest setting
things running, and continuing to read, occasionally coming back to
check the output from the code. ,f you
re using a C38, you may
wish to reduce the number of training epochs for the more comple[
e[periments, or perhaps omit them entirely.

To get a baseline, we
ll start with a shallow architecture using just a
single hidden layer, containing  hidden neurons. :e
ll train for 

 epochs, using a learning rate of , a mini-batch si]e of ,
and no regulari]ation. +ere we go:

!!!�import�network�
!!!�from�network��import�NHWZRUN
!!!�from�network��import�&RQY3RRO/D\HU��)XOO\&RQQHFWHG/D\HU��6RIWPD[/D\HU
!!!�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �QHWZRUN��ORDGBGDWDBVKDUHG��

!!!�PLQLBEDWFKBVL]H� ���

!!!�QHW� �NHWZRUN�>

��������)XOO\&RQQHFWHG/D\HU�QBLQ �����QBRXW �����

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�WUDLQLQJBGDWD������PLQLBEDWFKBVL]H�������

������������YDOLGDWLRQBGDWD��WHVWBGDWD�

5av]an 3ascanu, *uillaume Desjardins, -oseph
Turian, David :arde-Farley, and <oshua %engio
���1��. Theano is also the basis for the popular
3ylearn� and .eras neural networks libraries.
Other popular neural nets libraries at the time of
this writing include Caffe and Torch.

$s , release this chapter, the current version of
Theano has changed to version �.�. ,
ve actually
rerun the e[amples under Theano �.� and get
e[tremely similar results to those reported in the
te[t.

Code for the e[periments in this section may be
found in this script. Note that the code in the
script simply duplicates and parallels the
discussion in this section.

Note also that throughout the section ,
ve
e[plicitly specified the number of training
epochs. ,
ve done this for clarity about how we
re
training. ,n practice, it
s worth using early
stopping, that is, tracking accuracy on the
validation set, and stopping training when we
are confident the validation accuracy has
stopped improving.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

, obtained a best classification accuracy of  percent. This is the
classification accuracy on the WHVWBGDWD, evaluated at the training
epoch where we get the best classification accuracy on the
YDOLGDWLRQBGDWD. 8sing the validation data to decide when to
evaluate the test accuracy helps avoid overfitting to the test data
�see this earlier discussion of the use of validation data�. :e will
follow this practice below. <our results may vary slightly, since the
network
s weights and biases are randomly initiali]ed.

This  percent accuracy is close to the  percent accuracy
obtained back in Chapter �, using a similar network architecture
and learning hyper-parameters. ,n particular, both e[amples used a
shallow network, with a single hidden layer containing  hidden
neurons. %oth also trained for  epochs, used a mini-batch si]e of 

, and a learning rate of .

There were, however, two differences in the earlier network. First,
we regulari]ed the earlier network, to help reduce the effects of
overfitting. 5egulari]ing the current network does improve the
accuracies, but the gain is only small, and so we
ll hold off worrying
about regulari]ation until later. 6econd, while the final layer in the
earlier network used sigmoid activations and the cross-entropy cost
function, the current network uses a softma[ final layer, and the
log-likelihood cost function. $s e[plained in Chapter � this isn
t a
big change. , haven
t made this switch for any particularly deep
reason - mostly, ,
ve done it because softma[ plus log-likelihood
cost is more common in modern image classification networks.

Can we do better than these results using a deeper network
architecture"

/et
s begin by inserting a convolutional layer, right at the beginning
of the network. :e
ll use  by  local receptive fields, a stride length
of , and  feature maps. :e
ll also insert a ma[-pooling layer,
which combines the features using  by  pooling windows. 6o the
overall network architecture looks much like the architecture
discussed in the last section, but with an e[tra fully-connected
layer:

,n fact, in this e[periment , actually did three
separate runs training a network with this
architecture. , then reported the test accuracy
which corresponded to the best validation
accuracy from any of the three runs. 8sing
multiple runs helps reduce variation in results,
which is useful when comparing many
architectures, as we are doing. ,
ve followed this
procedure below, e[cept where noted. ,n
practice, it made little difference to the results
obtained.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

,n this architecture, we can think of the convolutional and pooling
layers as learning about local spatial structure in the input training
image, while the later, fully-connected layer learns at a more
abstract level, integrating global information from across the entire
image. This is a common pattern in convolutional neural networks.

/et
s train such a network, and see how it performs:

!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

��������)XOO\&RQQHFWHG/D\HU�QBLQ ��������QBRXW �����

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�WUDLQLQJBGDWD������PLQLBEDWFKBVL]H�������

������������YDOLGDWLRQBGDWD��WHVWBGDWD����

That gets us to  percent accuracy, which is a considerable
improvement over any of our previous results. ,ndeed, we
ve
reduced our error rate by better than a third, which is a great
improvement.

,n specifying the network structure, ,
ve treated the convolutional
and pooling layers as a single layer. :hether they
re regarded as
separate layers or as a single layer is to some e[tent a matter of
taste. QHWZRUN��S\ treats them as a single layer because it makes the
code for QHWZRUN��S\ a little more compact. +owever, it is easy to
modify QHWZRUN��S\ so the layers can be specified separately, if
desired.

([erFise

:hat classification accuracy do you get if you omit the fully-
connected layer, and just use the convolutional-pooling layer
and softma[ layer" Does the inclusion of the fully-connected
layer help"

Can we improve on the  percent classification accuracy"

,
ve continued to use a mini-batch si]e of 
here. ,n fact, as we discussed earlier it may be
possible to speed up training using larger mini-
batches. ,
ve continued to use the same mini-
batch si]e mostly for consistency with the
e[periments in earlier chapters.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 16/��

/et
s try inserting a second convolutional-pooling layer. :e
ll make
the insertion between the e[isting convolutional-pooling layer and
the fully-connected hidden layer. $gain, we
ll use a  local
receptive field, and pool over  regions. /et
s see what happens
when we train using similar hyper-parameters to before:

!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H���������������

����������������������ILOWHUBVKDSH ����������������

����������������������SRROVL]H ��������

��������)XOO\&RQQHFWHG/D\HU�QBLQ ������QBRXW �����

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�WUDLQLQJBGDWD������PLQLBEDWFKBVL]H�������

������������YDOLGDWLRQBGDWD��WHVWBGDWD���������

Once again, we get an improvement: we
re now at  percent
classification accuracy�

There
s two natural questions to ask at this point. The first question
is: what does it even mean to apply a second convolutional-pooling
layer" ,n fact, you can think of the second convolutional-pooling
layer as having as input  �images�, whose �pi[els� represent
the presence �or absence� of particular locali]ed features in the
original input image. 6o you can think of this layer as having as
input a version of the original input image. That version is
abstracted and condensed, but still has a lot of spatial structure,
and so it makes sense to use a second convolutional-pooling layer.

That
s a satisfying point of view, but gives rise to a second question.
The output from the previous layer involves  separate feature
maps, and so there are  inputs to the second
convolutional-pooling layer. ,t
s as though we
ve got  separate
images input to the convolutional-pooling layer, not a single image,
as was the case for the first convolutional-pooling layer. +ow
should neurons in the second convolutional-pooling layer respond
to these multiple input images" ,n fact, we
ll allow each neuron in
this layer to learn from all  input neurons in its local
receptive field. 0ore informally: the feature detectors in the second
convolutional-pooling layer have access to all the features from the
previous layer, but only within their particular local receptive field.

3roEleP

This issue would have arisen in the first layer if
the input images were in color. ,n that case we
d
have � input features for each pi[el,
corresponding to red, green and blue channels in
the input image. 6o we
d allow the feature
detectors to have access to all color information,
but only within a given local receptive field.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

8sing tKe tanK actiYation Iunction 6everal times earlier in
the book ,
ve mentioned arguments that the tanh function may
be a better activation function than the sigmoid function.
:e
ve never acted on those suggestions, since we were already
making plenty of progress with the sigmoid. %ut now let
s try
some e[periments with tanh as our activation function. Try
training the network with tanh activations in the convolutional
and fully-connected layers. %egin with the same hyper-
parameters as for the sigmoid network, but train for  epochs
instead of . +ow well does your network perform" :hat if
you continue out to  epochs" Try plotting the per-epoch
validation accuracies for both tanh- and sigmoid-based
networks, all the way out to  epochs. ,f your results are
similar to mine, you
ll find the tanh networks train a little
faster, but the final accuracies are very similar. Can you e[plain
why the tanh network might train faster" Can you get a similar
training speed with the sigmoid, perhaps by changing the
learning rate, or doing some rescaling" Try a half-do]en
iterations on the learning hyper-parameters or network
architecture, searching for ways that tanh may be superior to
the sigmoid. Note� 7Kis is an open�ended proEleP� 3ersonall\�
, did not Iind PuFK adYantage in switFKing to tanK� altKougK ,

KaYen
t e[periPented e[KaustiYel\� and perKaps \ou Pa\ Iind

a wa\� ,n an\ Fase� in a PoPent we will Iind an adYantage in

switFKing to tKe reFtiIied linear aFtiYation IunFtion� and so we

won
t go an\ deeper into tKe use oI tanK�

8sing rectiIied linear units� The network we
ve developed at
this point is actually a variant of one of the networks used in the
seminal 1��� paper introducing the 0N,6T problem, a network
known as /eNet-�. ,t
s a good foundation for further
e[perimentation, and for building up understanding and intuition.
,n particular, there are many ways we can vary the network in an
attempt to improve our results.

$s a beginning, let
s change our neurons so that instead of using a
sigmoid activation function, we use rectified linear units. That is,
we
ll use the activation function . :e
ll train for 
epochs, with a learning rate of . , also found that it helps a
little to use some l� regulari]ation, with regulari]ation parameter 

:

Note that you can pass DFWLYDWLRQBIQ WDQK
as a parameter to the &RQY3RRO/D\HU and
)XOO\&RQQHFWHG/D\HU classes.

<ou may perhaps find inspiration in recalling
that .

�*radient-based learning applied to document
recognition�, by <ann /eCun, /pon %ottou,
<oshua %engio, and 3atrick +affner �1����.
There are many differences of detail, but broadly
speaking our network is quite similar to the
networks described in the paper.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

!!!�from�network��import�RH/8
!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H���������������

����������������������ILOWHUBVKDSH ����������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������)XOO\&RQQHFWHG/D\HU�QBLQ ������QBRXW �����DFWLYDWLRQBIQ RH/8��

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�WUDLQLQJBGDWD������PLQLBEDWFKBVL]H��������

������������YDOLGDWLRQBGDWD��WHVWBGDWD��OPEGD ����

, obtained a classification accuracy of  percent. ,t
s a modest
improvement over the sigmoid results � �. +owever, across all
my e[periments , found that networks based on rectified linear
units consistently outperformed networks based on sigmoid
activation functions. There appears to be a real gain in moving to
rectified linear units for this problem.

:hat makes the rectified linear activation function better than the
sigmoid or tanh functions" $t present, we have a poor
understanding of the answer to this question. ,ndeed, rectified
linear units have only begun to be widely used in the past few years.
The reason for that recent adoption is empirical: a few people tried
rectified linear units, often on the basis of hunches or heuristic
arguments. They got good results classifying benchmark data sets,
and the practice has spread. ,n an ideal world we
d have a theory
telling us which activation function to pick for which application.
%ut at present we
re a long way from such a world. , should not be
at all surprised if further major improvements can be obtained by
an even better choice of activation function. $nd , also e[pect that
in coming decades a powerful theory of activation functions will be
developed. Today, we still have to rely on poorly understood rules of
thumb and e[perience.

([panding tKe training data� $nother way we may hope to
improve our results is by algorithmically e[panding the training
data. $ simple way of e[panding the training data is to displace
each training image by a single pi[el, either up one pi[el, down one
pi[el, left one pi[el, or right one pi[el. :e can do this by running
the program H[SDQGBPQLVW�S\ from the shell prompt:

�

��S\WKRQ�H[SDQGBPQLVW�S\

$ common justification is that  doesn
t
saturate in the limit of large , unlike sigmoid
neurons, and this helps rectified linear units
continue learning. The argument is fine, as far it
goes, but it
s hardly a detailed justification, more
of a just-so story. Note that we discussed the
problems with saturation back in Chapter �.

The code for H[SDQGBPQLVW�S\ is available
here.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 1�/��

5unning this program takes the  0N,6T training images,
and prepares an e[panded training set, with  training
images. :e can then use those training images to train our
network. :e
ll use the same network as above, with rectified linear
units. ,n my initial e[periments , reduced the number of training
epochs - this made sense, since we
re training with  times as much
data. %ut, in fact, e[panding the data turned out to considerably
reduce the effect of overfitting. $nd so, after some e[perimentation,
, eventually went back to training for  epochs. ,n any case, let
s
train:

!!!�H[SDQGHGBWUDLQLQJBGDWD��B��B� �QHWZRUN��ORDGBGDWDBVKDUHG�

������������GDWD�PQLVWBH[SDQGHG�SNO�J]��

!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H���������������

����������������������ILOWHUBVKDSH ����������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������)XOO\&RQQHFWHG/D\HU�QBLQ ������QBRXW �����DFWLYDWLRQBIQ RH/8��

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�H[SDQGHGBWUDLQLQJBGDWD������PLQLBEDWFKBVL]H��������

������������YDOLGDWLRQBGDWD��WHVWBGDWD��OPEGD ����

8sing the e[panded training data , obtained a  percent
training accuracy. 6o this almost trivial change gives a substantial
improvement in classification accuracy. ,ndeed, as we discussed
earlier this idea of algorithmically e[panding the data can be taken
further. -ust to remind you of the flavour of some of the results in
that earlier discussion: in ���� 6imard, 6teinkraus and 3latt
improved their 0N,6T performance to  percent using a neural
network otherwise very similar to ours, using two convolutional-
pooling layers, followed by a hidden fully-connected layer with 
neurons. There were a few differences of detail in their architecture
- they didn
t have the advantage of using rectified linear units, for
instance - but the key to their improved performance was
e[panding the training data. They did this by rotating, translating,
and skewing the 0N,6T training images. They also developed a
process of �elastic distortion�, a way of emulating the random
oscillations hand muscles undergo when a person is writing. %y
combining all these processes they substantially increased the
effective si]e of their training data, and that
s how they achieved 

 percent accuracy.

%est 3ractices for Convolutional Neural
Networks $pplied to 9isual Document $nalysis,
by 3atrice 6imard, Dave 6teinkraus, and -ohn
3latt ������.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 20/��

3roEleP

The idea of convolutional layers is to behave in an invariant
way across images. ,t may seem surprising, then, that our
network can learn more when all we
ve done is translate the
input data. Can you e[plain why this is actually quite
reasonable"

Inserting an e[tra Iull\�connected la\er� Can we do even
better" One possibility is to use e[actly the same procedure as
above, but to e[pand the si]e of the fully-connected layer. , tried
with  and  neurons, obtaining results of  and 
percent, respectively. That
s interesting, but not really a convincing
win over the earlier result �  percent�.

:hat about adding an e[tra fully-connected layer" /et
s try
inserting an e[tra fully-connected layer, so that we have two -
hidden neuron fully-connected layers:

!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H���������������

����������������������ILOWHUBVKDSH ����������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������)XOO\&RQQHFWHG/D\HU�QBLQ ������QBRXW �����DFWLYDWLRQBIQ RH/8��

��������)XOO\&RQQHFWHG/D\HU�QBLQ �����QBRXW �����DFWLYDWLRQBIQ RH/8��

��������6RIWPD[/D\HU�QBLQ �����QBRXW ���@��PLQLBEDWFKBVL]H�

!!!�QHW�6*D�H[SDQGHGBWUDLQLQJBGDWD������PLQLBEDWFKBVL]H��������

������������YDOLGDWLRQBGDWD��WHVWBGDWD��OPEGD ����

Doing this, , obtained a test accuracy of  percent. $gain, the
e[panded net isn
t helping so much. 5unning similar e[periments
with fully-connected layers containing  and  neurons yields
results of  and  percent. That
s encouraging, but still falls
short of a really decisive win.

:hat
s going on here" ,s it that the e[panded or e[tra fully-
connected layers really don
t help with 0N,6T" Or might it be that
our network has the capacity to do better, but we
re going about
learning the wrong way" For instance, maybe we could use stronger
regulari]ation techniques to reduce the tendency to overfit. One
possibility is the dropout technique introduced back in Chapter �.
5ecall that the basic idea of dropout is to remove individual
activations at random while training the network. This makes the

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 21/��

model more robust to the loss of individual pieces of evidence, and
thus less likely to rely on particular idiosyncracies of the training
data. /et
s try applying dropout to the final fully-connected layers:

!!!�QHW� �NHWZRUN�>

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H��������������

����������������������ILOWHUBVKDSH ���������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������&RQY3RRO/D\HU�LPDJHBVKDSH �PLQLBEDWFKBVL]H���������������

����������������������ILOWHUBVKDSH ����������������

����������������������SRROVL]H ��������

����������������������DFWLYDWLRQBIQ RH/8��

��������)XOO\&RQQHFWHG/D\HU�

������������QBLQ ������QBRXW ������DFWLYDWLRQBIQ RH/8��SBGURSRXW �����

��������)XOO\&RQQHFWHG/D\HU�

������������QBLQ ������QBRXW ������DFWLYDWLRQBIQ RH/8��SBGURSRXW �����

��������6RIWPD[/D\HU�QBLQ ������QBRXW ����SBGURSRXW ����@��

��������PLQLBEDWFKBVL]H�

!!!�QHW�6*D�H[SDQGHGBWUDLQLQJBGDWD������PLQLBEDWFKBVL]H��������

������������YDOLGDWLRQBGDWD��WHVWBGDWD�

8sing this, we obtain an accuracy of  percent, which is a
substantial improvement over our earlier results, especially our
main benchmark, the network with  hidden neurons, where we
achieved  percent.

There are two changes worth noting.

First, , reduced the number of training epochs to : dropout
reduced overfitting, and so we learned faster.

6econd, the fully-connected hidden layers have  neurons, not
the  used earlier. Of course, dropout effectively omits many of
the neurons while training, so some e[pansion is to be e[pected. ,n
fact, , tried e[periments with both  and  hidden neurons,
and obtained �very slightly� better validation performance with 

 hidden neurons.

8sing an ensemEle oI netZorNs� $n easy way to improve
performance still further is to create several neural networks, and
then get them to vote to determine the best classification. 6uppose,
for e[ample, that we trained  different neural networks using the
prescription above, with each achieving accuracies near to 
percent. (ven though the networks would all have similar
accuracies, they might well make different errors, due to the
different random initiali]ations. ,t
s plausible that taking a vote
amongst our  networks might yield a classification better than any
individual network.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 22/��

This sounds too good to be true, but this kind of ensembling is a
common trick with both neural networks and other machine
learning techniques. $nd it does in fact yield further improvements:
we end up with  percent accuracy. ,n other words, our
ensemble of networks classifies all but  of the  test images
correctly.

The remaining errors in the test set are shown below. The label in
the top right is the correct classification, according to the 0N,6T
data, while in the bottom right is the label output by our ensemble
of nets:

,t
s worth looking through these in detail. The first two digits, a �
and a �, are genuine errors by our ensemble. +owever, they
re also
understandable errors, the kind a human could plausibly make.
That � really does look a lot like a �, and the � looks a lot like a �.
The third image, supposedly an �, actually looks to me more like a
�. 6o ,
m siding with the network ensemble here: , think it
s done a
better job than whoever originally drew the digit. On the other
hand, the fourth image, the �, really does seem to be classified badly
by our networks.

$nd so on. ,n most cases our networks
 choices seem at least
plausible, and in some cases they
ve done a better job classifying
than the original person did writing the digit. Overall, our networks
offer e[ceptional performance, especially when you consider that
they correctly classified �,��� images which aren
t shown. ,n that

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

conte[t, the few clear errors here seem quite understandable. (ven
a careful human makes the occasional mistake. $nd so , e[pect that
only an e[tremely careful and methodical human would do much
better. Our network is getting near to human performance.

:K\ Ze onl\ applied dropout to tKe Iull\�connected
la\ers� ,f you look carefully at the code above, you
ll notice that we
applied dropout only to the fully-connected section of the network,
not to the convolutional layers. ,n principle we could apply a similar
procedure to the convolutional layers. %ut, in fact, there
s no need:
the convolutional layers have considerable inbuilt resistance to
overfitting. The reason is that the shared weights mean that
convolutional filters are forced to learn from across the entire
image. This makes them less likely to pick up on local idiosyncracies
in the training data. $nd so there is less need to apply other
regulari]ers, such as dropout.

*oing IurtKer� ,t
s possible to improve performance on 0N,6T
still further. 5odrigo %enenson has compiled an informative
summary page, showing progress over the years, with links to
papers. 0any of these papers use deep convolutional networks
along lines similar to the networks we
ve been using. ,f you dig
through the papers you
ll find many interesting techniques, and you
may enjoy implementing some of them. ,f you do so it
s wise to start
implementation with a simple network that can be trained quickly,
which will help you more rapidly understand what is going on.

For the most part, , won
t try to survey this recent work. %ut , can
t
resist making one e[ception. ,t
s a ��1� paper by Cireɇan, 0eier,
*ambardella, and 6chmidhuber. :hat , like about this paper is
how simple it is. The network is a many-layer neural network, using
only fully-connected layers �no convolutions�. Their most successful
network had hidden layers containing , , , ,
and  neurons, respectively. They used ideas similar to 6imard et
al to e[pand their training data. %ut apart from that, they used few
other tricks, including no convolutional layers: it was a plain,
vanilla network, of the kind that, with enough patience, could have
been trained in the 1���s �if the 0N,6T data set had e[isted�, given
enough computing power��� They achieved a classification accuracy
of  percent, more or less the same as ours. The key was to use a
very large, very deep network, and to use a *38 to speed up

Deep, %ig, 6imple Neural Nets ([cel on
+andwritten Digit 5ecognition, by Dan Claudiu
Cireɇan, 8eli 0eier, /uca 0aria *ambardella,
and -�rgen 6chmidhuber ���1��.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

training. This let them train for many epochs. They also took
advantage of their long training times to gradually decrease the
learning rate from  to . ,t
s a fun e[ercise to try to match
these results using an architecture like theirs.

:K\ are Ze aEle to train" :e saw in the last chapter that there
are fundamental obstructions to training in deep, many-layer
neural networks. ,n particular, we saw that the gradient tends to be
quite unstable: as we move from the output layer to earlier layers
the gradient tends to either vanish �the vanishing gradient problem�
or e[plode �the e[ploding gradient problem�. 6ince the gradient is
the signal we use to train, this causes problems.

+ow have we avoided those results"

Of course, the answer is that we haven
t avoided these results.
,nstead, we
ve done a few things that help us proceed anyway. ,n
particular: �1� 8sing convolutional layers greatly reduces the
number of parameters in those layers, making the learning problem
much easier� ��� 8sing more powerful regulari]ation techniques
�notably dropout and convolutional layers� to reduce overfitting,
which is otherwise more of a problem in more comple[ networks�
��� 8sing rectified linear units instead of sigmoid neurons, to speed
up training - empirically, often by a factor of - � ��� 8sing *38s
and being willing to train for a long period of time. ,n particular, in
our final e[periments we trained for  epochs using a data set 
times larger than the raw 0N,6T training data. (arlier in the book
we mostly trained for  epochs using just the raw training data.
Combining factors ��� and ��� it
s as though we
ve trained a factor
perhaps  times longer than before.

<our response may be �,s that it" ,s that all we had to do to train
deep networks" :hat
s all the fuss about"�

Of course, we
ve used other ideas, too: making use of sufficiently
large data sets �to help avoid overfitting�� using the right cost
function �to avoid a learning slowdown�� using good weight
initiali]ations �also to avoid a learning slowdown, due to neuron
saturation�� algorithmically e[panding the training data. :e
discussed these and other ideas in earlier chapters, and have for the
most part been able to reuse these ideas with little comment in this
chapter.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

:ith that said, this really is a rather simple set of ideas. 6imple, but
powerful, when used in concert. *etting started with deep learning
has turned out to be pretty easy�

+oZ deep are tKese netZorNs, an\Za\" Counting the
convolutional-pooling layers as single layers, our final architecture
has  hidden layers. Does such a network really deserve to be called
a deep network" Of course,  hidden layers is many more than in
the shallow networks we studied earlier. 0ost of those networks
only had a single hidden layer, or occasionally  hidden layers. On
the other hand, as of ��1� state-of-the-art deep networks
sometimes have do]ens of hidden layers. ,
ve occasionally heard
people adopt a deeper-than-thou attitude, holding that if you
re not
keeping-up-with-the--oneses in terms of number of hidden layers,
then you
re not really doing deep learning. ,
m not sympathetic to
this attitude, in part because it makes the definition of deep
learning into something which depends upon the result-of-the-
moment. The real breakthrough in deep learning was to reali]e that
it
s practical to go beyond the shallow - and -hidden layer
networks that dominated work until the mid-����s. That really was
a significant breakthrough, opening up the e[ploration of much
more e[pressive models. %ut beyond that, the number of layers is
not of primary fundamental interest. 5ather, the use of deeper
networks is a tool to use to help achieve other goals - like better
classification accuracies.

$ Zord on procedure� ,n this section, we
ve smoothly moved
from single hidden-layer shallow networks to many-layer
convolutional networks. ,t
s all seemed so easy� :e make a change
and, for the most part, we get an improvement. ,f you start
e[perimenting, , can guarantee things won
t always be so smooth.
The reason is that ,
ve presented a cleaned-up narrative, omitting
many e[periments - including many failed e[periments. This
cleaned-up narrative will hopefully help you get clear on the basic
ideas. %ut it also runs the risk of conveying an incomplete
impression. *etting a good, working network can involve a lot of
trial and error, and occasional frustration. ,n practice, you should
e[pect to engage in quite a bit of e[perimentation. To speed that
process up you may find it helpful to revisit Chapter �
s discussion
of how to choose a neural network
s hyper-parameters, and perhaps
also to look at some of the further reading suggested in that section.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 26/��

7Ke Fode Ior our FonYolutional
networks
$lright, let
s take a look at the code for our program, QHWZRUN��S\.
6tructurally, it
s similar to QHWZRUN��S\, the program we developed
in Chapter �, although the details differ, due to the use of Theano.
:e
ll start by looking at the )XOO\&RQQHFWHG/D\HU class, which is
similar to the layers studied earlier in the book. +ere
s the code
�discussion below�:

class�)ully&onnected/ayer�REMHFW��

�def�BBLQLWBB�VHOI��QBLQ��QBRXW��DFWLYDWLRQBIQ VLJPRLG��SBGURSRXW �����
�VHOI�QBLQ� �QBLQ

�VHOI�QBRXW� �QBRXW

�VHOI�DFWLYDWLRQBIQ� �DFWLYDWLRQBIQ

�VHOI�SBGURSRXW� �SBGURSRXW

�# Initialize weights and biases

�VHOI�Z� �WKHDQR�VKDUHG�

�QS�DVDUUD\�

�QS�UDQGRP�QRUPDO�

�ORF �����VFDOH QS�VTUW�����QBRXW���VL]H �QBLQ��QBRXW���

�GW\SH WKHDQR�FRQILJ�IORDW;��

���QDPH 
Z
��ERUURZ 7UXH�

�VHOI�E� �WKHDQR�VKDUHG�

�QS�DVDUUD\�QS�UDQGRP�QRUPDO�ORF �����VFDOH �����VL]H �QBRXW����

�GW\SH WKHDQR�FRQILJ�IORDW;��

���QDPH 
E
��ERUURZ 7UXH�

�VHOI�SDUDPV� �>VHOI�Z��VHOI�E@

�def�VHWBLQSW�VHOI��LQSW��LQSWBGURSRXW��PLQLBEDWFKBVL]H��
�VHOI�LQSW� �LQSW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ��

�VHOI�RXWSXW� �VHOI�DFWLYDWLRQBIQ�

������VHOI�SBGURSRXW�7�GRW�VHOI�LQSW��VHOI�Z����VHOI�E�

�VHOI�\BRXW� �7�DUJPD[�VHOI�RXWSXW��D[LV ��

�VHOI�LQSWBGURSRXW� �GURSRXWBOD\HU�

���LQSWBGURSRXW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ����VHOI�SBGURSRXW�

�VHOI�RXWSXWBGURSRXW� �VHOI�DFWLYDWLRQBIQ�

7�GRW�VHOI�LQSWBGURSRXW��VHOI�Z����VHOI�E�

�def�DFFXUDF\�VHOI��\��
��RHWXUQ�WKH�DFFXUDF\�IRU�WKH�PLQL�EDWFK��

�return�7�PHDQ�7�HT�\��VHOI�\BRXW��

0uch of the BBLQLWBB method is self-e[planatory, but a few remarks
may help clarify the code. $s per usual, we randomly initiali]e the
weights and biases as normal random variables with suitable
standard deviations. The lines doing this look a little forbidding.
+owever, most of the complication is just loading the weights and
biases into what Theano calls shared variables. This ensures that
these variables can be processed on the *38, if one is available. :e
won
t get too much into the details of this. ,f you
re interested, you
can dig into the Theano documentation. Note also that this weight
and bias initiali]ation are designed for the sigmoid activation

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

function �as discussed earlier�. ,deally, we
d initiali]e the weights
and biases somewhat differently for activation functions such as the
tanh and rectified linear function. This is discussed further in
problems below. The BBLQLWBB method finishes with VHOI�SDUDPV� 
>VHOI�:��VHOI�E@. This is a handy way to bundle up all the learnable
parameters associated to the layer. /ater on, the NHWZRUN�6*D
method will use SDUDPV attributes to figure out what variables in a
NHWZRUN instance can learn.

The VHWBLQSW method is used to set the input to the layer, and to
compute the corresponding output. , use the name LQSW rather than
LQSXW because LQSXW is a built-in function in 3ython, and messing
with built-ins tends to cause unpredictable behavior and difficult-
to-diagnose bugs. Note that we actually set the input in two
separate ways: as VHOI�LQSW and VHOI�LQSWBGURSRXW. This is done
because during training we may want to use dropout. ,f that
s the
case then we want to remove a fraction VHOI�SBGURSRXW of the
neurons. That
s what the function GURSRXWBOD\HU in the second-last
line of the VHWBLQSW method is doing. 6o VHOI�LQSWBGURSRXW and
VHOI�RXWSXWBGURSRXW are used during training, while VHOI�LQSW and
VHOI�RXWSXW are used for all other purposes, e.g., evaluating
accuracy on the validation and test data.

The &RQY3RRO/D\HU and 6RIWPD[/D\HU class definitions are similar to
)XOO\&RQQHFWHG/D\HU. ,ndeed, they
re so close that , won
t e[cerpt
the code here. ,f you
re interested you can look at the full listing for
QHWZRUN��S\, later in this section.

+owever, a couple of minor differences of detail are worth
mentioning. 0ost obviously, in both &RQY3RRO/D\HU and
6RIWPD[/D\HU we compute the output activations in the way
appropriate to that layer type. Fortunately, Theano makes that easy,
providing built-in operations to compute convolutions, ma[-
pooling, and the softma[ function.

/ess obviously, when we introduced the softma[ layer, we never
discussed how to initiali]e the weights and biases. (lsewhere we
ve
argued that for sigmoid layers we should initiali]e the weights using
suitably parameteri]ed normal random variables. %ut that heuristic
argument was specific to sigmoid neurons �and, with some
amendment, to tanh neurons�. +owever, there
s no particular

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

reason the argument should apply to softma[ layers. 6o there
s no a
priori reason to apply that initiali]ation again. 5ather than do that,
, shall initiali]e all the weights and biases to be . This is a rather ad
KoF procedure, but works well enough in practice.

Okay, we
ve looked at all the layer classes. :hat about the NHWZRUN
class" /et
s start by looking at the BBLQLWBB method:

class�Network�REMHFW��

�def�BBLQLWBB�VHOI��OD\HUV��PLQLBEDWFKBVL]H��
�"""Takes a list of `layers`, describing the network architecture, and

 a value for the `mini_batch_size` to be used during training

 by stochastic gradient descent.

 """

�VHOI�OD\HUV� �OD\HUV

�VHOI�PLQLBEDWFKBVL]H� �PLQLBEDWFKBVL]H

�VHOI�SDUDPV� �>SDUDP�for�OD\HU�in�VHOI�OD\HUV�for�SDUDP�in�OD\HU�SDUDPV@
�VHOI�[� �7�PDWUL[��[����

�VHOI�\� �7�LYHFWRU��\��

�LQLWBOD\HU� �VHOI�OD\HUV>�@

�LQLWBOD\HU�VHWBLQSW�VHOI�[��VHOI�[��VHOI�PLQLBEDWFKBVL]H�

�for�M�in�[UDQJH����OHQ�VHOI�OD\HUV���
�SUHYBOD\HU��OD\HU�� �VHOI�OD\HUV>M��@��VHOI�OD\HUV>M@

�OD\HU�VHWBLQSW�

���SUHYBOD\HU�RXWSXW��SUHYBOD\HU�RXWSXWBGURSRXW��VHOI�PLQLBEDWFKBVL]H�

�VHOI�RXWSXW� �VHOI�OD\HUV>��@�RXWSXW

�VHOI�RXWSXWBGURSRXW� �VHOI�OD\HUV>��@�RXWSXWBGURSRXW

0ost of this is self-e[planatory, or nearly so. The line VHOI�SDUDPV� 
>SDUDP�IRU�OD\HU�LQ����@ bundles up the parameters for each layer
into a single list. $s anticipated above, the NHWZRUN�6*D method will
use VHOI�SDUDPV to figure out what variables in the NHWZRUN can
learn. The lines VHOI�[� �7�PDWUL[��[�� and VHOI�\� 
7�LYHFWRU��\�� define Theano symbolic variables named [ and \.
These will be used to represent the input and desired output from
the network.

Now, this isn
t a Theano tutorial, and so we won
t get too deeply
into what it means that these are symbolic variables. %ut the rough
idea is that these represent mathematical variables, not e[plicit
values. :e can do all the usual things one would do with such
variables: add, subtract, and multiply them, apply functions, and so
on. ,ndeed, Theano provides many ways of manipulating such
symbolic variables, doing things like convolutions, ma[-pooling,
and so on. %ut the big win is the ability to do fast symbolic
differentiation, using a very general form of the backpropagation
algorithm. This is e[tremely useful for applying stochastic gradient
descent to a wide variety of network architectures. ,n particular, the

The Theano documentation provides a good
introduction to Theano. $nd if you get stuck, you
may find it helpful to look at one of the other
tutorials available online. For instance, this
tutorial covers many basics.

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html 2�/��

ne[t few lines of code define symbolic outputs from the network.
:e start by setting the input to the initial layer, with the line

��������LQLWBOD\HU�VHWBLQSW�VHOI�[��VHOI�[��VHOI�PLQLBEDWFKBVL]H�

Note that the inputs are set one mini-batch at a time, which is why
the mini-batch si]e is there. Note also that we pass the input VHOI�[
in twice: this is because we may use the network in two different
ways �with or without dropout�. The IRU loop then propagates the
symbolic variable VHOI�[ forward through the layers of the NHWZRUN.
This allows us to define the final RXWSXW and RXWSXWBGURSRXW
attributes, which symbolically represent the output from the
NHWZRUN.

Now that we
ve understood how a NHWZRUN is initiali]ed, let
s look at
how it is trained, using the 6*D method. The code looks lengthy, but
its structure is actually rather simple. ([planatory comments after
the code.

����def�6*D�VHOI��WUDLQLQJBGDWD��HSRFKV��PLQLBEDWFKBVL]H��HWD��
������������YDOLGDWLRQBGDWD��WHVWBGDWD��OPEGD �����

��������"""Train the network using mini-batch stochastic gradient descent."""

��������WUDLQLQJB[��WUDLQLQJB\� �WUDLQLQJBGDWD

��������YDOLGDWLRQB[��YDOLGDWLRQB\� �YDOLGDWLRQBGDWD

��������WHVWB[��WHVWB\� �WHVWBGDWD

��������# compute number of minibatches for training, validation and testing

��������QXPBWUDLQLQJBEDWFKHV� �VL]H�WUDLQLQJBGDWD��PLQLBEDWFKBVL]H

��������QXPBYDOLGDWLRQBEDWFKHV� �VL]H�YDOLGDWLRQBGDWD��PLQLBEDWFKBVL]H

��������QXPBWHVWBEDWFKHV� �VL]H�WHVWBGDWD��PLQLBEDWFKBVL]H

��������# define the (regularized) cost function, symbolic gradients, and updates

��������O�BQRUPBVTXDUHG� �VXP�>�OD\HU�Z���VXP���for�OD\HU�in�VHOI�OD\HUV@�
��������FRVW� �VHOI�OD\HUV>��@�FRVW�VHOI��?

������������������OPEGDO�BQRUPBVTXDUHG�QXPBWUDLQLQJBEDWFKHV

��������JUDGV� �7�JUDG�FRVW��VHOI�SDUDPV�

��������XSGDWHV� �>�SDUDP��SDUDP�HWDJUDG��

�������������������for�SDUDP��JUDG�in�]LS�VHOI�SDUDPV��JUDGV�@

��������# define functions to train a mini-batch, and to compute the

��������# accuracy in validation and test mini-batches.

��������L� �7�OVFDODU���# mini-batch index

��������WUDLQBPE� �WKHDQR�IXQFWLRQ�

������������>L@��FRVW��XSGDWHV XSGDWHV�

������������JLYHQV ^

����������������VHOI�[�

����������������WUDLQLQJB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

����������������VHOI�\��

����������������WUDLQLQJB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

��������YDOLGDWHBPEBDFFXUDF\� �WKHDQR�IXQFWLRQ�

������������>L@��VHOI�OD\HUV>��@�DFFXUDF\�VHOI�\��

������������JLYHQV ^

����������������VHOI�[��

����������������YDOLGDWLRQB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

����������������VHOI�\��

����������������YDOLGDWLRQB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �0/��

�WHVWBPEBDFFXUDF\� �WKHDQR�IXQFWLRQ�

�>L@��VHOI�OD\HUV>��@�DFFXUDF\�VHOI�\��

�JLYHQV ^

�VHOI�[��

�WHVWB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

�VHOI�\��

�WHVWB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

���`�

�VHOI�WHVWBPEBSUHGLFWLRQV� �WKHDQR�IXQFWLRQ�

�>L@��VHOI�OD\HUV>��@�\BRXW�

�JLYHQV ^

�VHOI�[��

�WHVWB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

���`�

�# Do the actual training

�EHVWBYDOLGDWLRQBDFFXUDF\� ����

�for�HSRFK�in�[UDQJH�HSRFKV��
�for�PLQLEDWFKBLQGH[�in�[UDQJH�QXPBWUDLQLQJBEDWFKHV��

�LWHUDWLRQ� �QXPBWUDLQLQJBEDWFKHVHSRFK�PLQLEDWFKBLQGH[

�if�LWHUDWLRQ�
����print��7UDLQLQJ�PLQL�EDWFK�QXPEHU�^�`��IRUPDW�LWHUDWLRQ��
�FRVWBLM� �WUDLQBPE�PLQLEDWFKBLQGH[�

�if��LWHUDWLRQ����
�YDOLGDWLRQBDFFXUDF\� �QS�PHDQ�

����>YDOLGDWHBPEBDFFXUDF\�M��for�M�in�[UDQJH�QXPBYDOLGDWLRQBEDWFKHV�@�
�print��(SRFK�^�`��YDOLGDWLRQ�DFFXUDF\�^����

���HSRFK��YDOLGDWLRQBDFFXUDF\��

�if�YDOLGDWLRQBDFFXUDF\�! �EHVWBYDOLGDWLRQBDFFXUDF\�
�print��7KLV�LV�WKH�EHVW�YDOLGDWLRQ�DFFXUDF\�WR�GDWH���
�EHVWBYDOLGDWLRQBDFFXUDF\� �YDOLGDWLRQBDFFXUDF\

�EHVWBLWHUDWLRQ� �LWHUDWLRQ

�if�WHVWBGDWD�
�WHVWBDFFXUDF\� �QS�PHDQ�

�>WHVWBPEBDFFXUDF\�M��for�M�in�[UDQJH�QXPBWHVWBEDWFKHV�@�
�print�
7KH�FRUUHVSRQGLQJ�WHVW�DFFXUDF\�LV�^����
���WHVWBDFFXUDF\��

�print��)LQLVKHG�WUDLQLQJ�QHWZRUN���
�print��%HVW�YDOLGDWLRQ�DFFXUDF\�RI�^����
���EHVWBYDOLGDWLRQBDFFXUDF\��EHVWBLWHUDWLRQ��

�print��&RUUHVSRQGLQJ�WHVW�DFFXUDF\�RI�^����

The first few lines are straightforward, separating the datasets into 
and  components, and computing the number of mini-batches
used in each dataset. The ne[t few lines are more interesting, and
show some of what makes Theano fun to work with. /et
s e[plicitly
e[cerpt the lines here:

�# define the (regularized) cost function, symbolic gradients, and updates

�O�BQRUPBVTXDUHG� �VXP�>�OD\HU�Z���VXP���for�OD\HU�in�VHOI�OD\HUV@�
�FRVW� �VHOI�OD\HUV>��@�FRVW�VHOI��?

������OPEGDO�BQRUPBVTXDUHG�QXPBWUDLQLQJBEDWFKHV

�JUDGV� �7�JUDG�FRVW��VHOI�SDUDPV�

�XSGDWHV� �>�SDUDP��SDUDP�HWDJUDG��

�for�SDUDP��JUDG�in�]LS�VHOI�SDUDPV��JUDGV�@

,n these lines we symbolically set up the regulari]ed log-likelihood
cost function, compute the corresponding derivatives in the
gradient function, as well as the corresponding parameter updates.
Theano lets us achieve all of this in just these few lines. The only
thing hidden is that computing the FRVW involves a call to the FRVW

欧拉的博客:www.liuhao.me



2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �1/��

method for the output layer� that code is elsewhere in QHWZRUN��S\.
%ut that code is short and simple, anyway. :ith all these things
defined, the stage is set to define the WUDLQBPLQLBEDWFK function, a
Theano symbolic function which uses the XSGDWHV to update the
NHWZRUN parameters, given a mini-batch inde[. 6imilarly,
YDOLGDWHBPEBDFFXUDF\ and WHVWBPEBDFFXUDF\ compute the accuracy
of the NHWZRUN on any given mini-batch of validation or test data. %y
averaging over these functions, we will be able to compute
accuracies on the entire validation and test data sets.

The remainder of the 6*D method is self-e[planatory - we simply
iterate over the epochs, repeatedly training the network on mini-
batches of training data, and computing the validation and test
accuracies.

Okay, we
ve now understood the most important pieces of code in
QHWZRUN��S\. /et
s take a brief look at the entire program. <ou don
t
need to read through this in detail, but you may enjoy glancing over
it, and perhaps diving down into any pieces that strike your fancy.
The best way to really understand it is, of course, by modifying it,
adding e[tra features, or refactoring anything you think could be
done more elegantly. $fter the code, there are some problems which
contain a few starter suggestions for things to do. +ere
s the code:

"""network3.py

~~~~~~~~~~~~~~

A Theano-based program for training and running simple neural

networks.

Supports several layer types (fully connected, convolutional, max

pooling, softmax), and activation functions (sigmoid, tanh, and

rectified linear units, with more easily added).

:hen run on a CPU, this program is much faster than network.py and

network2.py. However, unlike network.py and network2.py it can also

be run on a GPU, which makes it faster still.

Because the code is based on Theano, the code is different in many

ways from network.py and network2.py. However, where possible I have

tried to maintain consistency with the earlier programs. In

particular, the API is similar to network2.py. Note that I have

focused on making the code simple, easily readable, and easily

modifiable. It is not optimized, and omits many desirable features.

This program incorporates ideas from the Theano documentation on

convolutional neural nets (notably,

http�//deeplearning.net/tutorial/lenet.html), from Misha Denil's

implementation of dropout (https�//github.com/mdenil/dropout), and

from Chris Olah (http�//colah.github.io).

"""

8sing Theano on a *38 can be a little tricky. ,n
particular, it
s easy to make the mistake of
pulling data off the *38, which can slow things
down a lot. ,
ve tried to avoid this, but wouldn
t
be surprised if this code can be sped up further.
,
d appreciate hearing any tips for further
improvement �mn#michaelnielsen.org�.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �2/��

Libraries

Standard library

import�cPickle
import�gzip

Third-party libraries

import�numpy�as�np
import�tKeano
import�tKeano�tensor�as�7
from�tKeano�tensor�nnet�import�FRQY
from�tKeano�tensor�nnet�import�VRIWPD[
from�tKeano�tensor�import�VKDUHGBUDQGRPVWUHDPV
from�tKeano�tensor�signal�import�GRZQVDPSOH

Activation functions for neurons

def�OLQHDU�]���return�]
def�RH/8�]���return�7�PD[LPXP������]�
from�tKeano�tensor�nnet�import�VLJPRLG
from�tKeano�tensor�import�WDQK

Constants

*38� �7UXH

if�*38�
�print��7U\LQJ�WR�UXQ�XQGHU�D�*38���,I�WKLV�LV�QRW�GHVLUHG��WKHQ�PRGLI\���?

��QHWZRUN��S\?nWR�VHW�WKH�*38�IODJ�WR�)DOVH��
�try��WKHDQR�FRQILJ�GHYLFH� �
JSX

�e[cept��pass�# it's already set
�WKHDQR�FRQILJ�IORDW;� �
IORDW��

else�
�print��RXQQLQJ�ZLWK�D�&38���,I�WKLV�LV�QRW�GHVLUHG��WKHQ�WKH�PRGLI\���?

��QHWZRUN��S\�WR�VHW?nWKH�*38�IODJ�WR�7UXH��

Load the MNIST data

def�ORDGBGDWDBVKDUHG�ILOHQDPH ����GDWD�PQLVW�SNO�J]���
�I� �J]LS�RSHQ�ILOHQDPH��
UE
�

�WUDLQLQJBGDWD��YDOLGDWLRQBGDWD��WHVWBGDWD� �F3LFNOH�ORDG�I�

I�FORVH��

def�VKDUHG�GDWD��
�"""Place the data into shared variables. This allows Theano to copy

 the data to the GPU, if one is available.

 """

�VKDUHGB[� �WKHDQR�VKDUHG�

�QS�DVDUUD\�GDWD>�@��GW\SH WKHDQR�FRQILJ�IORDW;���ERUURZ 7UXH�

�VKDUHGB\� �WKHDQR�VKDUHG�

�QS�DVDUUD\�GDWD>�@��GW\SH WKHDQR�FRQILJ�IORDW;���ERUURZ 7UXH�

����return�VKDUHGB[��7�FDVW�VKDUHGB\���LQW����
�return�>VKDUHG�WUDLQLQJBGDWD���VKDUHG�YDOLGDWLRQBGDWD���VKDUHG�WHVWBGDWD�@

Main class used to construct and train networks

class�Network�REMHFW��

�def�BBLQLWBB�VHOI��OD\HUV��PLQLBEDWFKBVL]H��
�"""Takes a list of `layers`, describing the network architecture, and

 a value for the `mini_batch_size` to be used during training

 by stochastic gradient descent.

 """

�VHOI�OD\HUV� �OD\HUV

�VHOI�PLQLBEDWFKBVL]H� �PLQLBEDWFKBVL]H

�VHOI�SDUDPV� �>SDUDP�for�OD\HU�in�VHOI�OD\HUV�for�SDUDP�in�OD\HU�SDUDPV@
�VHOI�[� �7�PDWUL[��[��

�VHOI�\� �7�LYHFWRU��\��

�LQLWBOD\HU� �VHOI�OD\HUV>�@

�LQLWBOD\HU�VHWBLQSW�VHOI�[��VHOI�[��VHOI�PLQLBEDWFKBVL]H�

�for�M�in�[UDQJH����OHQ�VHOI�OD\HUV���
�SUHYBOD\HU��OD\HU�� �VHOI�OD\HUV>M��@��VHOI�OD\HUV>M@

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

������������OD\HU�VHWBLQSW�

����������������SUHYBOD\HU�RXWSXW��SUHYBOD\HU�RXWSXWBGURSRXW��VHOI�PLQLBEDWFKBVL]H�

��������VHOI�RXWSXW� �VHOI�OD\HUV>��@�RXWSXW

��������VHOI�RXWSXWBGURSRXW� �VHOI�OD\HUV>��@�RXWSXWBGURSRXW

����def�6*D�VHOI��WUDLQLQJBGDWD��HSRFKV��PLQLBEDWFKBVL]H��HWD�
������������YDOLGDWLRQBGDWD��WHVWBGDWD��OPEGD �����

��������"""Train the network using mini-batch stochastic gradient descent."""

��������WUDLQLQJB[��WUDLQLQJB\� �WUDLQLQJBGDWD

��������YDOLGDWLRQB[��YDOLGDWLRQB\� �YDOLGDWLRQBGDWD

��������WHVWB[��WHVWB\� �WHVWBGDWD

��������# compute number of minibatches for training, validation and testing

��������QXPBWUDLQLQJBEDWFKHV� �VL]H�WUDLQLQJBGDWD��PLQLBEDWFKBVL]H

��������QXPBYDOLGDWLRQBEDWFKHV� �VL]H�YDOLGDWLRQBGDWD��PLQLBEDWFKBVL]H

��������QXPBWHVWBEDWFKHV� �VL]H�WHVWBGDWD��PLQLBEDWFKBVL]H

��������# define the (regularized) cost function, symbolic gradients, and updates

��������O�BQRUPBVTXDUHG� �VXP�>�OD\HU�Z���VXP���for�OD\HU�in�VHOI�OD\HUV@�
��������FRVW� �VHOI�OD\HUV>��@�FRVW�VHOI��?

������������������OPEGDO�BQRUPBVTXDUHG�QXPBWUDLQLQJBEDWFKHV

��������JUDGV� �7�JUDG�FRVW��VHOI�SDUDPV�

��������XSGDWHV� �>�SDUDP��SDUDP�HWDJUDG�

�������������������for�SDUDP��JUDG�in�]LS�VHOI�SDUDPV��JUDGV�@

��������# define functions to train a mini-batch, and to compute the

��������# accuracy in validation and test mini-batches.

��������L� �7�OVFDODU���# mini-batch index

��������WUDLQBPE� �WKHDQR�IXQFWLRQ�

������������>L@��FRVW��XSGDWHV XSGDWHV�

������������JLYHQV ^

����������������VHOI�[�

����������������WUDLQLQJB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

����������������VHOI�\�

����������������WUDLQLQJB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

��������YDOLGDWHBPEBDFFXUDF\� �WKHDQR�IXQFWLRQ�

������������>L@��VHOI�OD\HUV>��@�DFFXUDF\�VHOI�\��

������������JLYHQV ^

����������������VHOI�[�

����������������YDOLGDWLRQB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

����������������VHOI�\�

����������������YDOLGDWLRQB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

��������WHVWBPEBDFFXUDF\� �WKHDQR�IXQFWLRQ�

������������>L@��VHOI�OD\HUV>��@�DFFXUDF\�VHOI�\��

������������JLYHQV ^

����������������VHOI�[�

����������������WHVWB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@�

����������������VHOI�\�

����������������WHVWB\>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

��������VHOI�WHVWBPEBSUHGLFWLRQV� �WKHDQR�IXQFWLRQ�

������������>L@��VHOI�OD\HUV>��@�\BRXW�

������������JLYHQV ^

����������������VHOI�[�

����������������WHVWB[>LVHOI�PLQLBEDWFKBVL]H���L���VHOI�PLQLBEDWFKBVL]H@

������������`�

��������# Do the actual training

��������EHVWBYDOLGDWLRQBDFFXUDF\� ����

��������for�HSRFK�in�[UDQJH�HSRFKV��
������������for�PLQLEDWFKBLQGH[�in�[UDQJH�QXPBWUDLQLQJBEDWFKHV��
����������������LWHUDWLRQ� �QXPBWUDLQLQJBEDWFKHVHSRFK�PLQLEDWFKBLQGH[

����������������if�LWHUDWLRQ�������� ���
��������������������print��7UDLQLQJ�PLQL�EDWFK�QXPEHU�^�`��IRUPDW�LWHUDWLRQ��
����������������FRVWBLM� �WUDLQBPE�PLQLEDWFKBLQGH[�

����������������if��LWHUDWLRQ������QXPBWUDLQLQJBEDWFKHV� ���
��������������������YDOLGDWLRQBDFFXUDF\� �QS�PHDQ�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

����>YDOLGDWHBPEBDFFXUDF\�M��for�M�in�[UDQJH�QXPBYDOLGDWLRQBEDWFKHV�@�
�print��(SRFK�^�`��YDOLGDWLRQ�DFFXUDF\�^�����`��IRUPDW�
���HSRFK��YDOLGDWLRQBDFFXUDF\��

�if�YDOLGDWLRQBDFFXUDF\�! �EHVWBYDOLGDWLRQBDFFXUDF\�
�print��7KLV�LV�WKH�EHVW�YDOLGDWLRQ�DFFXUDF\�WR�GDWH���
�EHVWBYDOLGDWLRQBDFFXUDF\� �YDOLGDWLRQBDFFXUDF\

�EHVWBLWHUDWLRQ� �LWHUDWLRQ

�if�WHVWBGDWD�
�WHVWBDFFXUDF\� �QS�PHDQ�

�>WHVWBPEBDFFXUDF\�M��for�M�in�[UDQJH�QXPBWHVWBEDWFKHV�@�
�print�
7KH�FRUUHVSRQGLQJ�WHVW�DFFXUDF\�LV�^�����`
�IRUPDW�
���WHVWBDFFXUDF\��

�print��)LQLVKHG�WUDLQLQJ�QHWZRUN���
�print��%HVW�YDOLGDWLRQ�DFFXUDF\�RI�^�����`�REWDLQHG�DW�LWHUDWLRQ�^�`��IRUPDW�
���EHVWBYDOLGDWLRQBDFFXUDF\��EHVWBLWHUDWLRQ��

�print��&RUUHVSRQGLQJ�WHVW�DFFXUDF\�RI�^�����`��IRUPDW�WHVWBDFFXUDF\��

Define layer types

class�&onYPool/ayer�REMHFW��
�"""Used to create a combination of a convolutional and a max-pooling

 layer. A more sophisticated implementation would separate the

 two, but for our purposes we'll always use them together, and it

 simplifies the code, so it makes sense to combine them.

 """

�def�BBLQLWBB�VHOI��ILOWHUBVKDSH��LPDJHBVKDSH��SRROVL]H �������
���DFWLYDWLRQBIQ VLJPRLG��

�"""`filter_shape` is a tuple of length 4, whose entries are the number

 of filters, the number of input feature maps, the filter height, and the

 filter width.

 `image_shape` is a tuple of length 4, whose entries are the

 mini-batch size, the number of input feature maps, the image

 height, and the image width.

 `poolsize` is a tuple of length 2, whose entries are the y and

 x pooling sizes.

 """

�VHOI�ILOWHUBVKDSH� �ILOWHUBVKDSH

�VHOI�LPDJHBVKDSH� �LPDJHBVKDSH

�VHOI�SRROVL]H� �SRROVL]H

�VHOI�DFWLYDWLRQBIQ DFWLYDWLRQBIQ

�# initialize weights and biases

�QBRXW� ��ILOWHUBVKDSH>�@QS�SURG�ILOWHUBVKDSH>��@��QS�SURG�SRROVL]H��

�VHOI�Z� �WKHDQR�VKDUHG�

�QS�DVDUUD\�

�QS�UDQGRP�QRUPDO�ORF ���VFDOH QS�VTUW�����QBRXW���VL]H ILOWHUBVKDSH��

�GW\SH WKHDQR�FRQILJ�IORDW;��

����ERUURZ 7UXH�

�VHOI�E� �WKHDQR�VKDUHG�

�QS�DVDUUD\�

�QS�UDQGRP�QRUPDO�ORF ���VFDOH �����VL]H �ILOWHUBVKDSH>�@����

�GW\SH WKHDQR�FRQILJ�IORDW;��

���ERUURZ 7UXH�

�VHOI�SDUDPV� �>VHOI�Z��VHOI�E@

�def�VHWBLQSW�VHOI��LQSW��LQSWBGURSRXW��PLQLBEDWFKBVL]H��
�VHOI�LQSW� �LQSW�UHVKDSH�VHOI�LPDJHBVKDSH�

�FRQYBRXW� �FRQY�FRQY�G�

�LQSXW VHOI�LQSW��ILOWHUV VHOI�Z��ILOWHUBVKDSH VHOI�ILOWHUBVKDSH�

���LPDJHBVKDSH VHOI�LPDJHBVKDSH�

�SRROHGBRXW� �GRZQVDPSOH�PD[BSRROB�G�

�LQSXW FRQYBRXW��GV VHOI�SRROVL]H��LJQRUHBERUGHU 7UXH�

�VHOI�RXWSXW� �VHOI�DFWLYDWLRQBIQ�

�SRROHGBRXW���VHOI�E�GLPVKXIIOH�
[
�����
[
��
[
��

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

��������VHOI�RXWSXWBGURSRXW� �VHOI�RXWSXW�# no dropout in the convolutional layers

class�)ully&onnected/ayer�REMHFW��

����def�BBLQLWBB�VHOI��QBLQ��QBRXW��DFWLYDWLRQBIQ VLJPRLG��SBGURSRXW �����
��������VHOI�QBLQ� �QBLQ

��������VHOI�QBRXW� �QBRXW

��������VHOI�DFWLYDWLRQBIQ� �DFWLYDWLRQBIQ

��������VHOI�SBGURSRXW� �SBGURSRXW

��������# Initialize weights and biases

��������VHOI�Z� �WKHDQR�VKDUHG�

������������QS�DVDUUD\�

����������������QS�UDQGRP�QRUPDO�

��������������������ORF �����VFDOH QS�VTUW�����QBRXW���VL]H �QBLQ��QBRXW���

����������������GW\SH WKHDQR�FRQILJ�IORDW;��

������������QDPH
Z
��ERUURZ 7UXH�

��������VHOI�E� �WKHDQR�VKDUHG�

������������QS�DVDUUD\�QS�UDQGRP�QRUPDO�ORF �����VFDOH �����VL]H �QBRXW����

�����������������������GW\SH WKHDQR�FRQILJ�IORDW;��

������������QDPH
E
��ERUURZ 7UXH�

��������VHOI�SDUDPV� �>VHOI�Z��VHOI�E@

����def�VHWBLQSW�VHOI��LQSW��LQSWBGURSRXW��PLQLBEDWFKBVL]H��
��������VHOI�LQSW� �LQSW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ��

��������VHOI�RXWSXW� �VHOI�DFWLYDWLRQBIQ�

���������������VHOI�SBGURSRXW�7�GRW�VHOI�LQSW��VHOI�Z����VHOI�E�

��������VHOI�\BRXW� �7�DUJPD[�VHOI�RXWSXW��D[LV ��

��������VHOI�LQSWBGURSRXW� �GURSRXWBOD\HU�

������������LQSWBGURSRXW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ����VHOI�SBGURSRXW�

��������VHOI�RXWSXWBGURSRXW� �VHOI�DFWLYDWLRQBIQ�

������������7�GRW�VHOI�LQSWBGURSRXW��VHOI�Z����VHOI�E�

����def�DFFXUDF\�VHOI��\��
���������RHWXUQ�WKH�DFFXUDF\�IRU�WKH�PLQL�EDWFK��

��������return�7�PHDQ�7�HT�\��VHOI�\BRXW��

class�6oftma[/ayer�REMHFW��

����def�BBLQLWBB�VHOI��QBLQ��QBRXW��SBGURSRXW �����
��������VHOI�QBLQ� �QBLQ

��������VHOI�QBRXW� �QBRXW

��������VHOI�SBGURSRXW� �SBGURSRXW

��������# Initialize weights and biases

��������VHOI�Z� �WKHDQR�VKDUHG�

������������QS�]HURV��QBLQ��QBRXW���GW\SH WKHDQR�FRQILJ�IORDW;��

������������QDPH
Z
��ERUURZ 7UXH�

��������VHOI�E� �WKHDQR�VKDUHG�

������������QS�]HURV��QBRXW����GW\SH WKHDQR�FRQILJ�IORDW;��

������������QDPH
E
��ERUURZ 7UXH�

��������VHOI�SDUDPV� �>VHOI�Z��VHOI�E@

����def�VHWBLQSW�VHOI��LQSW��LQSWBGURSRXW��PLQLBEDWFKBVL]H��
��������VHOI�LQSW� �LQSW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ��

��������VHOI�RXWSXW� �VRIWPD[����VHOI�SBGURSRXW�7�GRW�VHOI�LQSW��VHOI�Z����VHOI�E�

��������VHOI�\BRXW� �7�DUJPD[�VHOI�RXWSXW��D[LV ��

��������VHOI�LQSWBGURSRXW� �GURSRXWBOD\HU�

������������LQSWBGURSRXW�UHVKDSH��PLQLBEDWFKBVL]H��VHOI�QBLQ����VHOI�SBGURSRXW�

��������VHOI�RXWSXWBGURSRXW� �VRIWPD[�7�GRW�VHOI�LQSWBGURSRXW��VHOI�Z����VHOI�E�

����def�FRVW�VHOI��QHW��
���������RHWXUQ�WKH�ORJ�OLNHOLKRRG�FRVW��

��������return��7�PHDQ�7�ORJ�VHOI�RXWSXWBGURSRXW�>7�DUDQJH�QHW�\�VKDSH>�@���QHW�\@�

����def�DFFXUDF\�VHOI��\��
���������RHWXUQ�WKH�DFFXUDF\�IRU�WKH�PLQL�EDWFK��

��������return�7�PHDQ�7�HT�\��VHOI�\BRXW��

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �6/��

Miscellanea

def�VL]H�GDWD��
��RHWXUQ�WKH�VL]H�RI�WKH�GDWDVHW�CGDWDC��

�return�GDWD>�@�JHWBYDOXH�ERUURZ 7UXH��VKDSH>�@

def�GURSRXWBOD\HU�OD\HU��SBGURSRXW��
�VUQJ� �VKDUHGBUDQGRPVWUHDPV�RDQGRP6WUHDPV�

���QS�UDQGRP�RDQGRP6WDWH����UDQGLQW���������

�PDVN� �VUQJ�ELQRPLDO�Q ���S ��SBGURSRXW��VL]H OD\HU�VKDSH�

�return�OD\HU7�FDVW�PDVN��WKHDQR�FRQILJ�IORDW;�

3roElePs

$t present, the 6*D method requires the user to manually
choose the number of epochs to train for. (arlier in the book
we discussed an automated way of selecting the number of
epochs to train for, known as early stopping. 0odify
QHWZRUN��S\ to implement early stopping.

$dd a NHWZRUN method to return the accuracy on an arbitrary
data set.

0odify the 6*D method to allow the learning rate to be a
function of the epoch number. +int� $Iter working on tKis
proEleP Ior a wKile� \ou Pa\ Iind it useIul to see tKe

disFussion at tKis link�

(arlier in the chapter , described a technique for e[panding the
training data by applying �small� rotations, skewing, and
translation. 0odify QHWZRUN��S\ to incorporate all these
techniques. Note� 8nless \ou KaYe a trePendous aPount oI
PePor\� it is not praFtiFal to e[pliFitl\ generate tKe entire

e[panded data set� 6o \ou sKould Fonsider alternate

approaFKes�

$dd the ability to load and save networks to QHWZRUN��S\.

$ shortcoming of the current code is that it provides few
diagnostic tools. Can you think of any diagnostics to add that
would make it easier to understand to what e[tent a network is
overfitting" $dd them.

:e
ve used the same initiali]ation procedure for rectified linear
units as for sigmoid �and tanh� neurons. Our argument for that
initiali]ation was specific to the sigmoid function. Consider a
network made entirely of rectified linear units �including
outputs�. 6how that rescaling all the weights in the network by

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

a constant factor simply rescales the outputs by a factor .
+ow does this change if the final layer is a softma[" :hat do
you think of using the sigmoid initiali]ation procedure for the
rectified linear units" Can you think of a better initiali]ation
procedure" Note� 7Kis is a Yer\ open�ended proEleP� not
soPetKing witK a siPple selI�Fontained answer� 6till�

Fonsidering tKe proEleP will Kelp \ou Eetter understand

networks Fontaining reFtiIied linear units�

Our analysis of the unstable gradient problem was for sigmoid
neurons. +ow does the analysis change for networks made up
of rectified linear units" Can you think of a good way of
modifying such a network so it doesn
t suffer from the unstable
gradient problem" Note� 7Ke word good in tKe seFond part oI
tKis Pakes tKe proEleP a researFK proEleP� ,t
s aFtuall\ eas\

to tKink oI wa\s oI Paking suFK PodiIiFations� %ut , KaYen
t

inYestigated in enougK deptK to know oI a reall\ good

teFKniTue�

5eFent progress in iPage reFognition
,n 1���, the year 0N,6T was introduced, it took weeks to train a
state-of-the-art workstation to achieve accuracies substantially
worse than those we can achieve using a *38 and less than an hour
of training. Thus, 0N,6T is no longer a problem that pushes the
limits of available technique� rather, the speed of training means
that it is a problem good for teaching and learning purposes.
0eanwhile, the focus of research has moved on, and modern work
involves much more challenging image recognition problems. ,n
this section, , briefly describe some recent work on image
recognition using neural networks.

The section is different to most of the book. Through the book ,
ve
focused on ideas likely to be of lasting interest - ideas such as
backpropagation, regulari]ation, and convolutional networks. ,
ve
tried to avoid results which are fashionable as , write, but whose
long-term value is unknown. ,n science, such results are more often
than not ephemera which fade and have little lasting impact. *iven
this, a skeptic might say: �well, surely the recent progress in image
recognition is an e[ample of such ephemera" ,n another two or
three years, things will have moved on. 6o surely these results are

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

only of interest to a few specialists who want to compete at the
absolute frontier" :hy bother discussing it"�

6uch a skeptic is right that some of the finer details of recent papers
will gradually diminish in perceived importance. :ith that said, the
past few years have seen e[traordinary improvements using deep
nets to attack e[tremely difficult image recognition tasks. ,magine a
historian of science writing about computer vision in the year �1��.
They will identify the years ��11 to ��1� �and probably a few years
beyond� as a time of huge breakthroughs, driven by deep
convolutional nets. That doesn
t mean deep convolutional nets will
still be used in �1��, much less detailed ideas such as dropout,
rectified linear units, and so on. %ut it does mean that an important
transition is taking place, right now, in the history of ideas. ,t
s a bit
like watching the discovery of the atom, or the invention of
antibiotics: invention and discovery on a historic scale. $nd so
while we won
t dig down deep into details, it
s worth getting some
idea of the e[citing discoveries currently being made.

7Ke ���� /50' paper� /et me start with a ��1� paper from a
group of researchers from 6tanford and *oogle. ,
ll refer to this
paper as /50D, after the last names of the first four authors.
/50D used a neural network to classify images from ,mageNet, a
very challenging image recognition problem. The ��11 ,mageNet
data that they used included 1� million full color images, in ��
thousand categories. The images were crawled from the open net,
and classified by workers from $ma]on
s 0echanical Turk service.
+ere
s a few ,mageNet images:

These are, respectively, in the categories for beading plane, brown
root rot fungus, scalded milk, and the common roundworm. ,f
you
re looking for a challenge, , encourage you to visit ,mageNet
s
list of hand tools, which distinguishes between beading planes,
block planes, chamfer planes, and about a do]en other types of
plane, amongst other categories. , don
t know about you, but ,
cannot confidently distinguish between all these tool types. This is
obviously a much more challenging image recognition task than

%uilding high-level features using large scale
unsupervised learning, by 4uoc /e, 0arc
$urelio
5an]ato, 5ajat 0onga, 0atthieu Devin, .ai
Chen, *reg Corrado, -eff Dean, and $ndrew Ng
���1��. Note that the detailed architecture of the
network used in the paper differed in many
details from the deep convolutional networks
we
ve been studying. %roadly speaking, however,
/50D is based on many similar ideas.

These are from the ��1� dataset, which is
somewhat changed from ��11. 4ualitatively,
however, the dataset is e[tremely similar. Details
about ,mageNet are available in the original
,mageNet paper, ,mageNet: a large-scale
hierarchical image database, by -ia Deng, :ei
Dong, 5ichard 6ocher, /i--ia /i, .ai /i, and /i
Fei-Fei ������.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

0N,6T� /50D
s network obtained a respectable percent
accuracy for correctly classifying ,mageNet images. That may not
sound impressive, but it was a huge improvement over the previous
best result of percent accuracy. That jump suggested that neural
networks might offer a powerful approach to very challenging
image recognition tasks, such as ,mageNet.

7Ke ���� .S+ paper� The work of /50D was followed by a ��1�
paper of .ri]hevsky, 6utskever and +inton �.6+�. .6+ trained
and tested a deep convolutional neural network using a restricted
subset of the ,mageNet data. The subset they used came from a
popular machine learning competition - the ,mageNet /arge-6cale
9isual 5ecognition Challenge �,/695C�. 8sing a competition
dataset gave them a good way of comparing their approach to other
leading techniques. The ,/695C-��1� training set contained about
1.� million ,mageNet images, drawn from 1,��� categories. The
validation and test sets contained ��,��� and 1��,��� images,
respectively, drawn from the same 1,��� categories.

One difficulty in running the ,/695C competition is that many
,mageNet images contain multiple objects. 6uppose an image
shows a labrador retriever chasing a soccer ball. The so-called
�correct� ,mageNet classification of the image might be as a
labrador retriever. 6hould an algorithm be penali]ed if it labels the
image as a soccer ball" %ecause of this ambiguity, an algorithm was
considered correct if the actual ,mageNet classification was among
the classifications the algorithm considered most likely. %y this
top- criterion, .6+
s deep convolutional network achieved an
accuracy of percent, vastly better than the ne[t-best contest
entry, which achieved an accuracy of percent. 8sing the more
restrictive metric of getting the label e[actly right, .6+
s network
achieved an accuracy of percent.

,t
s worth briefly describing .6+
s network, since it has inspired
much subsequent work. ,t
s also, as we shall see, closely related to
the networks we trained earlier in this chapter, albeit more
elaborate. .6+ used a deep convolutional neural network, trained
on two *38s. They used two *38s because the particular type of
*38 they were using �an N9,D,$ *eForce *T; ���� didn
t have
enough on-chip memory to store their entire network. 6o they split
the network into two parts, partitioned across the two *38s.

,mageNet classification with deep convolutional
neural networks, by $le[.ri]hevsky, ,lya
6utskever, and *eoffrey (. +inton ���1��.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �0/��

The .6+ network has layers of hidden neurons. The first hidden
layers are convolutional layers �some with ma[-pooling�, while the
ne[t layers are fully-connected layers. The ouput layer is a -
unit softma[layer, corresponding to the image classes. +ere
s
a sketch of the network, taken from the .6+ paper. The details are
e[plained below. Note that many layers are split into parts,
corresponding to the *38s.

The input layer contains neurons, representing the
5*% values for a image. 5ecall that, as mentioned earlier,
,mageNet contains images of varying resolution. This poses a
problem, since a neural network
s input layer is usually of a fi[ed
si]e. .6+ dealt with this by rescaling each image so the shorter side
had length . They then cropped out a area in the
center of the rescaled image. Finally, .6+ e[tracted random

 subimages �and hori]ontal reflections� from the
images. They did this random cropping as a way of e[panding the
training data, and thus reducing overfitting. This is particularly
helpful in a large network such as .6+
s. ,t was these
images which were used as inputs to the network. ,n most cases the
cropped image still contains the main object from the uncropped
image.

0oving on to the hidden layers in .6+
s network, the first hidden
layer is a convolutional layer, with a ma[-pooling step. ,t uses local
receptive fields of si]e , and a stride length of pi[els. There
are a total of feature maps. The feature maps are split into two
groups of each, with the first feature maps residing on one
*38, and the second � feature maps residing on the other *38.
The ma[-pooling in this and later layers is done in regions, but
the pooling regions are allowed to overlap, and are just pi[els
apart.

Thanks to ,lya 6utskever.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �1/��

The second hidden layer is also a convolutional layer, with a ma[-
pooling step. ,t uses local receptive fields, and there
s a total of

 feature maps, split into on each *38. Note that the feature
maps only use input channels, not the full output from the
previous layer �as would usually be the case�. This is because any
single feature map only uses inputs from the same *38. ,n this
sense the network departs from the convolutional architecture we
described earlier in the chapter, though obviously the basic idea is
still the same.

The third, fourth and fifth hidden layers are convolutional layers,
but unlike the previous layers, they do not involve ma[-pooling.
Their respectives parameters are: ��� feature maps, with
local receptive fields, and input channels� ��� feature maps,
with local receptive fields, and input channels� and ���
feature maps, with local receptive fields, and input
channels. Note that the third layer involves some inter-*38
communication �as depicted in the figure� in order that the feature
maps use all input channels.

The si[th and seventh hidden layers are fully-connected layers, with
 neurons in each layer.

The output layer is a -unit softma[layer.

The .6+ network takes advantage of many techniques. ,nstead of
using the sigmoid or tanh activation functions, .6+ use rectified
linear units, which sped up training significantly. .6+
s network
had roughly �� million learned parameters, and was thus, even with
the large training set, susceptible to overfitting. To overcome this,
they e[panded the training set using the random cropping strategy
we discussed above. They also further addressed overfitting by
using a variant of l� regulari]ation, and dropout. The network itself
was trained using momentum-based mini-batch stochastic gradient
descent.

That
s an overview of many of the core ideas in the .6+ paper. ,
ve
omitted some details, for which you should look at the paper. <ou
can also look at $le[.ri]hevsky
s cuda-convnet �and successors�,
which contains code implementing many of the ideas. $ Theano-
based implementation has also been developed, with the code
available here. The code is recogni]ably along similar lines to that

Theano-based large-scale visual recognition
with multiple *38s, by :eiguang Ding, 5uoyan

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �2/��

developed in this chapter, although the use of multiple *38s
complicates things somewhat. The Caffe neural nets framework also
includes a version of the .6+ network, see their 0odel =oo for
details.

7Ke ���� I/S95& competition� 6ince ��1�, rapid progress
continues to be made. Consider the ��1� ,/695C competition. $s
in ��1�, it involved a training set of million images, in
categories, and the figure of merit was whether the top predictions
included the correct category. The winning team, based primarily at
*oogle, used a deep convolutional network with layers of
neurons. They called their network *oog/eNet, as a homage to
/eNet-�. *oog/eNet achieved a top-� accuracy of percent, a
giant improvement over the ��1� winner �Clarifai, with
percent�, and the ��1� winner �.6+, with percent�.

-ust how good is *oog/eNet
s percent accuracy" ,n ��1� a
team of researchers wrote a survey paper about the ,/695C
competition. One of the questions they address is how well
humans perform on ,/695C. To do this, they built a system which
lets humans classify ,/695C images. $s one of the authors, $ndrej
.arpathy, e[plains in an informative blog post, it was a lot of
trouble to get the humans up to *oog/eNet
s performance:

...the task of labeling images with � out of 1��� categories
quickly turned out to be e[tremely challenging, even for
some friends in the lab who have been working on ,/695C
and its classes for a while. First we thought we would put it
up on >$ma]on 0echanical Turk@. Then we thought we
could recruit paid undergrads. Then , organi]ed a labeling
party of intense labeling effort only among the �e[pert
labelers� in our lab. Then , developed a modified interface
that used *oog/eNet predictions to prune the number of
categories from 1��� to only about 1��. ,t was still too
hard - people kept missing categories and getting up to
ranges of 1�-1�� error rates. ,n the end , reali]ed that to
get anywhere competitively close to *oog/eNet, it was
most efficient if , sat down and went through the painfully
long training process and the subsequent careful
annotation process myself... The labeling happened at a
rate of about 1 per minute, but this decreased over time...

:ang, Fei 0ao, and *raham Taylor ���1��.

*oing deeper with convolutions, by Christian
6]egedy, :ei /iu, <angqing -ia, 3ierre
6ermanet, 6cott 5eed, Dragomir $nguelov,
Dumitru (rhan, 9incent 9anhoucke, and
$ndrew 5abinovich ���1��.

,mageNet large scale visual recognition
challenge, by Olga 5ussakovsky, -ia Deng, +ao
6u, -onathan .rause, 6anjeev 6atheesh, 6ean
0a, =hiheng +uang, $ndrej .arpathy, $ditya
.hosla, 0ichael %ernstein, $le[ander C. %erg,
and /i Fei-Fei ���1��.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

6ome images are easily recogni]ed, while some images
�such as those of fine-grained breeds of dogs, birds, or
monkeys� can require multiple minutes of concentrated
effort. , became very good at identifying breeds of dogs...
%ased on the sample of images , worked on, the
*oog/eNet classification error turned out to be �.��... 0y
own error in the end turned out to be �.1�, appro[imately
1.�� better.

,n other words, an e[pert human, working painstakingly, was with
great effort able to narrowly beat the deep neural network. ,n fact,
.arpathy reports that a second human e[pert, trained on a smaller
sample of images, was only able to attain a percent top-� error
rate, significantly below *oog/eNet
s performance. $bout half the
errors were due to the e[pert �failing to spot and consider the
ground truth label as an option�.

These are astonishing results. ,ndeed, since this work, several
teams have reported systems whose top-� error rate is actually
Eetter than �.1�. This has sometimes been reported in the media as
the systems having better-than-human vision. :hile the results are
genuinely e[citing, there are many caveats that make it misleading
to think of the systems as having better-than-human vision. The
,/695C challenge is in many ways a rather limited problem - a
crawl of the open web is not necessarily representative of images
found in applications� $nd, of course, the top- criterion is quite
artificial. :e are still a long way from solving the problem of image
recognition or, more broadly, computer vision. 6till, it
s e[tremely
encouraging to see so much progress made on such a challenging
problem, over just a few years.

2tKer actiYit\� ,
ve focused on ,mageNet, but there
s a
considerable amount of other activity using neural nets to do image
recognition. /et me briefly describe a few interesting recent results,
just to give the flavour of some current work.

One encouraging practical set of results comes from a team at
*oogle, who applied deep convolutional networks to the problem of
recogni]ing street numbers in *oogle
s 6treet 9iew imagery. ,n
their paper, they report detecting and automatically transcribing
nearly 1�� million street numbers at an accuracy similar to that of a

0ulti-digit Number 5ecognition from 6treet
9iew ,magery using Deep Convolutional Neural
Networks, by ,an -. *oodfellow, <aroslav
%ulatov, -ulian ,bar], 6acha $rnoud, and 9inay
6het ���1��.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

human operator. The system is fast: their system transcribed all of
6treet 9iew
s images of street numbers in France in less that an
hour� They say: �+aving this new dataset significantly increased the
geocoding quality of *oogle 0aps in several countries especially the
ones that did not already have other sources of good geocoding.�
$nd they go on to make the broader claim: �:e believe with this
model we have solved >optical character recognition@ for short
sequences >of characters@ for many applications.�

,
ve perhaps given the impression that it
s all a parade of
encouraging results. Of course, some of the most interesting work
reports on fundamental things we don
t yet understand. For
instance, a ��1� paper showed that deep networks may suffer from
what are effectively blind spots. Consider the lines of images below.
On the left is an ,mageNet image classified correctly by their
network. On the right is a slightly perturbed image �the
perturbation is in the middle� which is classified inForreFtl\ by the
network. The authors found that there are such �adversarial�
images for every sample image, not just a few special ones.

This is a disturbing result. The paper used a network based on the
same code as .6+
s network - that is, just the type of network that
is being increasingly widely used. :hile such neural networks
compute functions which are, in principle, continuous, results like
this suggest that in practice they
re likely to compute functions
which are very nearly discontinuous. :orse, they
ll be

,ntriguing properties of neural networks, by
Christian 6]egedy, :ojciech =aremba, ,lya
6utskever, -oan %runa, Dumitru (rhan, ,an
*oodfellow, and 5ob Fergus ���1��

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

discontinuous in ways that violate our intuition about what is
reasonable behavior. That
s concerning. Furthermore, it
s not yet
well understood what
s causing the discontinuity: is it something
about the loss function" The activation functions used" The
architecture of the network" 6omething else" :e don
t yet know.

Now, these results are not quite as bad as they sound. $lthough
such adversarial images are common, they
re also unlikely in
practice. $s the paper notes:

The e[istence of the adversarial negatives appears to be in
contradiction with the network¶s ability to achieve high
generali]ation performance. ,ndeed, if the network can
generali]e well, how can it be confused by these
adversarial negatives, which are indistinguishable from the
regular e[amples" The e[planation is that the set of
adversarial negatives is of e[tremely low probability, and
thus is never �or rarely� observed in the test set, yet it is
dense �much like the rational numbers�, and so it is found
near virtually every test case.

Nonetheless, it is distressing that we understand neural nets so
poorly that this kind of result should be a recent discovery. Of
course, a major benefit of the results is that they have stimulated
much followup work. For e[ample, one recent paper shows that
given a trained network it
s possible to generate images which look
to a human like white noise, but which the network classifies as
being in a known category with a very high degree of confidence.
This is another demonstration that we have a long way to go in
understanding neural networks and their use in image recognition.

Despite results like this, the overall picture is encouraging. :e
re
seeing rapid progress on e[tremely difficult benchmarks, like
,mageNet. :e
re also seeing rapid progress in the solution of real-
world problems, like recogni]ing street numbers in 6treet9iew. %ut
while this is encouraging it
s not enough just to see improvements
on benchmarks, or even real-world applications. There are
fundamental phenomena which we still understand poorly, such as
the e[istence of adversarial images. :hen such fundamental
problems are still being discovered �never mind solved�, it is
premature to say that we
re near solving the problem of image

Deep Neural Networks are (asily Fooled: +igh
Confidence 3redictions for 8nrecogni]able
,mages, by $nh Nguyen, -ason <osinski, and -eff
Clune ���1��.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �6/��

recognition. $t the same time such problems are an e[citing
stimulus to further work.

2tKer approaFKes to deep neural nets
Through this book, we
ve concentrated on a single problem:
classifying the 0N,6T digits. ,t
s a juicy problem which forced us to
understand many powerful ideas: stochastic gradient descent,
backpropagation, convolutional nets, regulari]ation, and more. %ut
it
s also a narrow problem. ,f you read the neural networks
literature, you
ll run into many ideas we haven
t discussed:
recurrent neural networks, %olt]mann machines, generative
models, transfer learning, reinforcement learning, and so on, on
and on and on� Neural networks is a vast field. +owever, many
important ideas are variations on ideas we
ve already discussed,
and can be understood with a little effort. ,n this section , provide a
glimpse of these as yet unseen vistas. The discussion isn
t detailed,
nor comprehensive - that would greatly e[pand the book. 5ather,
it
s impressionistic, an attempt to evoke the conceptual richness of
the field, and to relate some of those riches to what we
ve already
seen. Through the section, ,
ll provide a few links to other sources,
as entrees to learn more. Of course, many of these links will soon be
superseded, and you may wish to search out more recent literature.
That point notwithstanding, , e[pect many of the underlying ideas
to be of lasting interest.

5ecurrent neural netZorNs �511s�� ,n the feedforward nets
we
ve been using there is a single input which completely
determines the activations of all the neurons through the remaining
layers. ,t
s a very static picture: everything in the network is fi[ed,
with a fro]en, crystalline quality to it. %ut suppose we allow the
elements in the network to keep changing in a dynamic way. For
instance, the behaviour of hidden neurons might not just be
determined by the activations in previous hidden layers, but also by
the activations at earlier times. ,ndeed, a neuron
s activation might
be determined in part by its own activation at an earlier time. That
s
certainly not what happens in a feedforward network. Or perhaps
the activations of hidden and output neurons won
t be determined
just by the current input to the network, but also by earlier inputs.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

Neural networks with this kind of time-varying behaviour are
known as reFurrent neural networks or 5NNs. There are many
different ways of mathematically formali]ing the informal
description of recurrent nets given in the last paragraph. <ou can
get the flavour of some of these mathematical models by glancing at
the :ikipedia article on 5NNs. $s , write, that page lists no fewer
than 1� different models. %ut mathematical details aside, the broad
idea is that 5NNs are neural networks in which there is some
notion of dynamic change over time. $nd, not surprisingly, they
re
particularly useful in analysing data or processes that change over
time. 6uch data and processes arise naturally in problems such as
speech or natural language, for e[ample.

One way 5NNs are currently being used is to connect neural
networks more closely to traditional ways of thinking about
algorithms, ways of thinking based on concepts such as Turing
machines and �conventional� programming languages. $ ��1�
paper developed an 5NN which could take as input a character-by-
character description of a �very, very simple�� 3ython program, and
use that description to predict the output. ,nformally, the network
is learning to �understand� certain 3ython programs. $ second
paper, also from ��1�, used 5NNs as a starting point to develop
what they called a neural Turing machine �NT0�. This is a
universal computer whose entire structure can be trained using
gradient descent. They trained their NT0 to infer algorithms for
several simple problems, such as sorting and copying.

$s it stands, these are e[tremely simple toy models. /earning to
e[ecute the 3ython program SULQW�������������� doesn
t make a
network into a full-fledged 3ython interpreter� ,t
s not clear how
much further it will be possible to push the ideas. 6till, the results
are intriguing. +istorically, neural networks have done well at
pattern recognition problems where conventional algorithmic
approaches have trouble. 9ice versa, conventional algorithmic
approaches are good at solving problems that neural nets aren
t so
good at. No-one today implements a web server or a database
program using a neural network� ,t
d be great to develop unified
models that integrate the strengths of both neural networks and
more traditional approaches to algorithms. 5NNs and ideas
inspired by 5NNs may help us do that.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

5NNs have also been used in recent years to attack many other
problems. They
ve been particularly useful in speech recognition.
$pproaches based on 5NNs have, for e[ample, set records for the
accuracy of phoneme recognition. They
ve also been used to develop
improved models of the language people use while speaking. %etter
language models help disambiguate utterances that otherwise
sound alike. $ good language model will, for e[ample, tell us that
�to infinity and beyond� is much more likely than �two infinity and
beyond�, despite the fact that the phrases sound identical. 5NNs
have been used to set new records for certain language benchmarks.

This work is, incidentally, part of a broader use of deep neural nets
of all types, not just 5NNs, in speech recognition. For e[ample, an
approach based on deep nets has achieved outstanding results on
large vocabulary continuous speech recognition. $nd another
system based on deep nets has been deployed in *oogle
s $ndroid
operating system �for related technical work, see 9incent
9anhoucke
s ��1�-��1� papers�.

,
ve said a little about what 5NNs can do, but not so much about
how they work. ,t perhaps won
t surprise you to learn that many of
the ideas used in feedforward networks can also be used in 5NNs.
,n particular, we can train 5NNs using straightforward
modifications to gradient descent and backpropagation. 0any other
ideas used in feedforward nets, ranging from regulari]ation
techniques to convolutions to the activation and cost functions
used, are also useful in recurrent nets. $nd so many of the
techniques we
ve developed in the book can be adapted for use with
5NNs.

/ong sKort�term memor\ units �/S70s�� One challenge
affecting 5NNs is that early models turned out to be very difficult to
train, harder even than deep feedforward networks. The reason is
the unstable gradient problem discussed in Chapter �. 5ecall that
the usual manifestation of this problem is that the gradient gets
smaller and smaller as it is propagated back through layers. This
makes learning in early layers e[tremely slow. The problem actually
gets worse in 5NNs, since gradients aren
t just propagated
backward through layers, they
re propagated backward through
time. ,f the network runs for a long time that can make the gradient
e[tremely unstable and hard to learn from. Fortunately, it
s possible

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

to incorporate an idea known as long short-term memory units
�/6T0s� into 5NNs. The units were introduced by +ochreiter and
6chmidhuber in 1��� with the e[plicit purpose of helping address
the unstable gradient problem. /6T0s make it much easier to get
good results when training 5NNs, and many recent papers
�including many that , linked above� make use of /6T0s or related
ideas.

'eep EelieI nets, generatiYe models, and %olt]mann
macKines� 0odern interest in deep learning began in ����, with
papers e[plaining how to train a type of neural network known as a
deep EelieI network �D%N�. D%Ns were influential for several
years, but have since lessened in popularity, while models such as
feedforward networks and recurrent neural nets have become
fashionable. Despite this, D%Ns have several properties that make
them interesting.

One reason D%Ns are interesting is that they
re an e[ample of
what
s called a generatiYe Podel. ,n a feedforward network, we
specify the input activations, and they determine the activations of
the feature neurons later in the network. $ generative model like a
D%N can be used in a similar way, but it
s also possible to specify
the values of some of the feature neurons and then �run the
network backward�, generating values for the input activations.
0ore concretely, a D%N trained on images of handwritten digits can
�potentially, and with some care� also be used to generate images
that look like handwritten digits. ,n other words, the D%N would in
some sense be learning to write. ,n this, a generative model is much
like the human brain: not only can it read digits, it can also write
them. ,n *eoffrey +inton
s memorable phrase, to recogni]e shapes,
first learn to generate images.

$ second reason D%Ns are interesting is that they can do
unsupervised and semi-supervised learning. For instance, when
trained with image data, D%Ns can learn useful features for
understanding other images, even if the training images are
unlabelled. $nd the ability to do unsupervised learning is e[tremely
interesting both for fundamental scientific reasons, and - if it can be
made to work well enough - for practical applications.

6ee $ fast learning algorithm for deep belief
nets, by *eoffrey +inton, 6imon Osindero, and
<ee-:hye Teh ������, as well as the related
work in 5educing the dimensionality of data
with neural networks, by *eoffrey +inton and
5uslan 6alakhutdinov ������.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �0/��

*iven these attractive features, why have D%Ns lessened in
popularity as models for deep learning" 3art of the reason is that
models such as feedforward and recurrent nets have achieved many
spectacular results, such as their breakthroughs on image and
speech recognition benchmarks. ,t
s not surprising and quite right
that there
s now lots of attention being paid to these models.
There
s an unfortunate corollary, however. The marketplace of
ideas often functions in a winner-take-all fashion, with nearly all
attention going to the current fashion-of-the-moment in any given
area. ,t can become e[tremely difficult for people to work on
momentarily unfashionable ideas, even when those ideas are
obviously of real long-term interest. 0y personal opinion is that
D%Ns and other generative models likely deserve more attention
than they are currently receiving. $nd , won
t be surprised if D%Ns
or a related model one day surpass the currently fashionable
models. For an introduction to D%Ns, see this overview. ,
ve also
found this article helpful. ,t isn
t primarily about deep belief nets,
per se, but does contain much useful information about restricted
%olt]mann machines, which are a key component of D%Ns.

2tKer ideas� :hat else is going on in neural networks and deep
learning" :ell, there
s a huge amount of other fascinating work.
$ctive areas of research include using neural networks to do natural
language processing �see also this informative review paper�,
machine translation, as well as perhaps more surprising
applications such as music informatics. There are, of course, many
other areas too. ,n many cases, having read this book you should be
able to begin following recent work, although �of course� you
ll need
to fill in gaps in presumed background knowledge.

/et me finish this section by mentioning a particularly fun paper. ,t
combines deep convolutional networks with a technique known as
reinforcement learning in order to learn to play video games well
�see also this followup�. The idea is to use the convolutional
network to simplify the pi[el data from the game screen, turning it
into a simpler set of features, which can be used to decide which
action to take: �go left�, �go down�, �fire�, and so on. :hat is
particularly interesting is that a single network learned to play
seven different classic video games pretty well, outperforming
human e[perts on three of the games. Now, this all sounds like a
stunt, and there
s no doubt the paper was well marketed, with the

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �1/��

title �3laying $tari with reinforcement learning�. %ut looking past
the surface gloss, consider that this system is taking raw pi[el data -
it doesn
t even know the game rules� - and from that data learning
to do high-quality decision-making in several very different and
very adversarial environments, each with its own comple[set of
rules. That
s pretty neat.

2n tKe Iuture oI neural networks
Intention�driYen user interIaces� There
s an old joke in which
an impatient professor tells a confused student: �don
t listen to
what , say� listen to what , Pean�. +istorically, computers have
often been, like the confused student, in the dark about what their
users mean. %ut this is changing. , still remember my surprise the
first time , misspelled a *oogle search query, only to have *oogle
say �Did you mean >corrected query@"� and to offer the
corresponding search results. *oogle C(O /arry 3age once
described the perfect search engine as understanding e[actly what
>your queries@ mean and giving you back e[actly what you want.

This is a vision of an intention�driYen user interIaFe. ,n this vision,
instead of responding to users
 literal queries, search will use
machine learning to take vague user input, discern precisely what
was meant, and take action on the basis of those insights.

The idea of intention-driven interfaces can be applied far more
broadly than search. Over the ne[t few decades, thousands of
companies will build products which use machine learning to make
user interfaces that can tolerate imprecision, while discerning and
acting on the user
s true intent. :e
re already seeing early e[amples
of such intention-driven interfaces: $pple
s 6iri� :olfram $lpha�
,%0
s :atson� systems which can annotate photos and videos� and
much more.

0ost of these products will fail. ,nspired user interface design is
hard, and , e[pect many companies will take powerful machine
learning technology and use it to build insipid user interfaces. The
best machine learning in the world won
t help if your user interface
concept stinks. %ut there will be a residue of products which
succeed. Over time that will cause a profound change in how we
relate to computers. Not so long ago - let
s say, ���� - users took it

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �2/��

for granted that they needed precision in most interactions with
computers. ,ndeed, computer literacy to a great e[tent meant
internali]ing the idea that computers are e[tremely literal� a single
misplaced semi-colon may completely change the nature of an
interaction with a computer. %ut over the ne[t few decades , e[pect
we
ll develop many successful intention-driven user interfaces, and
that will dramatically change what we e[pect when interacting with
computers.

0acKine learning, data science, and tKe Yirtuous circle oI
innoYation� Of course, machine learning isn
t just being used to
build intention-driven interfaces. $nother notable application is in
data science, where machine learning is used to find the �known
unknowns� hidden in data. This is already a fashionable area, and
much has been written about it, so , won
t say much. %ut , do want
to mention one consequence of this fashion that is not so often
remarked: over the long run it
s possible the biggest breakthrough
in machine learning won
t be any single conceptual breakthrough.
5ather, the biggest breakthrough will be that machine learning
research becomes profitable, through applications to data science
and other areas. ,f a company can invest 1 dollar in machine
learning research and get 1 dollar and 1� cents back reasonably
rapidly, then a lot of money will end up in machine learning
research. 3ut another way, machine learning is an engine driving
the creation of several major new markets and areas of growth in
technology. The result will be large teams of people with deep
subject e[pertise, and with access to e[traordinary resources. That
will propel machine learning further forward, creating more
markets and opportunities, a virtuous circle of innovation.

7Ke role oI neural netZorNs and deep learning� ,
ve been
talking broadly about machine learning as a creator of new
opportunities for technology. :hat will be the specific role of neural
networks and deep learning in all this"

To answer the question, it helps to look at history. %ack in the
1���s there was a great deal of e[citement and optimism about
neural networks, especially after backpropagation became widely
known. That e[citement faded, and in the 1���s the machine
learning baton passed to other techniques, such as support vector
machines. Today, neural networks are again riding high, setting all

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

sorts of records, defeating all comers on many problems. %ut who is
to say that tomorrow some new approach won
t be developed that
sweeps neural networks away again" Or perhaps progress with
neural networks will stagnate, and nothing will immediately arise to
take their place"

For this reason, it
s much easier to think broadly about the future of
machine learning than about neural networks specifically. 3art of
the problem is that we understand neural networks so poorly. :hy
is it that neural networks can generali]e so well" +ow is it that they
avoid overfitting as well as they do, given the very large number of
parameters they learn" :hy is it that stochastic gradient descent
works as well as it does" +ow well will neural networks perform as
data sets are scaled" For instance, if ,mageNet was e[panded by a
factor of , would neural networks
 performance improve more or
less than other machine learning techniques" These are all simple,
fundamental questions. $nd, at present, we understand the answers
to these questions very poorly. :hile that
s the case, it
s difficult to
say what role neural networks will play in the future of machine
learning.

, will make one prediction: , believe deep learning is here to stay.
The ability to learn hierarchies of concepts, building up multiple
layers of abstraction, seems to be fundamental to making sense of
the world. This doesn
t mean tomorrow
s deep learners won
t be
radically different than today
s. :e could see major changes in the
constituent units used, in the architectures, or in the learning
algorithms. Those changes may be dramatic enough that we no
longer think of the resulting systems as neural networks. %ut they
d
still be doing deep learning.

:ill neural netZorNs and deep learning soon lead to
artiIicial intelligence" ,n this book we
ve focused on using
neural nets to do specific tasks, such as classifying images. /et
s
broaden our ambitions, and ask: what about general-purpose
thinking computers" Can neural networks and deep learning help
us solve the problem of �general� artificial intelligence �$,�" $nd, if
so, given the rapid recent progress of deep learning, can we e[pect
general $, any time soon"

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

$ddressing these questions comprehensively would take a separate
book. ,nstead, let me offer one observation. ,t
s based on an idea
known as Conway
s law:

$ny organi]ation that designs a system... will inevitably
produce a design whose structure is a copy of the
organi]ation
s communication structure.

6o, for e[ample, Conway
s law suggests that the design of a %oeing
��� aircraft will mirror the e[tended organi]ational structure of
%oeing and its contractors at the time the ��� was designed. Or for
a simple, specific e[ample, consider a company building a comple[
software application. ,f the application
s dashboard is supposed to
be integrated with some machine learning algorithm, the person
building the dashboard better be talking to the company
s machine
learning e[pert. Conway
s law is merely that observation, writ large.

8pon first hearing Conway
s law, many people respond either
�:ell, isn
t that banal and obvious"� or �,sn
t that wrong"� /et me
start with the objection that it
s wrong. $s an instance of this
objection, consider the question: where does %oeing
s accounting
department show up in the design of the ���" :hat about their
janitorial department" Their internal catering" $nd the answer is
that these parts of the organi]ation probably don
t show up
e[plicitly anywhere in the ���. 6o we should understand Conway
s
law as referring only to those parts of an organi]ation concerned
e[plicitly with design and engineering.

:hat about the other objection, that Conway
s law is banal and
obvious" This may perhaps be true, but , don
t think so, for
organi]ations too often act with disregard for Conway
s law. Teams
building new products are often bloated with legacy hires or,
contrariwise, lack a person with some crucial e[pertise. Think of all
the products which have useless complicating features. Or think of
all the products which have obvious major deficiencies - e.g., a
terrible user interface. 3roblems in both classes are often caused by
a mismatch between the team that was needed to produce a good
product, and the team that was actually assembled. Conway
s law
may be obvious, but that doesn
t mean people don
t routinely ignore
it.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

Conway
s law applies to the design and engineering of systems
where we start out with a pretty good understanding of the likely
constituent parts, and how to build them. ,t can
t be applied directly
to the development of artificial intelligence, because $, isn
t �yet�
such a problem: we don
t know what the constituent parts are.
,ndeed, we
re not even sure what basic questions to be asking. ,n
others words, at this point $, is more a problem of science than of
engineering. ,magine beginning the design of the ��� without
knowing about jet engines or the principles of aerodynamics. <ou
wouldn
t know what kinds of e[perts to hire into your organi]ation.
$s :ernher von %raun put it, �basic research is what ,
m doing
when , don
t know what ,
m doing�. ,s there a version of Conway
s
law that applies to problems which are more science than
engineering"

To gain insight into this question, consider the history of medicine.
,n the early days, medicine was the domain of practitioners like
*alen and +ippocrates, who studied the entire body. %ut as our
knowledge grew, people were forced to speciali]e. :e discovered
many deep new ideas: think of things like the germ theory of
disease, for instance, or the understanding of how antibodies work,
or the understanding that the heart, lungs, veins and arteries form a
complete cardiovascular system. 6uch deep insights formed the
basis for subfields such as epidemiology, immunology, and the
cluster of inter-linked fields around the cardiovascular system. $nd
so the structure of our knowledge has shaped the social structure of
medicine. This is particularly striking in the case of immunology:
reali]ing the immune system e[ists and is a system worthy of study
is an e[tremely non-trivial insight. 6o we have an entire field of
medicine - with specialists, conferences, even pri]es, and so on -
organi]ed around something which is not just invisible, it
s arguably
not a distinct thing at all.

This is a common pattern that has been repeated in many well-
established sciences: not just medicine, but physics, mathematics,
chemistry, and others. The fields start out monolithic, with just a
few deep ideas. (arly e[perts can master all those ideas. %ut as time
passes that monolithic character changes. :e discover many deep
new ideas, too many for any one person to really master. $s a result,
the social structure of the field re-organi]es and divides around
those ideas. ,nstead of a monolith, we have fields within fields

0y apologies for overloading �deep�. , won
t
define �deep ideas� precisely, but loosely , mean
the kind of idea which is the basis for a rich field
of enquiry. The backpropagation algorithm and
the germ theory of disease are both good
e[amples.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html �6/��

within fields, a comple[, recursive, self-referential social structure,
whose organi]ation mirrors the connections between our deepest
insights. $nd so tKe struFture oI our knowledge sKapes tKe soFial
organi]ation oI sFienFe� %ut tKat soFial sKape in turn Fonstrains

and Kelps deterPine wKat we Fan disFoYer� This is the scientific
analogue of Conway
s law.

6o what
s this got to do with deep learning or $,"

:ell, since the early days of $, there have been arguments about it
that go, on one side, �+ey, it
s not going to be so hard, we
ve got
>super-special weapon@ on our side�, countered by �>super-special
weapon@ won
t be enough�. Deep learning is the latest super-special
weapon ,
ve heard used in such arguments� earlier versions of the
argument used logic, or 3rolog, or e[pert systems, or whatever the
most powerful technique of the day was. The problem with such
arguments is that they don
t give you any good way of saying just
how powerful any given candidate super-special weapon is. Of
course, we
ve just spent a chapter reviewing evidence that deep
learning can solve e[tremely challenging problems. ,t certainly
looks very e[citing and promising. %ut that was also true of systems
like 3rolog or (urisko or e[pert systems in their day. $nd so the
mere fact that a set of ideas looks very promising doesn
t mean
much. +ow can we tell if deep learning is truly different from these
earlier ideas" ,s there some way of measuring how powerful and
promising a set of ideas is" Conway
s law suggests that as a rough
and heuristic pro[y metric we can evaluate the comple[ity of the
social structure associated to those ideas.

6o, there are two questions to ask. First, how powerful a set of ideas
are associated to deep learning, according to this metric of social
comple[ity" 6econd, how powerful a theory will we need, in order
to be able to build a general artificial intelligence"

$s to the first question: when we look at deep learning today, it
s an
e[citing and fast-paced but also relatively monolithic field. There
are a few deep ideas, and a few main conferences, with substantial
overlap between several of the conferences. $nd there is paper after
paper leveraging the same basic set of ideas: using stochastic
gradient descent �or a close variation� to optimi]e a cost function.
,t
s fantastic those ideas are so successful. %ut what we don
t yet see

,nterestingly, often not by leading e[perts in
deep learning, who have been quite restrained.
6ee, for e[ample, this thoughtful post by <ann
/eCun. This is a difference from many earlier
incarnations of the argument.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/chap6.html ��/��

is lots of well-developed subfields, each e[ploring their own sets of
deep ideas, pushing deep learning in many directions. $nd so,
according to the metric of social comple[ity, deep learning is, if
you
ll forgive the play on words, still a rather shallow field. ,t
s still
possible for one person to master most of the deepest ideas in the
field.

On the second question: how comple[and powerful a set of ideas
will be needed to obtain $," Of course, the answer to this question
is: no-one knows for sure. %ut in the appendi[, e[amine some of
the e[isting evidence on this question. , conclude that, even rather
optimistically, it
s going to take many, many deep ideas to build an
$,. $nd so Conway
s law suggests that to get to such a point we will
necessarily see the emergence of many interrelating disciplines,
with a comple[and surprising stucture mirroring the structure in
our deepest insights. :e don
t yet see this rich social structure in
the use of neural networks and deep learning. $nd so, , believe that
we are several decades �at least� from using deep learning to
develop general $,.

,
ve gone to a lot of trouble to construct an argument which is
tentative, perhaps seems rather obvious, and which has an
indefinite conclusion. This will no doubt frustrate people who crave
certainty. 5eading around online, , see many people who loudly
assert very definite, very strongly held opinions about $,, often on
the basis of flimsy reasoning and non-e[istent evidence. 0y frank
opinion is this: it
s too early to say. $s the old joke goes, if you ask a
scientist how far away some discovery is and they say �1� years� �or
more�, what they mean is �,
ve got no idea�. $,, like controlled
fusion and a few other technologies, has been 1� years away for ��
plus years. On the flipside, what we definitely do have in deep
learning is a powerful technique whose limits have not yet been
found, and many wide-open fundamental problems. That
s an
e[citing creative opportunity.

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 1/10

,n this book, we
ve focused on the nuts and bolts of neural
networks: how they work, and how they can be used to solve pattern
recognition problems. This is material with many immediate
practical applications. %ut, of course, one reason for interest in
neural nets is the hope that one day they will go far beyond such
basic pattern recognition problems. 3erhaps they, or some other
approach based on digital computers, will eventually be used to
build thinking machines, machines that match or surpass human
intelligence" This notion far e[ceeds the material discussed in the
book - or what anyone in the world knows how to do. %ut it
s fun to
speculate.

There has been much debate about whether it
s even possiEle for
computers to match human intelligence. ,
m not going to engage
with that question. Despite ongoing dispute, , believe it
s not in
serious doubt that an intelligent computer is possible - although it
may be e[tremely complicated, and perhaps far beyond current
technology - and current naysayers will one day seem much like the
vitalists.

5ather, the question , e[plore here is whether there is a siPple set
of principles which can be used to e[plain intelligence" ,n
particular, and more concretely, is there a siPple algoritKP Ior
intelligenFe"

The idea that there is a truly simple algorithm for intelligence is a
bold idea. ,t perhaps sounds too optimistic to be true. 0any people
have a strong intuitive sense that intelligence has considerable
irreducible comple[ity. They
re so impressed by the ama]ing variety
and fle[ibility of human thought that they conclude that a simple
algorithm for intelligence must be impossible. Despite this
intuition, , don
t think it
s wise to rush to judgement. The history of
science is filled with instances where a phenomenon initially
appeared e[tremely comple[, but was later e[plained by some
simple but powerful set of ideas.

Consider, for e[ample, the early days of astronomy. +umans have
known since ancient times that there is a menagerie of objects in

$ppendi[� ,s tKere a VLPSOH algoritKP Ior intelligenFe"

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an
*oodfellow, and $aron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 2/10

the sky: the sun, the moon, the planets, the comets, and the stars.
These objects behave in very different ways - stars move in a stately,
regular way across the sky, for e[ample, while comets appear as if
out of nowhere, streak across the sky, and then disappear. ,n the
1�th century only a foolish optimist could have imagined that all
these objects
 motions could be e[plained by a simple set of
principles. %ut in the 1�th century Newton formulated his theory of
universal gravitation, which not only e[plained all these motions,
but also e[plained terrestrial phenomena such as the tides and the
behaviour of (arth-bound projecticles. The 1�th century
s foolish
optimist seems in retrospect like a pessimist, asking for too little.

Of course, science contains many more such e[amples. Consider the
myriad chemical substances making up our world, so beautifully
e[plained by 0endeleev
s periodic table, which is, in turn,
e[plained by a few simple rules which may be obtained from
quantum mechanics. Or the pu]]le of how there is so much
comple[ity and diversity in the biological world, whose origin turns
out to lie in the principle of evolution by natural selection. These
and many other e[amples suggest that it would not be wise to rule
out a simple e[planation of intelligence merely on the grounds that
what our brains - currently the best e[amples of intelligence - are
doing appears to be very complicated.

Contrariwise, and despite these optimistic e[amples, it is also
logically possible that intelligence can only be e[plained by a large
number of fundamentally distinct mechanisms. ,n the case of our
brains, those many mechanisms may perhaps have evolved in
response to many different selection pressures in our species

evolutionary history. ,f this point of view is correct, then
intelligence involves considerable irreducible comple[ity, and no
simple algorithm for intelligence is possible.

:hich of these two points of view is correct"

To get insight into this question, let
s ask a closely related question,
which is whether there
s a simple e[planation of how human brains
work. ,n particular, let
s look at some ways of quantifying the
comple[ity of the brain. Our first approach is the view of the brain
from connectomics. This is all about the raw wiring: how many
neurons there are in the brain, how many glial cells, and how many

%y 0ichael Nielsen � -an ��1�

Through this appendi[, assume that for a
computer to be considered intelligent its
capabilities must match or e[ceed human
thinking ability. $nd so ,
ll regard the question
�,s there a simple algorithm for intelligence"� as
equivalent to �,s there a simple algorithm which
can Cthink
 along essentially the same lines as
the human brain"� ,t
s worth noting, however,
that there may well be forms of intelligence that
don
t subsume human thought, but nonetheless
go beyond it in interesting ways.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

connections there are between the neurons. <ou
ve probably heard
the numbers before - the brain contains on the order of 1�� billion
neurons, 1�� billion glial cells, and 1�� trillion connections
between neurons. Those numbers are staggering. They
re also
intimidating. ,f we need to understand the details of all those
connections �not to mention the neurons and glial cells� in order to
understand how the brain works, then we
re certainly not going to
end up with a simple algorithm for intelligence.

There
s a second, more optimistic point of view, the view of the
brain from molecular biology. The idea is to ask how much genetic
information is needed to describe the brain
s architecture. To get a
handle on this question, we
ll start by considering the genetic
differences between humans and chimpan]ees. <ou
ve probably
heard the sound bite that �human beings are �� percent
chimpan]ee�. This saying is sometimes varied - popular variations
also give the number as �� or �� percent. The variations occur
because the numbers were originally estimated by comparing
samples of the human and chimp genomes, not the entire genomes.
+owever, in ���� the entire chimpan]ee genome was sequenced
�see also here�, and we now know that human and chimp DN$
differ at roughly 1�� million DN$ base pairs. That
s out of a total of
roughly � billion DN$ base pairs in each genome. 6o it
s not right to
say human beings are �� percent chimpan]ee - we
re more like ��
percent chimpan]ee.

+ow much information is in that 1�� million base pairs" (ach base
pair can be labelled by one of four possibilities - the �letters� of the
genetic code, the bases adenine, cytosine, guanine, and thymine. 6o
each base pair can be described using two bits of information - just
enough information to specify one of the four labels. 6o 1�� million
base pairs is equivalent to ��� million bits of information. That
s
the genetic difference between humans and chimps�

Of course, that ��� million bits accounts for all the genetic
differences between humans and chimps. :e
re only interested in
the difference associated to the brain. 8nfortunately, no-one knows
what fraction of the total genetic difference is needed to e[plain the
difference between the brains. %ut let
s assume for the sake of
argument that about half that ��� million bits accounts for the
brain differences. That
s a total of 1�� million bits.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

1�� million bits is an impressively large number. /et
s get a sense
for how large it is by translating it into more human terms. ,n
particular, how much would be an equivalent amount of (nglish
te[t" ,t turns out that the information content of (nglish te[t is
about 1 bit per letter. That sounds low - after all, the alphabet has
�� letters - but there is a tremendous amount of redundancy in
(nglish te[t. Of course, you might argue that our genomes are
redundant, too, so two bits per base pair is an overestimate. %ut
we
ll ignore that, since at worst it means that we
re overestimating
our brain
s genetic comple[ity. :ith these assumptions, we see that
the genetic difference between our brains and chimp brains is
equivalent to about 1�� million letters, or about �� million (nglish
words. That
s about �� times as much as the .ing -ames %ible.

That
s a lot of information. %ut it
s not incomprehensibly large. ,t
s
on a human scale. 0aybe no single human could ever understand
all that
s written in that code, but a group of people could perhaps
understand it collectively, through appropriate speciali]ation. $nd
although it
s a lot of information, it
s minuscule when compared to
the information required to describe the 1�� billion neurons, 1��
billion glial cells, and 1�� trillion connections in our brains. (ven if
we use a simple, coarse description - say, 1� floating point numbers
to characteri]e each connection - that would require about ��
quadrillion bits. That means the genetic description is a factor of
about half a billion less comple[than the full connectome for the
human brain.

:hat we learn from this is that our genome cannot possibly contain
a detailed description of all our neural connections. 5ather, it must
specify just the broad architecture and basic principles underlying
the brain. %ut that architecture and those principles seem to be
enough to guarantee that we humans will grow up to be intelligent.
Of course, there are caveats - growing children need a healthy,
stimulating environment and good nutrition to achieve their
intellectual potential. %ut provided we grow up in a reasonable
environment, a healthy human will have remarkable intelligence. ,n
some sense, the information in our genes contains the essence of
how we think. $nd furthermore, the principles contained in that
genetic information seem likely to be within our ability to
collectively grasp.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

$ll the numbers above are very rough estimates. ,t
s possible that
1�� million bits is a tremendous overestimate, that there is some
much more compact set of core principles underlying human
thought. 0aybe most of that 1�� million bits is just fine-tuning of
relatively minor details. Or maybe we were overly conservative in
how we computed the numbers. Obviously, that
d be great if it were
true� For our current purposes, the key point is this: the
architecture of the brain is complicated, but it
s not nearly as
complicated as you might think based on the number of
connections in the brain. The view of the brain from molecular
biology suggests we humans ought to one day be able to understand
the basic principles behind the brain
s architecture.

,n the last few paragraphs ,
ve ignored the fact that that 1�� million
bits merely quantifies the genetic diIIerenFe between human and
chimp brains. Not all our brain function is due to those 1�� million
bits. Chimps are remarkable thinkers in their own right. 0aybe the
key to intelligence lies mostly in the mental abilities �and genetic
information� that chimps and humans have in common. ,f this is
correct, then human brains might be just a minor upgrade to
chimpan]ee brains, at least in terms of the comple[ity of the
underlying principles. Despite the conventional human chauvinism
about our unique capabilities, this isn
t inconceivable: the
chimpan]ee and human genetic lines diverged just � million years
ago, a blink in evolutionary timescales. +owever, in the absence of a
more compelling argument, ,
m sympathetic to the conventional
human chauvinism: my guess is that the most interesting principles
underlying human thought lie in that 1�� million bits, not in the
part of the genome we share with chimpan]ees.

$dopting the view of the brain from molecular biology gave us a
reduction of roughly nine orders of magnitude in the comple[ity of
our description. :hile encouraging, it doesn
t tell us whether or not
a truly simple algorithm for intelligence is possible. Can we get any
further reductions in comple[ity" $nd, more to the point, can we
settle the question of whether a simple algorithm for intelligence is
possible"

8nfortunately, there isn
t yet any evidence strong enough to
decisively settle this question. /et me describe some of the available
evidence, with the caveat that this is a very brief and incomplete

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 6/10

overview, meant to convey the flavour of some recent work, not to
comprehensively survey what is known.

$mong the evidence suggesting that there may be a simple
algorithm for intelligence is an e[periment reported in $pril ����
in the journal Nature. $ team of scientists led by 0riganka 6ur
�rewired� the brains of newborn ferrets. 8sually, the signal from a
ferret
s eyes is transmitted to a part of the brain known as the visual
corte[. %ut for these ferrets the scientists took the signal from the
eyes and rerouted it so it instead went to the auditory corte[, i.e, the
brain region that
s usually used for hearing.

To understand what happened when they did this, we need to know
a bit about the visual corte[. The visual corte[contains many
orientation columns. These are little slabs of neurons, each of which
responds to visual stimuli from some particular direction. <ou can
think of the orientation columns as tiny directional sensors: when
someone shines a bright light from some particular direction, a
corresponding orientation column is activated. ,f the light is moved,
a different orientation column is activated. One of the most
important high-level structures in the visual corte[is the
orientation map, which charts how the orientation columns are laid
out.

:hat the scientists found is that when the visual signal from the
ferrets
 eyes was rerouted to the auditory corte[, the auditory corte[
changed. Orientation columns and an orientation map began to
emerge in the auditory corte[. ,t was more disorderly than the
orientation map usually found in the visual corte[, but
unmistakably similar. Furthermore, the scientists did some simple
tests of how the ferrets responded to visual stimuli, training them to
respond differently when lights flashed from different directions.
These tests suggested that the ferrets could still learn to �see�, at
least in a rudimentary fashion, using the auditory corte[.

This is an astonishing result. ,t suggests that there are common
principles underlying how different parts of the brain learn to
respond to sensory data. That commonality provides at least some
support for the idea that there is a set of simple principles
underlying intelligence. +owever, we shouldn
t kid ourselves about
how good the ferrets
 vision was in these e[periments. The

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

behavioural tests tested only very gross aspects of vision. $nd, of
course, we can
t ask the ferrets if they
ve �learned to see�. 6o the
e[periments don
t prove that the rewired auditory corte[was giving
the ferrets a high-fidelity visual e[perience. $nd so they provide
only limited evidence in favour of the idea that common principles
underlie how different parts of the brain learn.

:hat evidence is there against the idea of a simple algorithm for
intelligence" 6ome evidence comes from the fields of evolutionary
psychology and neuroanatomy. 6ince the 1���s evolutionary
psychologists have discovered a wide range of KuPan uniYersals,
comple[behaviours common to all humans, across cultures and
upbringing. These human universals include the incest taboo
between mother and son, the use of music and dance, as well as
much comple[linguistic structure, such as the use of swear words
�i.e., taboo words�, pronouns, and even structures as basic as the
verb. Complementing these results, a great deal of evidence from
neuroanatomy shows that many human behaviours are controlled
by particular locali]ed areas of the brain, and those areas seem to be
similar in all people. Taken together, these findings suggest that
many very speciali]ed behaviours are hardwired into particular
parts of our brains.

6ome people conclude from these results that separate e[planations
must be required for these many brain functions, and that as a
consequence there is an irreducible comple[ity to the brain
s
function, a comple[ity that makes a simple e[planation for the
brain
s operation �and, perhaps, a simple algorithm for intelligence�
impossible. For e[ample, one well-known artificial intelligence
researcher with this point of view is 0arvin 0insky. ,n the 1���s
and 1���s 0insky developed his �6ociety of 0ind� theory, based on
the idea that human intelligence is the result of a large society of
individually simple �but very different� computational processes
which 0insky calls agents. ,n his book describing the theory,
0insky sums up what he sees as the power of this point of view:

:hat magical trick makes us intelligent" The trick is that
there is no trick. The power of intelligence stems from our
vast diversity, not from any single, perfect principle.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

,n a response to reviews of his book, 0insky elaborated on the
motivation for the 6ociety of 0ind, giving an argument similar to
that stated above, based on neuroanatomy and evolutionary
psychology:

:e now know that the brain itself is composed of
hundreds of different regions and nuclei, each with
significantly different architectural elements and
arrangements, and that many of them are involved with
demonstrably different aspects of our mental activities.
This modern mass of knowledge shows that many
phenomena traditionally described by commonsense
terms like �intelligence� or �understanding� actually
involve comple[assemblies of machinery.

0insky is, of course, not the only person to hold a point of view
along these lines� ,
m merely giving him as an e[ample of a
supporter of this line of argument. , find the argument interesting,
but don
t believe the evidence is compelling. :hile it
s true that the
brain is composed of a large number of different regions, with
different functions, it does not therefore follow that a simple
e[planation for the brain
s function is impossible. 3erhaps those
architectural differences arise out of common underlying principles,
much as the motion of comets, the planets, the sun and the stars all
arise from a single gravitational force. Neither 0insky nor anyone
else has argued convincingly against such underlying principles.

0y own prejudice is in favour of there being a simple algorithm for
intelligence. $nd the main reason , like the idea, above and beyond
the �inconclusive� arguments above, is that it
s an optimistic idea.
:hen it comes to research, an unjustified optimism is often more
productive than a seemingly better justified pessimism, for an
optimist has the courage to set out and try new things. That
s the
path to discovery, even if what is discovered is perhaps not what
was originally hoped. $ pessimist may be more �correct� in some
narrow sense, but will discover less than the optimist.

This point of view is in stark contrast to the way we usually judge
ideas: by attempting to figure out whether they are right or wrong.
That
s a sensible strategy for dealing with the routine minutiae of
day-to-day research. %ut it can be the wrong way of judging a big,

,n �Contemplating 0inds: $ Forum for
$rtificial ,ntelligence�, edited by :illiam -.
Clancey, 6tephen :. 6moliar, and 0ark 6tefik
�0,T 3ress, 1����.

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html �/10

bold idea, the sort of idea that defines an entire research program.
6ometimes, we have only weak evidence about whether such an
idea is correct or not. :e can meekly refuse to follow the idea,
instead spending all our time squinting at the available evidence,
trying to discern what
s true. Or we can accept that no-one yet
knows, and instead work hard on developing the big, bold idea, in
the understanding that while we have no guarantee of success, it is
only thus that our understanding advances.

:ith all that said, in its Post optimistic form, , don
t believe we
ll
ever find a simple algorithm for intelligence. To be more concrete, ,
don
t believe we
ll ever find a really short 3ython �or C or /isp, or
whatever� program - let
s say, anywhere up to a thousand lines of
code - which implements artificial intelligence. Nor do , think we
ll
ever find a really easily-described neural network that can
implement artificial intelligence. %ut , do believe it
s worth acting as
though we could find such a program or network. That
s the path to
insight, and by pursuing that path we may one day understand
enough to write a longer program or build a more sophisticated
network which does e[hibit intelligence. $nd so it
s worth acting as
though an e[tremely simple algorithm for intelligence e[ists.

,n the 1���s, the eminent mathematician and computer scientist
-ack 6chwart] was invited to a debate between artificial intelligence
proponents and artificial intelligence skeptics. The debate became
unruly, with the proponents making over-the-top claims about the
ama]ing things just round the corner, and the skeptics doubling
down on their pessimism, claiming artificial intelligence was
outright impossible. 6chwart] was an outsider to the debate, and
remained silent as the discussion heated up. During a lull, he was
asked to speak up and state his thoughts on the issues under
discussion. +e said: �:ell, some of these developments may lie one
hundred Nobel pri]es away� �ref, page ���. ,t seems to me a perfect
response. The key to artificial intelligence is simple, powerful ideas,
and we can and should search optimistically for those ideas. %ut
we
re going to need many such ideas, and we
ve still got a long way
to go�

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/sai.html 10/10

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/IaT.html 1/2

Is tKere a pdI or print Yersion oI tKe EooN aYailaEle, or
planned" There
s no pdf or print version available, nor planned.

3eople sometimes suggest that it would be easy to convert the book
to pdf or print. +owever, the book contains do]ens of interactive
-ava6cript elements, and the narrative often depends on the reader
interacting with those elements in some way. Doing the �easy�
conversion would result in a poor quality product. Of course, those
interactive parts could be rewritten to make sense in static form,
but doing it well would be a big job.

&an \ou Kelp me ZitK a matKematical proElem, or ZitK
deEugging m\ ZorN" No. , suggest chatting about your problem
with friends or colleagues. ,f that
s no help, try an appropriate
online forum to ask your question.

'o \ou KaYe solutions to tKe e[ercises and proElems"
6orry, no.

I
d liNe to do a translation into anotKer language� Is tKat
oNa\" ,t
s fine under the terms of the book
s license �see the page
footer for details�, provided: �1� you
re not doing it for a product
which is commercial in some way �e.g., you intend to sell it�� and ���
you acknowledge me as the original author. ,
d also appreciate a
link, of course. ,f you have a commercial interest, please get in
touch so we can discuss �mn#michaelnielsen.org�.

)reTuentl\ $sked 4uestions

Neural Networks and Deep /earning
:hat this book is about
On the e[ercises and problems
8sing neural nets to recogni]e
handwritten digits
+ow the backpropagation
algorithm works
,mproving the way neural
networks learn
$ visual proof that neural nets can
compute any function
:hy are deep neural networks
hard to train"
Deep learning
$ppendi[: ,s there a siPple
algorithm for intelligence"
$cknowledgements
Frequently $sked 4uestions

,f you benefit from the book, please
make a small donation. , suggest ��,
but you can choose the amount.

Sponsors

Thanks to all the supporters who
made the book possible, with
especial thanks to 3avel Dudrenov.
Thanks also to all the contributors to
the %ugfinder +all of Fame.

Resources

%ook F$4

Code repository

0ichael Nielsen
s project
announcement mailing list

Deep /earning, draft book in
preparation, by <oshua %engio, ,an
*oodfellow, and $aron Courville

欧拉的博客:www.liuhao.me

2016/10/10 Neural networks and deep learning

http://neuralnetworksanddeeplearning.com/IaT.html 2/2

%y 0ichael Nielsen � -an ��1�

,n�DcDGePLc�ZorN��pOeDse�cLWe�WKLs�EooN�Ds��0LcKDeO�$��1LeOsen���1eurDO�1eWZorNs�DnG�'eep�/eDrnLnJ��

'eWerPLnDWLon�3ress�������

7KLs�ZorN�Ls�OLcenseG�unGer�D�&reDWLYe�&oPPons�$WWrLEuWLon�1on&oPPercLDO�����8nporWeG�/Lcense��7KLs�PeDns

\ou
re�Iree�Wo�cop\��sKDre��DnG�EuLOG�on�WKLs�EooN��EuW�noW�Wo�seOO�LW��,I�\ou
re�LnWeresWeG�Ln�coPPercLDO�use��pOeDse

conWDcW�Pe�

/DsW�upGDWe��)rL�-Dn������������������

欧拉的博客:www.liuhao.me

	Neural Networks and Deep Learning
	What this book is about
	On the exercises and problems
	CHAPTER 1
	CHAPTER2
	CHAPTER 3
	CHAPTER 4
	CHAPTER 5
	CHAPTER 6
	Appendix: Is there a simple algorithm for intelligence?
	Frequently Asked Questions

