# Light QCD exotics at **BESII**

### 刘北江 中国科学院高能物理研究所

中国科学院粒子物理前沿卓越创新中心第八次全体会议 2020年12月4日

## Non-Perturbative QCD

--how did the complex building blocks of our world come into being







Quark model seems to work really well. But, how does QCD give rise to hadrons?

- What is the origin of confinement?
- How is the mass generated in QCD? How are confinement and chiral symmetry breaking connected?
- What role do gluonic excitations play in the spectroscopy of light mesons, and can they help explain quark confinement?

## QCD exotics



What are the properties of the predicted states beyond simple QM? →Gluonic Excitations provide a measurement of the excited QCD potential

### Two general approaches:

- Manifested exotics, e.g.
  - quantum numbers incompatible with QM states
  - flavor: Charged-charmonium
- With internal exotic structure, no model free signature
  - Outnumbering of conventional QM states
  - Abnormal masses & decay properties...

# "Discovery experiment" with high precision

-- Need a well understood conventional hadron picture 3

# Charmonium decays provide an ideal lab for light hadron physics





$$\begin{split} & \Gamma(J/\psi \to \gamma G) \sim O(\alpha \alpha_s^2), \Gamma(J/\psi \to \gamma H) \sim O(\alpha \alpha_s^3), \\ & \Gamma(J/\psi \to \gamma M) \sim O(\alpha \alpha_s^4), \Gamma(J/\psi \to \gamma F) \sim O(\alpha \alpha_s^4) \end{split}$$

- Clean high statistics data samples
- Well defined initial and final states
  - Kinematic constraints
  - I(J<sup>PC</sup>) filter
- "Gluon-rich" process



# A few highlights

- Search for glueballs and hybrids
- Structures near  $N\overline{N}$  threshold
  - X(pp) and X(1835)
- Scalars near KK threshold
  - $a_0(980) f_0(980)$  mixing

## Glueball

- Direct evidence of the most fascinating property of QCD -gluon self interaction
- Critical information on the gluon field and the quantitative understanding of confinement



|                    | $m_{\pi}$ (MeV) | $m_{0^{++}}$ (MeV) | $m_{2^{++}}$ (MeV) | $m_{0^{-+}}$ (MeV) |
|--------------------|-----------------|--------------------|--------------------|--------------------|
| $N_{f} = 2$        | 938             | 1417(30)           | 2363(39)           | 2573(55)           |
|                    | 650             | 1498(58)           | 2384(67)           | 2585(65)           |
| $N_f = 2 + 1$ [22] | 360             | 1795(60)           | 2620(50)           | _                  |
| quenched [13]      | _               | 1710(50)(80)       | 2390(30)(120)      | 2560(35)(120)      |
| quenched [14]      | _               | 1730(50)(80)       | 2400(25)(120)      | 2590(40)(130)      |

Low lying glueballs with ordinary QN

- →mixing with qqbar mesons
- Systematic studies are required to solve the long standing puzzle
  - Outnumbering of conventional QM states
  - Abnormal properties

Glueballs from Lattice simulations in the pure gauge theory without quarks

### What we have learned so far

--from MarkIII, CLEO, BES(I, II), Crystal barrel, OBELIX, WA102, GAMS, E852, ...

Scalar: overpopulation

 LQCD : ground state 0<sup>+</sup> glueball ~1.7 GeV, first excitation ~2.1 GeV

Tensor: large uncertaintyLQCD: 2<sup>++</sup>(2.3~2.4 GeV)

**Pseudoscalar:** very little known above 2 GeV, puzzles in low mass region

• LQCD: 0<sup>-+</sup>(2.3~2.6 GeV)



## Amplitude analysis of $J/\psi \rightarrow \gamma \eta \eta / K_S^0 K_S^0$



| Resonance    | Mass $(MeV/c^2)$          | Width (MeV/ $c^2$ )       | $\mathcal{P}(J/\psi \to \gamma X \to \gamma \eta \chi)$ | Significance |
|--------------|---------------------------|---------------------------|---------------------------------------------------------|--------------|
| $f_0(1500)$  | $1468^{+14+23}_{-15-74}$  | $136^{+41+28}_{-26-100}$  | $(1.65^{+0.26+0.51}_{-0.31-1.40}) \times 10^{-5}$       | $8.2\sigma$  |
| $f_0(1710)$  | $1759 \pm 6^{+14}_{-25}$  | $172 \pm 10^{+32}_{-16}$  | $(2.35^{+0.13+1.24}_{-0.11-0.74}) \times 10^{-4}$       | $25.0\sigma$ |
| $f_0(2100)$  | $2081 \pm 13^{+24}_{-36}$ | $273^{+27+70}_{-24-23}$   | $(1.13_{-0.10-0.28}^{+0.001}) \times 10^{-4}$           | $13.9\sigma$ |
| $f'_2(1525)$ | $1513 \pm 5^{+4}_{-10}$   | $75^{+12+16}_{-10-8}$     | $(3.42^{+0.43+1.37}_{-0.51-1.30}) \times 10^{-5}$       | $11.0\sigma$ |
| $f_2(1810)$  | $1822^{+29+66}_{-24-57}$  | $229^{+52+88}_{-42-155}$  | $(5.40^{+0.60+3.42}_{-0.67-2.35}) \times 10^{-5}$       | $6.4\sigma$  |
| $f_2(2340)$  | $2362^{+31+140}_{-30-63}$ | $334_{-54-100}^{+62+165}$ | $(5.60^{+0.62+2.37}_{-0.65-2.07}) \times 10^{-5}$       | $7.6\sigma$  |

#### Br of $f_0(1710) \sim 10x$ larger than $f_0(1500)$

| Resonance            | $M ({\rm MeV}/c^2)$      | $M_{\rm PDG}~({\rm MeV}/c^2)$ | $\Gamma ({\rm MeV}/c^2)$ | $\Gamma_{\rm PDG}~({\rm MeV}/c^2)$ | Branching fraction                                        | Significance   |
|----------------------|--------------------------|-------------------------------|--------------------------|------------------------------------|-----------------------------------------------------------|----------------|
| K*(892)              | 896                      | $895.81\pm0.19$               | 48                       | $47.4\pm0.6$                       | $(6.28^{+0.16+0.59}_{-0.17-0.52}) \times 10^{-6}$         | $35\sigma$     |
| $K_1(1270)$          | 1272                     | $1272 \pm 7$                  | 90                       | $90 \pm 20$                        | $(8.54^{+1.07+2.35}_{-1.20-2.13}) \times 10^{-7}$         | $16\sigma$     |
| $f_0(1370)$          | $1350 \pm 9^{+12}_{-2}$  | 1200 to 1500                  | $231 \pm 21^{+28}_{-48}$ | 200 to 500                         | $(1.07\pm0.08\pm0.36)$ $\times$ 10 <sup>-5</sup>          | $25\sigma$     |
| $f_0(1500)$          | 1505                     | $1504 \pm 6$                  | 109                      | $109 \pm 7$                        | $(1.59^{+0.16+0.18}_{-0.16-0.56}) \times 10^{-5}$         | $23\sigma$     |
| $f_0(1710)$          | $1765 \pm 2^{+1}_{-1}$   | $1723^{+6}_{-5}$              | $146 \pm 3^{+7}_{-1}$    | $139\pm 8$                         | $(2.00^{+0.03+0.31}_{-0.02-0.10}) \times 10^{-4}$         | $\gg 35\sigma$ |
| $f_0(1790)$          | $1870\pm7^{+2}_{-3}$     |                               | $146 \pm 14^{+7}_{-15}$  |                                    | $(1.11_{-0.06-0.32}^{+0.06-0.32}) \times 10^{-5}$         | $24\sigma$     |
| $f_0(2200)$          | $2184 \pm 5^{+4}_{-2}$   | $2189 \pm 13$                 | $364 \pm 9^{+4}_{-7}$    | $238\pm50$                         | $(2.72^{+0.08+0.17}_{-0.06-0.47}) \times 10^{-4}$         | $\gg 35\sigma$ |
| $f_0(2330)$          | $2411\pm10\pm7$          |                               | $349 \pm 18^{+23}_{-1}$  |                                    | $(4.95^{+0.21}_{-0.21}{}^{+0.66}_{-0.21}) \times 10^{-5}$ | $35\sigma$     |
| $f_2(1270)$          | 1275                     | $1275.5\pm0.8$                | 185                      | $186.7^{+2.2}_{-2.5}$              | $(2.58^{+0.08+0.59}_{-0.09-0.20}) \times 10^{-5}$         | $33\sigma$     |
| $f'_2(1525)$         | $1516\pm1$               | $1525\pm5$                    | $75\pm1\pm1$             | $73^{+6}_{-5}$                     | $(7.99^{+0.03+0.69}_{-0.04-0.50}) \times 10^{-5}$         | $\gg 35\sigma$ |
| $f_2(2340)$          | $2233 \pm 34^{+9}_{-25}$ | $2345^{+50}_{-40}$            | $507\pm 37^{+18}_{-21}$  | $322_{-60}^{+70}$                  | $(5.54^{+0.34+3.82}_{-0.40-1.49}) \times 10^{-5}$         | $26\sigma$     |
| 0 <sup>++</sup> PHSP |                          |                               |                          |                                    | $(1.85^{+0.05+0.68}_{-0.05-0.26}) \times 10^{-5}$         | $26\sigma$     |
| 2 <sup>++</sup> PHSP |                          |                               |                          |                                    | $(5.73^{+0.99+4.18}_{-1.00-3.74}) \times 10^{-5}$         | $13\sigma$     |



### Scalar glueball candidate



 $f_0(1710)$  largely overlapped with scalar glueball

8

10

## Tensor glueball candidate

$$\Gamma(J/\psi 
ightarrow \gamma G_{2^+}) = 1.01(22) keV$$

 $\Gamma(J/\psi 
ightarrow \gamma G_{2^+})/\Gamma_{tot} = 1.1 imes 10^{-2}$ 

CLQCD, Phys. Rev. Lett. 111, 091601 (2013)

### **Experimental results**

Br(J/ $\psi \rightarrow \gamma f_2(2340) \rightarrow \gamma \eta \eta$ ) = (3.8<sup>+0.62+2.37</sup><sub>-0.65-2.07</sub>)×10<sup>-5</sup> Phys.Rev. D87, 092009 (2013)

Br(J/ $\psi$  → f<sub>2</sub>(2340) → γφφ) = (1.91±0.14<sup>+0.72</sup><sub>-0.73</sub>)×10<sup>-4</sup> Phys.Rev. D93, 112011 (2016)

Br(J/ $\psi$  →  $\gamma f_2(2340)$  →  $\gamma K_S K_S$ ) = (5.54<sup>+0.34+3.82</sup><sub>-0.40-1.49</sub>)×10<sup>-5</sup> Phys.Rev. D98, 072003 (2018)





- f<sub>2</sub>(2010), f<sub>2</sub>(2300) and f<sub>2</sub>(2340) stated in π<sup>-</sup>p reactions are observed with a strong production of f<sub>2</sub>(2340)
- Consist with central exclusion production in WA102

#### It is desirable to search for more decay modes

## Pseudoscalar glueball

The small number of expected pseudoscalars in the quark model provide a clean and promising environment for the search of glueballs



Where is the  $0^{-+}$  glueball

- LQCD: 0<sup>-+</sup>(2.3~2.6 GeV)
- Does  $\eta(1295)$  exist?
- What' s the nature of the outnumbered  $\eta(1405)$  ?



Long standing E-*i* puzzle

$$M = 1416 \pm 8^{+7}_{-5}; \Gamma = 91^{+67}_{-31-38} \text{ MeV}/c^2$$
$$M = 1490^{+14+3}_{-8-6}; \Gamma = 54^{+37+13}_{-21-24} \text{ MeV}/c^2$$

# Isospin-violating decay of $\eta(1405) \rightarrow f_0(980)\pi^0$







**BESIII PRL 108 182001** 

f0(980) is extremely narrow:  $\Gamma \cong 10$  MeV. PDG:  $\Gamma$ (f0(980))  $\cong$  40~100 MeV.

### Isospin-violating decay of $\eta(1405) \rightarrow f_0(980)\pi^0$

Inspired by BESIII's observation, the triangle singularity mechanism plays an important role in the study of threshold phenomena

[Phys.Rev.Lett. 108 (2012) 081803]



→No need for two pseudoscalars around 1.4 GeV
 →Look for pseudoscalar glueball in higher mass region
 →Manifestations of triangle singularity in various process

[e.g. Rev.Mod.Phys. 90 (2018) 015004, Prog.Part.Nucl.Phys. 112 (2020) 103757 ]

### Structures >2 GeV



X(2370)

# Landscape of glueballs has been updated with BESIII's inputs

Scalar: Overpopulation

 LQCD : ground state 0<sup>+</sup> glueball ~1.7 GeV, first excitation ~2.1 GeV ✓ Strong production of  $f_0(1710)/f_0(2100)$  in J/ψ → γ ηη/KK/ππ

**Tensor:** large uncertainty

• LQCD: 2<sup>++</sup>(2.3~2.4 GeV)

→ Strong production of  $f_2(2340)$  in J/ψ → γηη/KK/ππ/φφ

**Pseudoscalar:** very little known above 2 GeV, puzzles in low mass region

• LQCD: 0<sup>-+</sup>(2.3~2.6 GeV)

✓ Trajectory:

 η(1405) /η(1475) can be one resonance

□ Above 2 GeV: X(2370)?

## Hybrids



Only  $\pi_1$  canditates are observed

## Hybrids

- $\chi_{c1}$  provides another suitable environment to look for 1<sup>-+</sup>
  - $\pi_1$ (1600) studied in  $\chi_{c1} \rightarrow \eta' \pi^+ \pi^-$  by CLEO-c [PRD 84 112009(2011)]
  - only  $\pi_1$ (1400) has been reported decays to  $\eta\pi$



- Clear evidence for  $a_2(1700)$  in  $\chi_{c1}$  decays.
- First measurement of  $g'_{\eta'\pi} \neq 0$  using  $a_0(980) \rightarrow \eta\pi$  line shape.
- Measured upper limits for  $\pi_1(1^{-+})$  in 1.4 2.0 GeV/c<sup>2</sup> region.



- Establishing a spectrum of hybrids is necessary. Isoscalar 1<sup>-+</sup> is critical
- Isoscalar 1<sup>-+</sup> is expected to be produced J/ $\psi$  radiative decays • J/ $\psi \rightarrow \gamma + a_1 \pi / \eta f_1 / K_1 K / \eta \eta' / \eta f_2 /...,$
- Synergies between other experiments

# 10B J/ $\psi$ and 3B $\psi'$ provide great opportunities to mapping the spectrum of light mesons and gluonic excitations

|           | 0+ | 2+ | 0- |
|-----------|----|----|----|
| Ϳ/ψ→γΡΡ   |    |    |    |
| J/ψ→γVV   |    |    |    |
| Ϳ/ψ→γΡΡΡ  |    |    |    |
| Ϳ/ψ→γΡΡΡΡ |    |    |    |

Flavor Filters:

$$J/\psi \rightarrow \gamma X \rightarrow \gamma \gamma V \qquad J/\psi \rightarrow \omega/\phi + X$$



Anti filter:



•  $0^+$ ,  $2^+$ : coupled channel analysis ● J/ψ→γPP •  $J/\psi \rightarrow \omega/\phi + X$ ● 0<sup>-</sup> : trajectory >2 GeV, X(2370) •  $J/\psi \rightarrow \gamma PPP$ •  $J/\psi \rightarrow \gamma \gamma V$ 1-+ •  $J/\psi \rightarrow \gamma \eta_1^{(\prime)}$ •  $\chi_{c1} \rightarrow \eta \eta_1^{(\prime)}, \pi \pi_1$ 

# A few highlights

- Search for glueballs and hybrids
- Structures near NN threshold
  - X(pp̄) and X(1835)
- Scalars near KK threshold
  - $a_0(980) f_0(980)$  mixing

### X(1835)/X( $p\bar{p}$ )'s structure at $p\bar{p}$ threshold



 $a_0(980) - f_0(980)$  mixing



First direct measurement with >  $5\sigma$ , [BESIII PRL 121 022001]



Significance of  $a_0 - f_0$  mixing signal VS. coupling of  $a_0(f_0^3) \rightarrow K\overline{K}$ 

Explore light hadrons with charmed meson decays



## Summary

- Understanding how the strong interaction of quarks and gluons generate the structures and properties of hadrons remains an interesting (and important) question
  - The light quark sector is more complicated, but indispensable
  - Different experiments with complementary information are needed
- BESIII has a unique role to leading the efforts
  - Unprecedented high-statistics data sets of charmonia provide a gluon rich environment. Will continue to run for ~10 years
  - To fully explore the data sets, more advanced tools and closer experiment<->theory cooperation are needed

## Thank you for your attention

# Other information on scalars

### Two photon couplings

"Stickness"

PDG2018

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

#### $f_0(1710) \Gamma(i)\Gamma(\gamma\gamma)/\Gamma(total)$

| Γ( <i>ΚҠ</i> ) × Γ( <sup>,</sup> | $(\gamma\gamma)/\Gamma_{	ext{total}}$ |                                  |            |             | Γ1Γ4                                                                                                       |
|----------------------------------|---------------------------------------|----------------------------------|------------|-------------|------------------------------------------------------------------------------------------------------------|
| VALUE (eV)                       | CL%                                   | DOCUMENT ID                      |            | TECN        | COMMENT                                                                                                    |
| $12^{+3}_{-2}^{+227}_{-8}$       |                                       | UEHARA                           | 13         | BELL        | $\gamma\gamma  ightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                            |
| • • • We do not                  | t use the followin                    | ng data for average              | es, fits,  | limits,     | etc. • • •                                                                                                 |
|                                  |                                       |                                  |            |             |                                                                                                            |
| <480                             | 95                                    | ALBRECHT                         | 90G        | ARG         | $\gamma \gamma \rightarrow K^+ K^-$                                                                        |
| <480<br><110                     | 95<br>95                              | ALBRECHT<br><sup>1</sup> BEHREND | 90G<br>89C | ARG<br>CELL | $\begin{array}{ccc} \gamma\gamma  ightarrow & K^+ K^- \ \gamma\gamma  ightarrow & K_S^0 K_S^0 \end{array}$ |

#### Belle PRD 78 052004

TABLE VI: Fitted parameters of the  $f_0(Y)$ 

| Parameter                                      | $\text{Belle}(\pi^0\pi^0)$                                                            | Crystal Ball | $f_0(1370)(PDG)$ | $f_0(1500)(PDG)$ | Unit           |
|------------------------------------------------|---------------------------------------------------------------------------------------|--------------|------------------|------------------|----------------|
| Mass                                           | $1470 \begin{array}{c} +6 \\ -7 \end{array} \begin{array}{c} +72 \\ -255 \end{array}$ | 1250         | 1200 - 1500      | $1507\pm5$       | $MeV/c^2$      |
| $\Gamma_{ m tot}$                              | $90 \begin{array}{c} +2 & +50 \\ -1 & -22 \end{array}$                                | $268\pm70$   | 150 - 200        | $109\pm7$        | $\mathrm{MeV}$ |
| $\Gamma_{\gamma\gamma}\mathcal{B}(\pi^0\pi^0)$ | $11 \begin{array}{c} +4 \\ -2 \end{array} \begin{array}{c} +603 \\ -7 \end{array}$    | $430\pm80$   | Unknown          | Not seen         | eV             |

### $f_0(1370)? f_0(1500)?$

### $B_s → J/ψf_0$ is selective for ss PLB 797 (2019) 134789



observation of  $f_0(1500)$  , non-observation of  $f_0(1710)$ 

Assignment requires further study with more sophisticated model 27

## **Central Exclusive Production**

F. Close, A. Kirk, Phys.Lett.B397:333-338,1997

We shall suggest that it is driven primarily by the variable  $dP_T \equiv |\vec{p'_T} - \vec{q'_T}|$  and that gg configurations are enhanced in kinematic configurations where the gluons can flow "directly" into the final state with only small momentum transfer, in particular when  $dP_T \rightarrow 0$ .



From R. McNulty, Snowmass2021 Workshop

## $p\bar{p}$ threshold enhancement X( $p\bar{p}$ )

- First observed in  $J/\psi \to \gamma p \overline{p}$  at BESII, confirmed by BESIII and CLEO-c
- PWA of  $J/\psi \rightarrow \gamma p \overline{p} : J^{PC} = 0^{-+}$ 
  - The fit with a BW and S-wave FSI (I=0) factor can well describe  $p\overline{p}$  mass threshold structure
- Non-observation in hadronic decays: not from pure FSI





## X(1835)

- Observed by BESII in  $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$ , confirmed at BESIII
- PWA of  $J/\psi \rightarrow \gamma K_s K_s \eta$ 
  - X(1835)  $\rightarrow K_S K_S \eta$  is observed (the  $K_S K_S$ system is dominantly produced through the f<sub>0</sub>(980))
  - J<sup>PC</sup>=0<sup>-+</sup>





