

Theory demand for future high energy colliders

remote talk at IHEP

Dec 4, 2020

Jun Gao INPAC, Shanghai Jiao Tong University

Future high-energy Lepton Colliders

 CEPC provide us with great opportunity revealing physics beyond the st positron collider has also been selected as the highest priority of CERN aft

Operation	\sqrt{s}	L per IP	Years	Total $\int L$	Event
mode	(GeV)	$(10^{34}{ m cm^{-2}s^{-1}})$		$(ab^{-1}, 2 \text{ IPs})$	yields
H	240	3	7	5.6	1×10^{6}
Z	91.2	32 (*)	2	16	$7 imes 10^{11}$
W^+W^-	158–172	10	1	2.6	$2 imes 10^7$ (†

[http://cepc.ihep.ac.cn]

High-priority future 2020 UPDATE OF THE EUROPEAN STRATEGY FOR PARTICLE PHYSICS initiatives by the European Strategy Group

1980 1985	1990 1995 2000	2005 2010 2015	5 2020 2025	5 2030 2035 2040
des	ign proto c	onstruction phy	ysics LHC	- operation Run 2
	HL-LHC – ongoing proj	ject design d	construction	physics
			4 20) years
	FCC -	- design study desig	n proto	construction physics
Phase	Run duration	Centre-of-mass	Integrated	Event
	(years)	energies (GeV)	$\begin{array}{c} & \\ \text{luminosity} \\ (ab^{-1}) \end{array}$	statistics
FCC-ee-Z	4	88-95	150	3×10^{12} visible Z dec
FCC-ee-W	2	158 - 162	12	10^8 WW events
FCC-ee-H	3	240	5	10^6 ZH events

[http://fcc-cdr.web.cern.ch]

Theory requirements

well-motivated theory model, e.g., **EW** phase transition

Interpretations, e.g., SM EFT, **EWPOs**

Precision calculations for the SM, loop&legs, MCs

novel ideas, longlived particles, dark sectors

+ The huge advance in projected experimental precision naturally leads to requirement on developments of various theory components including control of theory uncertainties to similar level or well below

Theory requirements

well-motivated theory model, e.g., **EW** phase transition

Interpretations, e.g., SM EFT, **EWPOs**

Precision calculations for the SM, loop&legs, MCs

novel ideas, longlived particles, dark sectors

• The huge advance in projected experimental precision naturally leads to requirement on developments of various theory components including control of theory uncertainties to similar level or well below

+ Claims:

- 1. only focus on precision calculations
- 2. unelaborated review on problems and challenges
- 3. apologize if missing your works

+ References:

1. Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders [1901.02648]

2. QED challenges at FCC-ee precision measurements [1903.09895]

3. Theoretical uncertainties for electroweak and Higgsboson precision measurements at FCC-ee [1906.05379]

....

Lessons from LEP and SLC

Higgs boson

effective couplings of charged leptons, gV vs. gA

◆ Measuring Z boson parameters with highest precision: mass, partial and total widths, and couplings to fermions, leading to crucial test of SM including quantum loop corrections and prediction on mass of the

[LEP&SLC, hep-ex/0509008]

Higgs boson mass from a EW global fit

Lessons from LEP and SLC

remains an open question; theory uncertainty from QCD modeling dominates in systematics

pulls in the EW global fit

	Measurement	Fit	IO ^{mea}	^s –O ^{fit} I/ơ ^m 1 2	eas 3	
$\Delta \alpha_{had}^{(5)}(m_Z)$	0.02758 ± 0.00035	0.02767				
m _z [GeV]	91.1875 ± 0.0021	91.1874	P			ALEPH leptons 1991-95
$\Gamma_{z}[GeV]$	2.4952 ± 0.0023	2.4965				DELPHI
$\sigma_{had}^{0}\left[nb ight]$	41.540 ± 0.037	41.481				leptons 1991-95
R _I	20.767 ± 0.025	20.739				L3 Jentons 1990-95
A ^{0,I} fb	0.01714 ± 0.00095	0.01642				OPAL
Α _I (Ρ _τ)	0.1465 ± 0.0032	0.1480				leptons 1990-2000
R _b	0.21629 ± 0.00066	0.21562				
R _c	0.1721 ± 0.0030	0.1723				ALEF II inclusive 1991-95
A ^{0,b} _{fb}	0.0992 ± 0.0016	0.1037			-	DELPHI
A ^{0,c}	0.0707 ± 0.0035	0.0742				inclusive 1992-2000
A _b	0.923 ± 0.020	0.935				L3 iet-chg 1994-95
A _c	0.670 ± 0.027	0.668	I			OPAL
A _I (SLD)	0.1513 ± 0.0021	0.1480				inclusive 1991-2000
$sin^2 \theta_{eff}^{lept}(Q_{fb})$	0.2324 ± 0.0012	0.2314				
m _w [GeV]	80.425 ± 0.034	80.389		•		IDD
Г _w [GeV]	2.133 ± 0.069	2.093				LEP
m _t [GeV]	178.0 ± 4.3	178.5				
				1 0		0.08
			U	1 2	ত	

• Discrepancy on forward-backward asymmetry in bottom quark pair production at Z-pole, $\sim 2.8\sigma$,

error decomposition

[Bernreuther, Chen+, 1611.07942]

bottom mass effects at NNLO 2.8σ ->2.6σ

[Wang+, 2003.13941]

PMC scale choice + NNLO 2.8σ ->2.1σ

[d'Enterria+, 1806.00141]

QCD MC unc. revisited no significant changes

Lessons from LEP and SLC

due to a discrepancy found wrt earlier results, a direct consequence on Z boson lineshape

$$\frac{d\sigma_{e^+e^-}}{ds'} = \frac{1}{s}\sigma_{e^+e^-}(s')H\left(z,\alpha,\frac{s}{m^2}\right)$$

The full two-loop QED corrections (from ISR of a s-channel process) has been revisited in a recent study;

$$H\left(z,\alpha,\frac{s}{m^2}\right) = \delta(1-z) + \sum_{k=1}^{\infty} \left(\frac{\alpha}{4\pi}\right)^k C_k\left(z,\frac{s}{m^2}\right)$$
$$C_k\left(z,\frac{s}{m^2}\right) = \sum_{l=0}^k \ln^{k-l}\left(\frac{s}{m^2}\right) c_{k,l}(z),$$

claimed shift of 4 MeV for measured Z width at LEP (exp. precision ~ 2.3 MeV)

	Fixed	width	s dep.	width
	Peak	Width	Peak	Width
	(MeV)	(MeV)	(MeV	(MeV)
$O(\alpha)$ correction	210	603	210	602
$O(\alpha^2)$ correction	-109	-187	-109	-187
$O(\alpha^2)$: γ only	-110	-215	-110	-215
$O(\alpha^2)$ correction				
+ soft exp.	17	23	17	23
Difference to $O(\alpha^2)$ [1]		4		4

TABLE I. Shifts in the Z-mass and the width due to the different contributions to the ISR QED radiative corrections for a fixed width of $\Gamma_Z = 2.4952 \text{ GeV}$ and s-dependent width using $M_Z =$ 91.1876 GeV [15] and $s_0 = 4m_{\tau}^2$, cf. [2].

[Blumlein+, 1910.05759]

Challenge on theory precision

theory uncertainties can match up or even controlled well below the precision goal

Theory Requirements and Possibilities for the FCC-ee and other Future High Energy and Precision Frontier Lepton Colliders*

Alain Blondel (Université de Genéve), Ayres Freitas (University of Pittsburgh), Janusz Gluza[†] and Tord Riemann (U. Silesia), Sven Heinemeyer (IFT/IFCA CSIC Madrid/Santander, ECI/UAM/CSIC Madrid), Stanisław Jadach (IFJ PAN Kraków), Patrick Janot (CERN)

sible ways forward and novel methods, to match the experimental accuracies expected at the FCC-ee. We conclude that the challenge can be tackled by a distributed collaborative effort in academic institutions around the world, provided sufficient support, which is estimated to about 500 man-years over the next 20 years.

Summary 4

FCC-ee, a circular collider with extremely high statistics and high energy resolution, will provide the possibility to test the Standard Model with its fine quantum electroweak effects with a precision far beyond the current state of the art. Significant future theory effort will be needed for both for parametric and theoretical calculational errors to match the experimental accuracy of FCC-ee physics program. No potential showstoppers are foreseen [1, 2]. It will be important that adequate theory funding will be available to ensure that theory uncertainties are reduced to

• The huge advance in projected experimental precision naturally leads to concerns on whether the

18 December 2018

Abstract

EWPOs and QED deconvolution

years ago; improvements needed ranging between a factor of 2 to 100 for different observables

Observable	Source	Err.{QED}	Stat[Syst]	LEP	main development
	LEP	LEP	FCC-ee	FCC-ee	to be done
$M_Z [{\rm MeV}]$	Z linesh.	$2.1\{0.3\}$	0.005[0.1]	$3 \times 3^{\star}$	light fermion pairs
$\Gamma_Z [{\rm MeV}]$	Z linesh.	$2.1\{0.2\}$	0.008[0.1]	$2 \times 3^{\star}$	fermion pairs
$R_l^Z \times 10^3$	$\sigma(M_Z)$	$25\{12\}$	0.06[1.0]	$12 \times 3^{\star\star}$	better FSR
$\sigma_{\rm had}^0 ~[{\rm pb}]$	$\sigma_{ m had}^{0}$	$37\{25\}$	0.1[4.0]	$6 \times 3^{\star}$	better lumi MC
$N_{\nu} \times 10^3$	$\sigma(M_Z)$	$8{6}$	0.005[1.0]	$6 \times 3^{\star\star}$	CEEX in lumi MC
$N_{\nu} \times 10^3$	$Z\gamma$	$150\{60\}$	0.8[<1]	$60 \times 3^{\star\star}$	$\mathcal{O}(\alpha^2)$ for $Z\gamma$
$\sin^2 \theta_W^{eff} \times 10^5$	$A_{FB}^{lept.}$	$53{28}$	0.3[0.5]	$55 \times 3^{\star\star}$	h.o. and EWPOs
$\sin^2 \theta_W^{eff} \times 10^5$	$\langle \mathcal{P}_{\tau} \rangle, A_{\mathrm{FB}}^{pol,\tau}$	$41\{12\}$	0.6[< 0.6]	$20 \times 3^{\star\star}$	better τ decay MC
$M_W [MeV]$	mass rec.	$33\{6\}$	0.5[0.3]	$12 \times 3^{***}$	QED at threshold
$A_{FB,\mu}^{M_Z \pm 3.5 \text{GeV}} \times 10^5$	$\frac{d\sigma}{d\cos\theta}$	$2000\{100\}$	1.0[0.3]	$100 \times 3^{\star\star\star}$	improved IFI

Table 2: Comparing experimental and theoretical errors at LEP and FCC-ee as in Table 1. 3rd column shows LEP experimental error together with uncertainty induced by QED and 4th column shows anticipated FCC-ee experimental statistical [systematic] errors. Additional factor $\times 3$ in the 5-th column (4th in Table 1) reflects what is needed for QED effects to be *subdominant*. Rating from * to *** marks whether the needed improvement is relatively straightforward, difficult or very difficult to achieve.

no theoretical uncertainties included for Fcc-ee sys. projection

• Current state-of-art generators on QED effects are not much different wrt. those used in LEP analysis 20

EWPOs and EW corrections

corrections and parametric uncertainties due to SM input parameters

intrinsic error vs. exp precision

Quantity	FCC-ee	Current intrinsic error	Projected intrinsic error
$M_W \; [{ m MeV}]$	$0.5 - 1^{\ddagger}$	4 $(\alpha^3, \alpha^2 \alpha_s)$	1
$\sin^2 \theta_{\rm eff}^{\ell} \ [10^{-5}]$	0.6	4.5 $(\alpha^3, \alpha^2 \alpha_s)$	1.5
$\Gamma_Z \; [\mathrm{MeV}]$	0.1	$0.4 (\alpha^3, \alpha^2 \alpha_s, \alpha \alpha_s^2)$	0.15
$R_b \ [10^{-5}]$	6	11 $(\alpha^3, \alpha^2 \alpha_s)$	5
$R_l \ [10^{-3}]$	1	$6 (\alpha^3, \alpha^2 \alpha_s)$	1.5

based on current known 2assuming 3-loop results available loop results

parametric error vs. exp precision

Quantity	FCC-ee	future parametric unc.	Main source
$M_W [{\rm MeV}]$	0.5 - 1	1(0.6)	$\delta(\Delta \alpha)$
$\sin^2\theta_{\rm eff}^\ell \ [10^{-5}]$	0.6	2(1)	$\delta(\Delta lpha)$
$\Gamma_Z \; [\text{MeV}]$	0.1	0.1 (0.06)	$\delta lpha_s$
$R_b \ [10^{-5}]$	6	< 1	$\delta lpha_s$
$R_{\ell} \ [10^{-3}]$	1	1.3 (0.7)	$\delta lpha_s$

◆ Theoretical uncertainties on EWPOS can be divided as intrinsic errors due to missing EW radiative

$$\Delta \alpha \equiv 1 - \alpha(0) / \alpha(M_Z)$$

 $\delta M_Z = 0.1 \text{ MeV}, \quad \delta \alpha_s = 0.0002 \ (0.0001),$

$$\delta m_t = 50 \text{ MeV}, \quad \delta m_b = 13 \text{ MeV},$$
$$\delta(\Delta \alpha) = 5 \times 10^{-5} (3 \times 10^{-5}).$$

improved by a factor of 3~10

Challenges of EW corrections at 3-loops and beyond

 Ingredients for 3-loop calculations of Z decay; challenges due to both large number of diagram/ integrals, multi-mass scales, as well as high numerical precision required

Table B.6: Number of topologies and diagrams for $Z \rightarrow f\bar{f}$ decays in the Feynman gauge. Statistics for planarity, QCD, and EW-type diagrams are also given. Label 'A' denotes statistics after elimination of tadpoles and wavefunction corrections, and label 'B' denotes statistics after elimination of topological symmetries of diagrams.

$Z \rightarrow b\bar{b}$	1 loop	2 loops	3 loops
Number of topologies	1	$14 \xrightarrow{(A)} 7 \xrightarrow{(B)} 5$	$211 \xrightarrow{(A)} 84 \xrightarrow{(B)} 51$
Number of diagrams	15	$2383 \stackrel{(A,B)}{\rightarrow} 1074$	490 387 $\stackrel{(A,B)}{\rightarrow}$ 120 472
Fermionic loops	0	150	17580
Bosonic loops	15	924	102892
Planar / non-planar	15/0	981/133	84059/36413
QCD / EW	1/14	98 / 1016	10386/110086
$Z \rightarrow e^+ e^-, \dots$			
Number of topologies	1	$14 \xrightarrow{(A)} 7 \xrightarrow{(B)} 5$	$211 \xrightarrow{(A)} 84 \xrightarrow{(B)} 51$
Number of diagrams	14	$2012 \stackrel{(\mathrm{A,B})}{\rightarrow} 880$	$\mathbf{397690} \stackrel{(\mathrm{A,B})}{\rightarrow} 91472$
Fermionic loops	0	114	13104
Bosonic loops	14	766	78368
Planar / non-planar	14/0	782/98	65487/25985
QCD / EW	0/14	0 / 880	144/91328

Higgs boson production and decays

and decay of the Higgs boson in most theory calculations

decay branching ratios vs. mass

• The tiny width ($\Gamma/M \sim 3 \times 10^{-5}$) and 0 spin of the Higgs boson ensure a simple factorization of production [Davies, Steinhauser, Wellmann, 2017]

[Herzog, Ruijl, Ueda, Vermaseren, Vogt, 2017]

hadronic width of the Higgs boson vs QCD scale

known to $O(a_s^4)$ neglecting certain mass corrections from Higgs effective theory in heavy top limit

Theory uncertainty on Higgs partial width

parameters and some straight forward works on the perturbative calculations

intrinsic/perturbative uncertainty on partial width vs. exp. precision

					decay	intrinsic	FCC-ee prec.
Partial width	QCD	electroweak	total	available order	$H \to b\bar{b}$	$\sim 0.2\%$	$\sim 0.8\%$
$H \to b\bar{b}/c\bar{c}$	$\sim 0.2\%$	< 0.3%	< 0.4%	N^4LO / NLO	$H \to c\bar{c}$	$\sim 0.2\%$	$\sim 1.4\%$
$H \rightarrow \tau^+ \tau^- / \mu^+ \mu^-$	_	< 0.3%	< 0.3%	— / NLO	$H \to \tau^+ \tau^-$	< 0.1%	$\sim 1.1\%$
$H \to qq$	$\sim 3\%$	$\sim 1\%$	$\sim 3.2\%$, N ³ LO / NLO	$H \to \mu^+ \mu^-$	< 0.1%	$\sim 12\%$
$H \to \gamma \gamma$	< 0.1%	< 1%	$<\!1\%$	NLO / NLO	$H \to gg$	$\sim 1\%$	$\sim 1.6\%$
$H \to Z\gamma$	$\lesssim 0.1\%$	$\sim 5\%$	$\sim 5\%$		$H \to \gamma \gamma$	< 1%	$\sim 3.0\%$
$H \to WW/ZZ \to 4f$	< 0.5%	< 0.3%	$\sim 0.5\%$	NLO/NLO	$H \to Z\gamma$	$\sim 1\%$	~13% for CEPC
/					$H \to WW$	$\lesssim 0.3\%$	$\sim 0.4\%$
					$H \to ZZ$	$\leq 0.3\%^{\dagger}$	$\sim 0.3\%$

+ Theory uncertainty can be under FCC-ee precision goal, giving the projected improvement on SM input

only a few channels need some additional works

Theory uncertainty on Higgs partial width

parameters and some straight forward works on the perturbative calculations

decay	para. m_q	para. α_s	para. M_H
$H \to b\bar{b}$	1.4%	0.4%	
$H \to c\bar{c}$	4.0%	0.4%	_
$H \to \tau^+ \tau^-$			
$H \to \mu^+ \mu^-$			
$H \to gg$	< 0.2%	3.7%	
$H \to \gamma \gamma$	< 0.2%		
$H \to Z\gamma$			2.1%
$H \to WW$			2.6%
$H \to ZZ$		_	3.0%

parametric uncertainty on partial width vs. exp. precision

current input parameters

 $\delta \alpha_s = 0.0015$ and $\delta m_b = 0.03 \text{ GeV}$

 $\delta m_{\rm c} = 0.025 \; {\rm GeV}$

 $\delta m_t = 0.85 \text{ GeV}$ and $\delta M_H = 0.24 \text{ GeV}$

+ Theory uncertainty can be under FCC-ee precision goal, giving the projected improvement on SM input

para. m_q	para. α_s	para. M_H	FCC-ee prec.
0.6%	< 0.1%		$\sim 0.8\%$
$\sim 1\%$	< 0.1%		$\sim 1.4\%$
_			$\sim 1.1\%$
		_	$\sim 12\%$
	0.5%~(0.3%)	_	$\sim 1.6\%$
_	_	_	$\sim 3.0\%$
_	—	$\sim 0.1\%$	~13% for CEPC
_	_	$\sim 0.1\%$	$\sim 0.4\%$
_	—	$\sim 0.1\%$	$\sim 0.3\%$

projected input parameters

$$\delta \alpha_s = 0.0002$$
 and $\delta m_b = 13 \text{ MeV}$

 $\delta m_{\rm c} = 7 \, {\rm MeV}$

 $\delta m_t = 50 \text{ MeV}$ and $\delta M_H = 10 \text{ MeV}$

MC modeling on Higgs hadronic decays

including NP QCD effects will be crucial in precision measurement of hadronic channels

heavy-flavor tagging

◆ Input of Higgs boson decay are more than just numbers of partial width/BRs, modeling on kinematics

[JG, to appear soon]

hadronic decays at NNLO matched with parton shower and hadronizations

Higgs boson pair production at the LHC

(Guang Zhou Univ.), Hai Tao Li, Hua-Sheng Shao and Jian Wang (Shangdong Univ.)

probe of Higgs trilinear coupling and dynamics of EW phase transition

inclusive cross sections

\sqrt{s}	$13 \mathrm{TeV}$	$14 \mathrm{TeV}$	$27 \mathrm{TeV}$	100 TeV
LO	$13.80^{+31\%}_{-22\%}$	$17.06^{+31\%}_{-22\%}$	$98.22^{+26\%}_{-19\%}$	$2015^{+19\%}_{-15\%}$
NLO	$25.81^{+18\%}_{-15\%}$	$31.89^{+18\%}_{-15\%}$	$183.0^{+16\%}_{-14\%}$	3724^{+139}_{-119}
NNLO	$30.41^{+5.3\%}_{-7.8\%}$	$37.55_{-7.6\%}^{+5.2\%}$	$214.2^{+4.8\%}_{-6.7\%}$	$4322_{-5.3}^{+4.29}$
N ³ LO	$31.31_{-2.8\%}^{+0.66\%}$	$38.65^{+0.65\%}_{-2.7\%}$	$220.2_{-2.4\%}^{+0.53\%}$	$4439^{+0.51}_{-1.8\%}$

+ Higgs boson pair production has been calculated to (approximated) N3LO in QCD by Long-Bin Chen [1912.13001]

cross sections as a function of coupling modification

Li Lin Yang (Zhejiang Univ.) et al.

theory vs. exp for cross section close to top-quark pair threshold

We need all possibilities to scrutinize the mass of top quark

◆ QCD kesummed calculation for top quark production at threshold to next-to-leading power accuracy by [2004.03088]

top quark mass dependence

The new calculation resolve the tensions between different mass measurement

Single top-quark production at the LHC

• Single top-quark production at LHC including decay of the top quark has been calculated to NNLO in QCD by JG (SJTU), Hua-Xing Zhu (Zhejiang Univ.) et al. [2005.12936, 1708.09405]

$\Delta R_{t-ch}/R_{t-ch}$ $\Delta \sigma/\sigma(t)$ $\Delta \sigma/\sigma(\bar{t})$ Nonprofiled uncertainties $\mu_{\rm R}/\mu_{\rm F}$ scale *t* channel 6.1 1.5 5.0 7.1 ME-PS scale matching *t* channel 0.5 7.8 10.1 9.6 PS scale *t* channel 0.9 PDF *t* channel 3.1 5.8 3.0 2.5 2.5 Luminosity Profiled uncertainties JES 1.5 1.8 0.9 JER < 0.1 0.2 0.2 0.2 Unclustered energy < 0.1 0.1 1.2 1.1 b tagging 0.1 Muon and electron efficiencies 0.6 0.2 0.8 1.0 0.1 0.9 Pileup QCD bkg. normalization 0.1 0.1 < 0.1 MC sample size 2.2 3.2 2.5 0.2 0.6 $t\bar{t}$ bkg. model and normalization 0.6 Top quark $p_{\rm T}$ < 0.1 < 0.1 < 0.1 tW bkg. normalization 0.5 0.6 0.1 W/Z+jets bkg. normalization 0.3 0.6 0.9 $\mu_{\rm R}/\mu_{\rm F}$ scale t $\bar{\rm t}$, tW, W/Z+jets 0.2 0.1 0.3 PDF t \bar{t} , W/Z+jets 0.2 0.2 < 0.1

CMS measurement at 13 TeV, 36 fb⁻¹

 $\sigma_{t-ch,t+\bar{t}} = 207 \pm 2 \text{ (stat)} \pm 6 \text{ (prof)} \pm 29 \text{ (sig-mod)} \pm 5 \text{ (lumi) pb}$ $= 207 \pm 2$ (stat) ± 31 (syst) pb $= 207 \pm 31 \, \text{pb},$

[PDG 2020]

inclusive cross sections at various orders

Higgs boson production at e+e- machine

al. (IHEP) and Li Lin Yang (Zhejiang Univ.), Zhao Li (IHEP) et al., amount to a correction of 1.3%

Mixed electroweak-QCD corrections (two-loops) are calculated independently by two groups, Yu Jia et

\sqrt{s}	schemes	$\sigma_{ m LO}$	(fb)	$\sigma_{ m NLO}~(m fb)$	$\sigma_{ m NN}$	$_{\rm ILO}$ (fb)
240	$\alpha(0)$	223.14	± 0.47	229.78 ± 0.77	232.21	$+0.75+0.10 \\ -0.75-0.21$
	$\alpha(M_Z)$	252.03	± 0.60	$228.36_{-0.81}^{+0.82}$	231.28	$+0.80+0.12 \\ -0.79-0.25$
	G_{μ}	239.64	± 0.06	$232.46^{+0.07}_{-0.07}$	233.29	$+0.07+0.03 \\ -0.06-0.07$
250	$\alpha(0)$	223.12	± 0.47	229.20 ± 0.77	231.63	$+0.75+0.12 \\ -0.75-0.21$
	$\alpha(M_Z)$	252.01	± 0.60	$227.67^{+0.82}_{-0.81}$	230.58	+0.80+0.14 -0.79-0.25
	G_{μ}	239.62	± 0.06	231.82 ± 0.07	232.65	$+0.07+0.04 \\ -0.07-0.07$

[Sun+, 1609.03995; Gong+, 1609.03955]

inclusive cross sections at various orders and its scheme dependence

current intrinsic error of ~1% comparing to experimental goal of 0.4%; will need two-loop EW corrections!!!

PMC and event shapes at e+e- machine

by Xing-Gang Wu (Chongqing Univ.) et al., hadronic event shapes as an example

C parameter, theory vs. **ALEPH** data

$$C = \frac{3}{2} \frac{\sum_{i,j} |\vec{p_i}| |\vec{p_j}| \sin^2 \theta_{ij}}{\left(\sum_i |\vec{p_i}|\right)^2}$$

◆ Applications of principle of maximum conformality (PMC) on various QCD predictions at e+e- collisions [1908.00060]

extraction of QCD coupling constant and its running behavior

Heavy quark production at e+e- machine

(Shangdong Univ.) and Wen-Gan Ma, Ren-You Zhang (USTC)

	$\mu = m_h/2$	$\mu = m_h$	$\mu = 2m_h$
g_1	3.024	5.796	8.569
g_2	3.685	37.371	86.112
$\overline{\Gamma}_{LO}^{b\overline{b}}$ [MeV]	2.153	1.910	1.717
$\overline{\Gamma}_{NLO}^{b\overline{b}}$ [MeV]	2.413	2.307	2.196
$\overline{\Gamma}_{NNLO}^{b\bar{b}} \ [\text{MeV}]$	2.425	2.399	2.353

\sqrt{s} [GeV]	$A_{ m FB}^{ m LO}~[\%]$	$A_{\mathrm{FB}}^{\mathrm{NLO}}$ [%]	$A_{\mathrm{FB}}^{\mathrm{NNLO}}$ [%]
360	14.94	$15.31\substack{+0.02\\-0.02}$	$15.82\substack{+0.08\\-0.06}$
400	28.02	$28.77\substack{+0.05 \\ -0.04}$	$29.42_{-0.09}^{+0.10}$
500	41.48	$42.32\substack{+0.06 \\ -0.05}$	$42.83_{-0.07}^{+0.08}$
700	51.34	$51.78\substack{+0.03\\-0.03}$	$52.03\substack{+0.04\\-0.04}$

$\sqrt{s} \ TeV$	$\sigma_{LO}(pb)$	$\sigma_{NLO}(pb)$	$\sigma_{g\gamma}(pb)$	$\delta_{QCD}(\%)$	$\delta_{EW}(\%)$
14	0.49442(7)	0.5862(23)	0.00659	22.6	-1.03
33	3.3687(7)	4.335(23)	0.02930	33.0	-0.45
100	26.973(7)	35.65(23)	0.13475	36.8	-0.54

◆ Pioneering works on heavy quark production at e+e- machine as well as at LHC lead by Zong Guo Si

NNLO QCD calculations for bottom quark pair from **Higgs decay with full mass dependence**

[Zong Guo Si et al., 1805.06658]

NNLO QCD calculations for top quark pair production at e+e- machine

[Zong Guo Si et al., 1610.07897]

[JG, Zhu, 1410.3165]

NLO calculations for top quark pair associated production with Higgs at LHC

[Wen-Gan Ma, Ren-You Zhang, 1407.1110]

Multi-loop analytical/numerical calculations

Univ.) et al.

demonstration of the efficiency for 5-point massless scattering at two-loops

FIG. 1. All 8-propagator families: (a) double-pentagon; (b) hexa-box; (c) penta-box; (d) hexa-triangle.

particles

[1812.11057]

Analytic result for a two-loop five-particle amplitude

D. Chicherin^a, T. Gehrmann^b, J. M. Henn^a, P. Wasser^c, Y. Zhang^a, S. Zoia^a

[1812.11160]

All master integrals for three-jet production at NNLO

D. Chicherin^a, T. Gehrmann^b, J. M. Henn^a, P. Wasser^c, Y. Zhang^a, S. Zoia^a

A new approach on evaluating multi-loop Feynman integral has been developed by Yan Qing Ma (Peking) [1912.09294]

top.	#int.	#MIs	$t_{\rm search}$ (h)	$t_{\rm solve}$ (s)	size(MB)
(a)	3914	108	112	0.17	66
(b)	3584	73	31	0.090	40
(c)	3458	61	56	0.075	31
(d)	2634	28	8	0.035	11

TABLE I. Main information of the obtained reduction relations. t_{search} represents the CPU time required to search for these relations in the unit of CPU-core hours. t_{solve} represents the time spent to solve these relations numerically using one CPU.

Yang Zhang (USTC) et al. work towards solving the two-loop 5-point amplitude for scattering of massless

[1905.03733]

Analytic form of the full two-loop five-gluon all-plus helicity amplitude

S. Badger^a, D. Chicherin^b, T. Gehrmann^c, G. Heinrich^b, J. M. Henn^b, T. Peraro^c, P. Wasser^d, Y. Zhang^{b,e}, S. Zoia^b

directly applicable to 3-jets or 3-photon production at the LHC

Summary

- involving electroweak, QCD corrections, MC modelings and input parameters
- much smaller than European side
- colliders especially if we host CEPC program

• Future lepton colliders and its high precision set a unprecedented precision target of SM predictions

• Extensive theory works required towards reducing intrinsic and parametric uncertainties in Higgs production and decay, and especially for various EW precision observables at Z pole and beyond

• We have many local groups having the expertise on precision theory calculations though the scale is

• It will be important to grow a few compatible teams working on precision calculations for future lepton

Summary

- involving electroweak, QCD corrections, MC modelings and input parameters
- much smaller than European side
- colliders especially if we host CEPC program

Thank you for your attention!

• Future lepton colliders and its high precision set a unprecedented precision target of SM predictions

+ Extensive theory works required towards reducing intrinsic and parametric uncertainties in Higgs production and decay, and especially for various EW precision observables at Z pole and beyond

• We have many local groups having the expertise on precision theory calculations though the scale is

• It will be important to grow a few compatible teams working on precision calculations for future lepton