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✦ CEPC provide us with great opportunity revealing physics beyond the standard model; future electron-
positron collider has also been selected as the highest priority of CERN after high luminosity run of LHC

Chapter A

Introduction and overview

Contribution� by: A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann
Corresponding author: J. Gluza [janusz.gluza@cern.ch]

This report includes a collection of studies devoted to a discussion of (i) the status of theoretical
e�orts towards the calculation of higher-order Standard Model (SM) corrections needed for the
FCC-ee precision measurement programme, (ii) the possibility of making discoveries in physics
by means of these precision measurements, and (iii) methods and tools that must be developed
to guarantee precision calculations of the observables to be measured. This report originates
from presentations at the 11th FCC-ee Workshop: Theory and Experiments, 8–11 January 2019,
CERN, Geneva [1], with 117 registered participants and 42 talks on theory.

1 The FCC-ee electroweak factory
In the 2018 report [2], we focused on theoretical issues of the FCC-ee Tera-Z, which will be a
e+e≠ collider working at the Z resonance energy region. However, the FCC-ee collider project
will work in several energy regions, making it a complete electroweak factory, covering the
direct production of all massive bosons of the SM and the top quark. This plan is summarised
in Table A.1.1.

Table A.1.1: Run plan for FCC-ee in its baseline configuration with two experiments. The WW
event numbers are given for the entirety of the FCC-ee running at and above the WW threshold.

Phase Run duration Centre-of-mass Integrated Event
(years) energies luminosity statistics

(GeV) (ab≠1)
FCC-ee-Z 4 88–95 150 3 ◊ 1012 visible Z decays
FCC-ee-W 2 158–162 12 108 WW events
FCC-ee-H 3 240 5 106 ZH events
FCC-ee-tt 5 345–365 1.7 106 tt̄ events

The exceptional precision of the FCC-ee comes from several features of the programme.

1. Extremely high statistics of 5 ◊ 1012 Z decays, 108 WW, 106 ZH, and 106 tt̄ events.
�This contribution should be cited as:

A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann, Introduction and overview, DOI: 10.23731/CYRM-2020-
003.3, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 3.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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High-priority future 
initiatives

$�� $Q�HOHFWURQ�SRVLWURQ�+LJJV�IDFWRU\�LV�WKH�KLJKHVW�SULRULW\�QH[W�FROOLGHU��)RU�WKH�
ORQJHU�WHUP��WKH�(XURSHDQ�SDUWLFOH�SK\VLFV�FRPPXQLW\�KDV�WKH�DPELWLRQ�WR�RSHUDWH�D�
SURWRQ�SURWRQ�FROOLGHU�DW�WKH�KLJKHVW�DFKLHYDEOH�HQHUJ\��$FFRPSOLVKLQJ�WKHVH�FRPSHOOLQJ�
JRDOV�ZLOO�UHTXLUH�LQQRYDWLRQ�DQG�FXWWLQJ�HGJH�WHFKQRORJ\� 
 
• the particle physics community should ramp up its R&D effort focused 
RQ�DGYDQFHG�DFFHOHUDWRU�WHFKQRORJLHV��LQ�SDUWLFXODU�WKDW�IRU�KLJK�ÀHOG�
superconducting magnets, including high-temperature superconductors;  
 
• Europe, together with its international partners, should investigate the technical 
DQG�ÀQDQFLDO�IHDVLELOLW\�RI�D�IXWXUH�KDGURQ�FROOLGHU�DW�&(51�ZLWK�D�FHQWUH�RI�PDVV�
energy of at least 100 TeV and with an electron-positron Higgs and electroweak 
IDFWRU\�DV�D�SRVVLEOH�ÀUVW�VWDJH��6XFK�D�IHDVLELOLW\�VWXG\�RI�WKH�FROOLGHUV�DQG�
related infrastructure should be established as a global endeavour and be 
completed on the timescale of the next Strategy update. 
 
The timely realisation of the electron-positron International Linear Collider (ILC) 
in Japan would be compatible with this strategy and, in that case, the European 
particle physics community would wish to collaborate.  

%�� ,QQRYDWLYH�DFFHOHUDWRU�WHFKQRORJ\�XQGHUSLQV�WKH�SK\VLFV�UHDFK�RI�KLJK�HQHUJ\�
DQG�KLJK�LQWHQVLW\�FROOLGHUV��,W�LV�DOVR�D�SRZHUIXO�GULYHU�IRU�PDQ\�DFFHOHUDWRU�EDVHG�
ÀHOGV�RI�VFLHQFH�DQG�LQGXVWU\��7KH�WHFKQRORJLHV�XQGHU�FRQVLGHUDWLRQ�LQFOXGH�KLJK�ÀHOG�
PDJQHWV��KLJK�WHPSHUDWXUH�VXSHUFRQGXFWRUV��SODVPD�ZDNHÀHOG�DFFHOHUDWLRQ�DQG�RWKHU�
KLJK�JUDGLHQW�DFFHOHUDWLQJ�VWUXFWXUHV��EULJKW�PXRQ�EHDPV��HQHUJ\�UHFRYHU\�OLQDFV��
The European particle physics community must intensify accelerator R&D and 
sustain it with adequate resources. A roadmap should prioritise the technology, 
taking into account synergies with international partners and other communities 
such as photon and neutron sources, fusion energy and industry. Deliverables for 
WKLV�GHFDGH�VKRXOG�EH�GHÀQHG�LQ�D�WLPHO\�IDVKLRQ�DQG�FRRUGLQDWHG�DPRQJ�&(51�
and national laboratories and institutes. 

$�� 7KH�TXHVW�IRU�GDUN�PDWWHU�DQG�WKH�H[SORUDWLRQ�RI�ÁDYRXU�DQG�IXQGDPHQWDO�
V\PPHWULHV�DUH�FUXFLDO�FRPSRQHQWV�RI�WKH�VHDUFK�IRU�QHZ�SK\VLFV��7KLV�VHDUFK�FDQ�
EH�GRQH�LQ�PDQ\�ZD\V��IRU�H[DPSOH�WKURXJK�SUHFLVLRQ�PHDVXUHPHQWV�RI�ÁDYRXU�
SK\VLFV�DQG�HOHFWULF�RU�PDJQHWLF�GLSROH�PRPHQWV��DQG�VHDUFKHV�IRU�D[LRQV��GDUN�VHFWRU�
FDQGLGDWHV�DQG�IHHEO\�LQWHUDFWLQJ�SDUWLFOHV��7KHUH�DUH�PDQ\�RSWLRQV�WR�DGGUHVV�VXFK�
SK\VLFV�WRSLFV�LQFOXGLQJ�HQHUJ\�IURQWLHU�FROOLGHUV��DFFHOHUDWRU�DQG�QRQ�DFFHOHUDWRU�
H[SHULPHQWV��$�GLYHUVH�SURJUDPPH�WKDW�LV�FRPSOHPHQWDU\�WR�WKH�HQHUJ\�IURQWLHU�LV�DQ�
HVVHQWLDO�SDUW�RI�WKH�(XURSHDQ�SDUWLFOH�SK\VLFV�6WUDWHJ\��Experiments in such diverse 
areas that offer potential high-impact particle physics programmes at laboratories 
in Europe should be supported, as well as participation in such experiments in 
other regions of the world. 

%�� 7KHRUHWLFDO�SK\VLFV�LV�DQ�HVVHQWLDO�GULYHU�RI�SDUWLFOH�SK\VLFV�WKDW�RSHQV�QHZ��
GDULQJ�OLQHV�RI�UHVHDUFK��PRWLYDWHV�H[SHULPHQWDO�VHDUFKHV�DQG�SURYLGHV�WKH�WRROV�
QHHGHG�WR�IXOO\�H[SORLW�H[SHULPHQWDO�UHVXOWV��,W�DOVR�SOD\V�DQ�LPSRUWDQW�UROH�LQ�FDSWXULQJ�
WKH�LPDJLQDWLRQ�RI�WKH�SXEOLF�DQG�LQVSLULQJ�\RXQJ�UHVHDUFKHUV��7KH�VXFFHVV�RI�WKH�
ÀHOG�GHSHQGV�RQ�GHGLFDWHG�WKHRUHWLFDO�ZRUN�DQG�LQWHQVH�FROODERUDWLRQ�EHWZHHQ�WKH�
WKHRUHWLFDO�DQG�H[SHULPHQWDO�FRPPXQLWLHV��Europe should continue to vigorously 
support a broad programme of theoretical research covering the full spectrum 
of particle physics from abstract to phenomenological topics. The pursuit of 
QHZ�UHVHDUFK�GLUHFWLRQV�VKRXOG�EH�HQFRXUDJHG�DQG�OLQNV�ZLWK�ÀHOGV�VXFK�DV�
cosmology, astroparticle physics, and nuclear physics fostered. Both exploratory 
research and theoretical research with direct impact on experiments should be 
supported, including recognition for the activity of providing and developing 
computational tools. 

&�� �7KH�VXFFHVV�RI�SDUWLFOH�SK\VLFV�H[SHULPHQWV�UHOLHV�RQ�LQQRYDWLYH�
LQVWUXPHQWDWLRQ�DQG�VWDWH�RI�WKH�DUW�LQIUDVWUXFWXUHV��7R�SUHSDUH�DQG�UHDOLVH�IXWXUH�
H[SHULPHQWDO�UHVHDUFK�SURJUDPPHV��WKH�FRPPXQLW\�PXVW�PDLQWDLQ�D�VWURQJ�IRFXV�
RQ�LQVWUXPHQWDWLRQ��Detector R&D programmes and associated infrastructures 
should be supported at CERN, national institutes, laboratories and universities. 
6\QHUJLHV�EHWZHHQ�WKH�QHHGV�RI�GLIIHUHQW�VFLHQWLÀF�ÀHOGV�DQG�LQGXVWU\�VKRXOG�
EH�LGHQWLÀHG�DQG�H[SORLWHG�WR�ERRVW�HIÀFLHQF\�LQ�WKH�GHYHORSPHQW�SURFHVV�DQG�
LQFUHDVH�RSSRUWXQLWLHV�IRU�PRUH�WHFKQRORJ\�WUDQVIHU�EHQHÀWLQJ�VRFLHW\�DW�ODUJH��
Collaborative platforms and consortia must be adequately supported to provide 
FRKHUHQFH�LQ�WKHVH�5	'�DFWLYLWLHV��7KH�FRPPXQLW\�VKRXOG�GHÀQH�D�JOREDO�
detector R&D roadmap that should be used to support proposals at the European 
and national levels.

Other essential scientific 
activities for particle physics

2020 UPDATE OF THE EUROPEAN STRATEGY
FOR PARTICLE PHYSICS

by the European Strategy Group

[http://fcc-cdr.web.cern.ch][http://cepc.ihep.ac.cn]

http://fcc-cdr.web.cern.ch
http://fcc-cdr.web.cern.ch
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✦ The huge advance in projected experimental precision naturally leads to requirement on developments of 
various theory components including control of theory uncertainties to similar level or well below  

well-motivated 
theory model, e.g., 

EW phase transition 

Interpretations, 
e.g., SM EFT, 

EWPOs  

Precision 
calculations for the 

SM, loop&legs, 
MCs

novel ideas, long-
lived particles, dark 

sectors

…..
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✦ Claims: 

1. only focus on precision calculations 

2. unelaborated review on problems 
and challenges   

3. apologize if missing your works 

✦ References: 

1. Theory Requirements and Possibilities for the FCC-ee 

and other Future High Energy and Precision Frontier 

Lepton Colliders [1901.02648] 

2. QED challenges at FCC-ee precision measurements 

[1903.09895]  

3. Theoretical uncertainties for electroweak and Higgs-

boson precision measurements at FCC-ee [1906.05379]
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✦ Measuring Z boson parameters with highest precision: mass, partial and total widths, and couplings to 
fermions, leading to crucial test of SM including quantum loop corrections and prediction on mass of the 
Higgs boson 

effective couplings of charged leptons, gV vs. gA
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Figure 1.15: The neutrino scattering and e+e− annihilation data available in 1987 constrained
the values of gV! and gA! to lie within broad bands, whose intersections helped establish the
validity of the SM and were consistent with the hypothesis of lepton universality. The inset
shows the results of the LEP/SLD measurements at a scale expanded by a factor of 65 (see
Figure 7.3). The flavour-specific measurements demonstrate the universal nature of the lepton
couplings unambiguously on a scale of approximately 0.001.
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Figure 7.3: Comparison of the effective vector and axial-vector coupling constants for leptons
(Tables 7.7 and 7.8). The shaded region in the lepton plot shows the predictions within the SM
for mt = 178.0±4.3 GeV and mH = 300+700

−186 GeV; varying the hadronic vacuum polarisation by

∆α(5)
had(m

2
Z) = 0.02758 ± 0.00035 yields an additional uncertainty on the SM prediction shown

by the arrow labeled ∆α.
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Figure 8.13: ∆χ2(mH) = χ2
min(mH) − χ2

min as a function of mH. The line is the result of
the fit using all 18 results. The associated band represents the estimate of the theoretical
uncertainty due to missing higher-order corrections as discussed in Section 8.4. The vertical
band shows the 95% confidence level exclusion limit on mH of 114.4 GeV derived from the
direct search at LEP-II [39]. The dashed curve is the result obtained using the theory-driven

∆α(5)
had(m

2
Z) determination of Equation 8.4. The direct measurements of mW and ΓW used here

are preliminary.
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Higgs boson mass from a EW 
global fit

[LEP&SLC, hep-ex/0509008]
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✦ Discrepancy on forward-backward asymmetry in bottom quark pair production at Z-pole, ~2.8σ, 
remains an open question; theory uncertainty from QCD modeling dominates in systematics 

Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02767
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4965
σhad [nb]σ0 41.540 ± 0.037 41.481
RlRl 20.767 ± 0.025 20.739
AfbA0,l 0.01714 ± 0.00095 0.01642
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1480
RbRb 0.21629 ± 0.00066 0.21562
RcRc 0.1721 ± 0.0030 0.1723
AfbA0,b 0.0992 ± 0.0016 0.1037
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1480
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.425 ± 0.034 80.389
ΓW [GeV]ΓW [GeV] 2.133 ± 0.069 2.093
mt [GeV]mt [GeV] 178.0 ± 4.3 178.5

Figure 8.14: Comparison of the measurements with the expectation of the SM, calculated for
the five SM input parameter values in the minimum of the global χ2 of the fit. Also shown
is the pull of each measurement, where pull is defined as the difference of measurement and
expectation in units of the measurement uncertainty. The direct measurements of mW and ΓW

used here are preliminary.
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pulls in the EW global fit
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Figure 5.14: A0, b
FB and A0, c

FB measurements used in the heavy flavour combination, corrected for
their dependence on parameters evaluated in the multi-parameter fit described in the text. The
A0, b

FB measurements with D-mesons do not contribute significantly to the average and are not
shown in the plots. The experimental results are derived from the ones shown in Tables C.3
to C.8 combining the different centre of mass energies. The dotted lines indicate the size of the
systematic error.
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Source R0
b R0

c A0, b
FB A0, c

FB Ab Ac

[10−3] [10−3] [10−3] [10−3] [10−2] [10−2]

statistics 0.44 2.4 1.5 3.0 1.5 2.2

internal systematics 0.28 1.2 0.6 1.4 1.2 1.5

QCD effects 0.18 0 0.4 0.1 0.3 0.2
B(D → neut.) 0.14 0.3 0 0 0 0

D decay multiplicity 0.13 0.6 0 0.2 0 0
B decay multiplicity 0.11 0.1 0 0.2 0 0

B(D+ → K−π+π+) 0.09 0.2 0 0.1 0 0
B(Ds → φπ+) 0.02 0.5 0 0.1 0 0

B(Λc →p K−π+) 0.05 0.5 0 0.1 0 0

D lifetimes 0.07 0.6 0 0.2 0 0
B decays 0 0 0.1 0.4 0 0.1

decay models 0 0.1 0.1 0.5 0.1 0.1
non incl. mixing 0 0.1 0.1 0.4 0 0

gluon splitting 0.23 0.9 0.1 0.2 0.1 0.1
c fragmentation 0.11 0.3 0.1 0.1 0.1 0.1

light quarks 0.07 0.1 0 0 0 0

beam polarisation 0 0 0 0 0.5 0.3

total correlated 0.42 1.5 0.4 0.9 0.6 0.4

total error 0.66 3.0 1.6 3.5 2.0 2.7

Table 5.12: The dominant error sources for the heavy-flavour electroweak parameters from the
14-parameter fit, see text for details.

Table 5.12 summarises the dominant errors for the electroweak parameters. In all cases
the two largest error sources are statistics and systematics internal to the experiments. The
internal systematics consist mainly of errors due to Monte Carlo statistics, data statistics for
cross-checks and the knowledge of detector resolutions and efficiencies. The error labelled
“QCD effects” is due to hemisphere correlation for R0

b and R0
c (Section 5.6.7) and due to the

theoretical uncertainty in the QCD corrections for the asymmetries (Section 5.7.2). For the
asymmetries on average about 50 % of the QCD corrections are seen. The uncertainties due to
the knowledge of the beam energy are negligible in all cases.

Amongst the non-electroweak observables the B semileptonic branching fraction is of special
interest (B(b → #−) = 0.1071 ± 0.0022). The largest error source for this quantity is the
dependence on the semileptonic decay model b → #− with

∆B(b → #−)(b → #− modelling) = 0.0012. (5.36)

Extensive studies have been made to understand the size of this error. Amongst the electroweak
quantities, the quark asymmetries measured with leptons depend on the assumptions of the
decay model while the asymmetries using other methods usually do not. The fit implicitly
requires that the different methods give consistent results. This effectively constrains the decay
model and thus reduces the error in B(b → #−) from this source in the fit result.
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error decomposition [Bernreuther, Chen+, 1611.07942]

bottom mass effects at NNLO 
2.8σ ->2.6σ

[Wang+, 2003.13941]

PMC scale choice + NNLO 
2.8σ ->2.1σ

[d’Enterria+, 1806.00141]

QCD MC unc. revisited       
no significant changes
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✦ The full two-loop QED corrections (from ISR of a s-channel process) has been revisited in a recent study; 
due to a discrepancy found wrt earlier results, a direct consequence on Z boson lineshape

DESY 19–162, DO–TH 19/18, SAGEX-19-22

The e↵ects of O(↵2) initial state QED corrections to e
+
e
� ! �

⇤
/Z

⇤ at very high
luminosity colliders

J. Blümlein,1 A. De Freitas,1 C.G. Raab,2 and K. Schönwald1

1Deutsches Elektronen–Synchrotron, DESY, Platanenallee 6, D–15738 Zeuthen, Germany
2Institute of Algebra, Johannes Kepler University, Altenbergerstraße 69, A–4040, Linz, Austria

(Dated: 30.09.2019)

We present numerical results on the recently completed O(↵2) initial state corrections to the process
e+e� ! �⇤/Z⇤, which is a central process at past and future high energy and high luminsoity
colliders for precision measurements of the properties of the Z-boson, the Higgs boson, and the top
quark. We observe di↵erences to an earlier result [1] in the non-logarithmic contributions at O(↵2).
The new result leads to a 4 MeV shift in the Z width considering the lower end s0 = 4m2

⌧ of the
radiation region, which is larger than the present accuracy. We present predictions on the radiative
corrections to the central processes e+e� ! �⇤/Z⇤, e+e� ! ZH and e+e� ! tt planned at future
colliders like the ILC, CLIC, Fcc ee and CEPC to measure the mass and the width of the Z boson,
the Higgs boson and the top quark, for which the present corrections are significant.

PACS numbers: 12.20.-m, 03.50.-z, 14.70.Hp, 13.40.Ks, 14.80.Bn

An important ingredient to precision measurements at
e+e� colliders is the precise knowledge of the QED ini-
tial state corrections (ISR). The O(↵2) corrections have
been completed very recently. Already in 1987 a first
calculation to O(↵2) has been performed [1] for the pro-
cess e+e� ! �⇤/Z⇤. These corrections have been used
in the analysis of the LEP1 data, cf. [2] and are imple-
mented in fitting codes like TOPAZ0 [3] and ZFITTER [4].
In 2011, using the light cone expansion and assuming the
factorization of the massive Drell-Yan process, the cor-
rections for the same process have been calculated in [5]
and disagreement was found with the results of [1] for
the non-logarithmic terms at O(↵2).

We have repeated the calculation using conventional
methods without performing any approximation and ex-
panded the final results in the mass ratio m2

e/s to ob-
tain compact analytic expressions for the respective ra-
diators, cf. [6, 7]. The calculation has been accompanied
by controlling the results using high precision numerics.
We confirm the results presented in [5]. Furthermore, in
Ref. [1] no account was given on the axialvector terms,
which have di↵erent corrections than the vector terms
in some cases. Also some processes only contributing to
the non-logarithmic order known from [8, 9] were miss-
ing, which we have recalculated and added, completing
the O(↵2) QED ISR corrections. Here we include both
photon and e+e� pair emission up to O(↵2). The ini-
tial state QED corrections can be written in terms of the
following functions

H
⇣
z,↵,

s

m2

⌘
= �(1� z) +

1X

k=1

⇣ ↵

4⇡

⌘k
Ck

⇣
z,

s

m2

⌘
(1)

Ck

⇣
z,

s

m2

⌘
=

kX

l=0

lnk�l
⇣ s

m2

⌘
ck,l(z), (2)

which yield the respective di↵erential cross sections by

d�e+e�

ds0
=

1

s
�e+e�(s

0)H
⇣
z,↵,

s

m2

⌘
, (3)

with �e+e�(s
0) the scattering cross section without the

ISR QED corrections, ↵ ⌘ ↵(s) the fine structure con-
stant and z = s0/s, where s0 is the invariant mass of the
produced (o↵-shell) �/Z boson.
These results are of phenomenological importance for

the precision measurements of the Z resonance, high lu-
minosity ZH production, and tt production at LEP1,
and for future planned e+e� colliders such as ILC and
CLIC [10], the FCC ee [11, 12], the CEPC [13], and also
for muon colliders [14].
In this letter we detail the phenomenological results

for the impact of the ISR QED corrections up to O(↵2)
and also include soft resummation beyond this order, cf.
e.g. [1], studying their e↵ect on the Z peak, ZH- and tt̄-
production. These processes will serve to perform highly
precise measurements of the Z and Higgs boson, H, and
the top quark mass in the future. Likewise, we reconsider
the measurement at LEP1. A detailed account on the
analytic calculation will be given in [7], providing also all
the radiation functions needed in the analyses, which are
too voluminous to be presented here.

1. The Z peak and its surrounding.
For this production channel we consider the measurement
of the inclusive cross section of a µ+µ� state above a
certain threshold s0 of its invariant mass squared, while
all the radiation products due to ISR are integrated. The
theoretical value for s0 is 4m2

µ, while in the measurements
a series of cuts are used and then one extrapolates again
to a value of s0. In the LEP1 analysis, examples are
s0 = 4m2

⌧ or s0 = 0.01M2
Z [2]. We will discuss e↵ects

for these values and also consider values down to the
theoretical boundary.

In Table I we summarize the e↵ect of the di↵erent order
ISR corrections on the shift of the Z peak and the modi-
fication of the half-width performing the di↵erence from
a given order to the previous one. Very similar values are
obtained in the case of a fixed width or the s-dependent
width. At O(↵2) we distinguish the cases of either pure
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We present numerical results on the recently completed O(↵2) initial state corrections to the process
e+e� ! �⇤/Z⇤, which is a central process at past and future high energy and high luminsoity
colliders for precision measurements of the properties of the Z-boson, the Higgs boson, and the top
quark. We observe di↵erences to an earlier result [1] in the non-logarithmic contributions at O(↵2).
The new result leads to a 4 MeV shift in the Z width considering the lower end s0 = 4m2

⌧ of the
radiation region, which is larger than the present accuracy. We present predictions on the radiative
corrections to the central processes e+e� ! �⇤/Z⇤, e+e� ! ZH and e+e� ! tt planned at future
colliders like the ILC, CLIC, Fcc ee and CEPC to measure the mass and the width of the Z boson,
the Higgs boson and the top quark, for which the present corrections are significant.
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An important ingredient to precision measurements at
e+e� colliders is the precise knowledge of the QED ini-
tial state corrections (ISR). The O(↵2) corrections have
been completed very recently. Already in 1987 a first
calculation to O(↵2) has been performed [1] for the pro-
cess e+e� ! �⇤/Z⇤. These corrections have been used
in the analysis of the LEP1 data, cf. [2] and are imple-
mented in fitting codes like TOPAZ0 [3] and ZFITTER [4].
In 2011, using the light cone expansion and assuming the
factorization of the massive Drell-Yan process, the cor-
rections for the same process have been calculated in [5]
and disagreement was found with the results of [1] for
the non-logarithmic terms at O(↵2).

We have repeated the calculation using conventional
methods without performing any approximation and ex-
panded the final results in the mass ratio m2

e/s to ob-
tain compact analytic expressions for the respective ra-
diators, cf. [6, 7]. The calculation has been accompanied
by controlling the results using high precision numerics.
We confirm the results presented in [5]. Furthermore, in
Ref. [1] no account was given on the axialvector terms,
which have di↵erent corrections than the vector terms
in some cases. Also some processes only contributing to
the non-logarithmic order known from [8, 9] were miss-
ing, which we have recalculated and added, completing
the O(↵2) QED ISR corrections. Here we include both
photon and e+e� pair emission up to O(↵2). The ini-
tial state QED corrections can be written in terms of the
following functions
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which yield the respective di↵erential cross sections by
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=
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�e+e�(s
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⇣
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⌘
, (3)

with �e+e�(s
0) the scattering cross section without the

ISR QED corrections, ↵ ⌘ ↵(s) the fine structure con-
stant and z = s0/s, where s0 is the invariant mass of the
produced (o↵-shell) �/Z boson.
These results are of phenomenological importance for

the precision measurements of the Z resonance, high lu-
minosity ZH production, and tt production at LEP1,
and for future planned e+e� colliders such as ILC and
CLIC [10], the FCC ee [11, 12], the CEPC [13], and also
for muon colliders [14].
In this letter we detail the phenomenological results

for the impact of the ISR QED corrections up to O(↵2)
and also include soft resummation beyond this order, cf.
e.g. [1], studying their e↵ect on the Z peak, ZH- and tt̄-
production. These processes will serve to perform highly
precise measurements of the Z and Higgs boson, H, and
the top quark mass in the future. Likewise, we reconsider
the measurement at LEP1. A detailed account on the
analytic calculation will be given in [7], providing also all
the radiation functions needed in the analyses, which are
too voluminous to be presented here.

1. The Z peak and its surrounding.
For this production channel we consider the measurement
of the inclusive cross section of a µ+µ� state above a
certain threshold s0 of its invariant mass squared, while
all the radiation products due to ISR are integrated. The
theoretical value for s0 is 4m2

µ, while in the measurements
a series of cuts are used and then one extrapolates again
to a value of s0. In the LEP1 analysis, examples are
s0 = 4m2

⌧ or s0 = 0.01M2
Z [2]. We will discuss e↵ects

for these values and also consider values down to the
theoretical boundary.

In Table I we summarize the e↵ect of the di↵erent order
ISR corrections on the shift of the Z peak and the modi-
fication of the half-width performing the di↵erence from
a given order to the previous one. Very similar values are
obtained in the case of a fixed width or the s-dependent
width. At O(↵2) we distinguish the cases of either pure
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FIG. 1. Relative di↵erence between the O(↵2) results of [1]

and the present paper as a function of
p
s in dependence of s0.

Dotted line s0 = 0.01M2
Z ; Dashed line s0 = 4m2

⌧ ; Dash-dotted

line s0 = 1GeV2
; Full line s0 = 4m2

µ.

photon emission or including also e+e� pair production.
While the peak shift comes out the same in both cases,
there is a shift on the width of 28 MeV by including the
emission of e+e� pairs. Finally, soft photon exponen-
tiation from O(↵3) onward leads to a peak shift of 17
MeV and to a 23 MeV width shift. The numbers are
quite comparable to those given in [1], where at O(↵2)
only the photon emission has been considered and the
integration was performed from s0 = 4m2

µ.

Fixed width s dep. width

Peak Width Peak Width

(MeV) (MeV) (MeV (MeV)

O(↵) correction 210 603 210 602

O(↵2) correction -109 -187 -109 -187

O(↵2): � only -110 -215 -110 -215

O(↵2) correction

+ soft exp. 17 23 17 23

Di↵erence to O(↵2) [1] 4 4

TABLE I. Shifts in the Z-mass and the width due to the di↵erent

contributions to the ISR QED radiative corrections for a fixed

width of �Z = 2.4952 GeV and s-dependent width using MZ =
91.1876 GeV [15] and s0 = 4m2

⌧ , cf. [2].

At s0 = 4m2
⌧ the corrected expressions w.r.t. Ref. [1] are

too small to be visible at the peak position. However, a
4 MeV shift is obtained in the width, in comparison with
the present result. This is of relevance since the current
error is ��Z = ±2.3 MeV [15]. For s0 = 0.01M2

Z , on
the other hand, the shift amounts to 0.2 MeV, which is
relevant at Giga-Z and Fcc ee [10, 11], where resolutions
of a few hundred keV can be reached for both MZ and
�Z , see also [16]. If s0 would have been chosen as low as
1 GeV2, the width would shift by 18 MeV and the peak
position by 3 keV, while for larger cuts the e↵ect on the
peak shift cannot be resolved. The e↵ects would even
be larger for s0 = 4m2

µ. To clarify this further, we show
in Figure 1 the relative di↵erence of the correction for a

series of s0 values in the vicinity of the Z peak.
The shifts in the width are majorly caused by the dis-

crepancies in the pure singlet terms (process 3 in [1])
containing 1/z contributions, cf. [6].
Between the cases of a constant width and the s-

dependent width we find a peak shift of 34.2 MeV and a
shift of the width of 1 MeV, irrespective of the applied
ISR corrections, in accordance with Refs. [17]. In Fig-
ure 2 we illustrate the di↵erent QED ISR corrections to
e+e� ! Z⇤/�⇤ around the Z peak. The ISR corrections
change the profile of the resonance, i.e. the peak posi-
tion, height and the half width. The lines for the O(↵2)
correction and the one including soft resummation are
nearly identical.

FIG. 2. The Z-resonance in e+e� ! µ+µ�
. Dotted line:

Born cross section; Dashed line: O(↵) ISR corrections; Full line:

O(↵2) + soft resummation ISR corrections, with s0 = 4m2
⌧ .

In Figure 3 the region of
p
s is extended to

[10, 200] GeV. The individual contributions of the fixed
order corrections at low order show growing e↵ects o↵ the
Z peak. The soft resummation corrections stay nearly
constant in the whole range, except in the region around
the Z peak.

FIG. 3. The Z-resonance in e+e� ! µ+µ�
. Dotted line:

Born cross section; Dashed line: O(↵) ISR corrections; Full line:

O(↵2) + soft resummation ISR corrections; Dash-dotted line:

individual contribution of soft resummation.

claimed shift of 4 MeV for measured Z width at LEP (exp. precision ~ 2.3 MeV)

[Blumlein+, 1910.05759]Ecm [GeV]
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.
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Challenge on theory precision

7

✦ The huge advance in projected experimental precision naturally leads to concerns on whether the 
theory uncertainties can match up or even controlled well below the precision goal  
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4 Summary

FCC-ee, a circular collider with extremely high statistics and high energy resolution, will provide

the possibility to test the Standard Model with its fine quantum electroweak effects with a pre-

cision far beyond the current state of the art. Significant future theory effort will be needed
for both for parametric and theoretical calculational errors to match the experimental accuracy of

FCC-ee physics program. No potential showstoppers are foreseen [1, 2]. It will be important
that adequate theory funding will be available to ensure that theory uncertainties are reduced to
the desired level. The combined advances in experimental and theoretical techniques will yield

unprecedented sensitivity to very weakly coupled or very massive new physics, or to forbidden
violations of symmetries, at FCC-ee.
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EWPOs and QED deconvolution

8

✦ Current state-of-art generators on QED effects are not much different wrt. those used in LEP analysis 20 
years ago; improvements needed ranging between a factor of 2 to 100 for different observables 

Observable Source Err.{QED} Stat[Syst] LEP main development
LEP LEP FCC-ee FCC-ee to be done

MZ [MeV] Z linesh. 2.1{0.3} 0.005[0.1] 3⇥3? light fermion pairs
�Z [MeV] Z linesh. 2.1{0.2} 0.008[0.1] 2⇥3? fermion pairs
R

Z
l ⇥ 103 �(MZ) 25{12} 0.06[1.0] 12⇥3?? better FSR

�
0
had [pb] �

0
had 37{25} 0.1[4.0] 6⇥3? better lumi MC

N⌫ ⇥ 103 �(MZ) 8{6} 0.005[1.0] 6⇥3?? CEEX in lumi MC
N⌫ ⇥ 103 Z� 150{60} 0.8[< 1] 60⇥3?? O(↵2) for Z�

sin2
✓
eff
W ⇥ 105 A

lept.
FB 53{28} 0.3[0.5] 55⇥3?? h.o. and EWPOs

sin2
✓
eff
W ⇥ 105 hP⌧ i,A

pol,⌧
FB 41{12} 0.6[< 0.6] 20⇥3?? better ⌧ decay MC

MW [MeV] mass rec. 33{6} 0.5[0.3] 12⇥3??? QED at threshold
AMZ±3.5GeV

FB,µ ⇥ 105 d�
d cos ✓ 2000{100} 1.0[0.3] 100⇥3??? improved IFI

Table 2: Comparing experimental and theoretical errors at LEP and FCC-ee as in Table 1.

3rd column shows LEP experimental error together with uncertainty induced by QED and

4th column shows anticipated FCC-ee experimental statistical [systematic] errors. Additional

factor ⇥3 in the 5-th column (4th in Table 1) reflects what is needed for QED e↵ects to

be subdominant. Rating from
?
to

???
marks whether the needed improvement is relatively

straightforward, di�cult or very di�cult to achieve.

6 Summary

The main results of our study are indicated in Table 2, where we have indicated for selected
observables, the same as in Table 1, the improvement factor needed in calculations of the
QED e↵ects in order to match the experimental precision anticipated in the FCC-ee
experiment. We have also indicated explicitly the additional factor 3 necessary for these
e↵ects to become subdominant and the most important development to be done. We have
also tried to rate how di�cult it will be to achieve these targets. It is needless to say
that many of the above estimates remain speculative and are not based on solid numerical
results. However, this is always the case with estimates of the uncalculated higher order
perturbative corrections, so they have to be always taken with a grain of salt. On the
other hand, this kind of analysis is indispensable in planning directions and priorities of
the future work.
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EWPOs and EW corrections

9

✦ Theoretical uncertainties on EWPOS can be divided as intrinsic errors due to missing EW radiative 
corrections and parametric uncertainties due to SM input parameters 

Quantity FCC-ee Current intrinsic error Projected intrinsic error

MW [MeV] 0.5–1 ‡ 4 (α3,α2αs) 1
sin2 θ!eff [10−5] 0.6 4.5 (α3,α2αs) 1.5

ΓZ [MeV] 0.1 0.4 (α3,α2αs,αα2
s) 0.15

Rb [10−5] 6 11 (α3,α2αs) 5
Rl [10−3] 1 6 (α3,α2αs) 1.5
‡The pure experimental precision on MW is ∼ 0.5 MeV [1, 2], see Sec. 4.2.2 for more details.

Table 1: Estimated precision for the direct determination of several important electroweak
precision observables at FCC-ee [1,2,33] (column two, including systematic and observable-
specific) uncertainties; as well as current intrinsic theory errors for the prediction of these
quantities within the SM (column three). The main sources of theory errors are also in-
dicated. Column four shows the estimated projected intrinsic theory errors when leading
3-loop corrections become available. See text for more details.

Here θ is the scattering angle and Pe is the polarization of the incoming electron beam.4

The asymmetry parameters are commonly written as

Af =
1− 4|Qf | sin2 θfeff

1− 4|Qf | sin2 θfeff + 8(Qf sin
2 θfeff)

2
. (8)

Here Qf denotes the charge of the fermion, and sin2 θfeff is the effective weak (fermionic)
mixing angle. Another important precision observable is the W -boson mass. It is currently
measured most precisely from the lepton p⊥ distribution in pp → #ν at hadron colliders, and
it can be calculated within the SM from the Fermi constant, GF, of muon decay.

The expected precision for the experimental determination of some of these quantities
at FCC-ee is given in the second column of Tab. 1 [1, 2, 33]. The Z-boson quantities can be
determined from a run at

√
s = MZ with several ab−1, and smaller statistics runs at center-

of-mass energies above and below the Z peak for the purpose of MZ and ΓZ measurements.
The W mass can be determined from a run at several values of

√
s near the threshold 2MW

with a combined luminosity of O(ab−1). Note that the number for MW in the table includes
an estimate of the theory error as described in section 4.2.2, since the measurement of MW

requires a full SM prediction (not only QED) for the WW cross-section near threshold as
input.

4.2 Theory uncertainties for EWPO

4.2.1 Intrinsic uncertainties

The quantities listed in Tab. 1 can be predicted within the SM by using GF, α(MZ), αs(MZ),
MZ , MH and mt as inputs. The radiative corrections in these predictions are currently

4Formulas for electron and positron polarization can be found, e.g., in Ref. [8].
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based on current known 2-
loop results

assuming 3-loop results 
available

Quantity FCC-ee future parametric unc. Main source

MW [MeV] 0.5− 1 1 (0.6) δ(∆α)
sin2 θ!eff [10−5] 0.6 2 (1) δ(∆α)

ΓZ [MeV] 0.1 0.1 (0.06) δαs

Rb [10−5] 6 < 1 δαs

R! [10−3] 1 1.3 (0.7) δαs

Table 2: Estimated experimental precision for the direct measurement of several important
electroweak precision observables at FCC-ee [1, 2, 33] (column two, including systematic
uncertainties). Third column: parametric uncertainty of several important EWPO due to
uncertainties of input parameters given in (1), with the main source indicated in the fourth
column.

As discussed above, as total uncertainty for the theoretical prediction of an observable
the (quadratic) sum of parametric uncertainties plus intrinsic uncertainty should be taken6,
as given in the fourth column of Tab. 1 and the second and third columns of Tab. 2. More
generally, for combined fits to several observables, the parametric uncertainties should be
taken into account separately by using the corresponding parameters in the fit.

The above numbers have all been obtained assuming the SM as calculational framework.
The SM constitutes the model in which highest theoretical precision for the predictions of
EWPO can be obtained. As soon as physics beyond the SM (BSM) will be discovered, an
evaluation of the EWPO in any preferred BSM model will be necessary. The corresponding
theory uncertainties, both intrinsic and parametric, can then be larger (see, e.g., [35, 49]
for the Minimal Supersymmetric SM). A dedicated theory effort (beyond the SM) would be
needed in this case.

4.3 Higgs precision observables

For the accurate study of the properties of the Higgs boson, precise predictions for the
various partial decay widths, the branching ratios (BRs) and the Higgs-boson production
cross sections along with their theoretical uncertainties are indispensable.

4.3.1 Higgs-boson production cross-sections

The very narrow width of the Higgs boson allows for a factorization of all cross-sections with
resonant Higgs bosons into production and decay parts to very high precision if the Higgs
boson can be fully reconstructed. In this case, finite-width effects and off-shell contributions
are of relative size ΓH/MH ∼ 0.00003 and thus not relevant; this is in contrast to physics
with Z or W resonances, where Γ/M ∼ 0.03. If the Higgs boson is not fully reconstructable

6It should be noted that the intrinsic theory error is not a Gaussian random variable, which plays a role
in the combination with other error sources.
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of the direct measurement of α(MZ).
For illustration, two scenarios for ∆α will be considered below, one with total anticipated

uncertainty of 5 × 10−5 (assuming a combination of the experimental and possible future
theory uncertainties of similar magnitude) and an optimistic one with total uncertainty of
3× 10−5 (corresponding to subdominant theory uncertainties). For the optimistic scenario,
we also consider a reduced uncertainty of αs, which may be achievable by combining several
observables [32].

Taking into account the experimental and theoretical uncertainties discussed above, one
arrives at the following estimates for the achievable precision (from direct determination) for
the most important SM parameters at the FCC-ee:

δmt = 50 MeV, δmb = 13 MeV, δMZ = 0.1 MeV, δαs = 0.0002 (0.0001),

δ(∆α) = 5× 10−5 (3× 10−5). (1)

For mt and αs, another factor two improvement could be envisioned with a more ambitious
theory advancement.

4 Electroweak precision observables

4.1 EWPO definitions

The most important electroweak precision observables (EWPO) are related to properties of
the Z and W bosons. Z-boson properties are determined from measurements of e+e− → f f̄
on the Z-pole. To isolate the physics of the Z-boson, the typical set of pseudo-observables is
defined in the terms of the de-convoluted cross-section σf (s), where the effect of initial- and
final-state photon radiation and from s-channel photon and double-boson (box) exchange
has been removed. The impact of these corrections will be discussed below. The customary
set of pseudo-observables are

σ0
had =

∑

q

σq(M
2
Z), (2)

ΓZ =
∑

f

Γ[Z → f f̄ ], (from a fit to σf (s) at various values of s) (3)

R! =
[
∑

q σq(M2
Z)
]

/σ!(M
2
Z), ($ = e, µ, τ) (4)

Rq = σq(M
2
Z)/

[
∑

q σq(M2
Z)
]

, (q = b, c) (5)

Af
FB =

σf (θ < π
2
)− σf(θ > π

2
)

σf (θ < π
2
) + σf (θ > π

2
)
≡ 3

4
AeAf , (6)

Af
LR =

σf (Pe < 0)− σf (Pe > 0)

σf (Pe < 0) + σf (Pe > 0)
≡ Ae|Pe|. (7)

6

QCD + NNLO EW/non-resonant calculation [11].

mb and mc (defined as MS masses, mb(mb) and mc(mc)): We use estimated future values
of δmb(mb) ∼ 13 MeV and δmc(mc) ∼ 7 MeV [19]. These are based on projected improve-
ments in lattice calculations, for which we take the moderately conservative LS scenario in
Ref. [19]. Note that some analysis based on QCD sum rules already claim an uncertainty
of δmb ∼ 10 MeV [20], but these error estimates are not confirmed in other analyses of the
same quantities [21,22]. It would be very welcome to have the two independent results from
lattice and QCD sum rules for cross-checking and for putting uncertainty estimates to a
more solid basis.

∆α: The potentially most difficult parameter to measure is the shift in the electromag-
netic fine structure constant, ∆α ≡ 1 − α(0)/α(MZ). It is traditionally determined from
data on e+e− → hadrons and tau decays to hadrons [23], with a current uncertainty of
δ(∆α) = O(10−4). More accurate data for these inputs is expected to become available
from BES III [24], VEPP-2000 [25] and Belle II [26]. It was estimated that an uncertainty of
4×10−5 to 5×10−5 could be reached, depending on improvements in QCD theory input [27].
At FCC-ee, independent measurements of e+e− → hadrons could be obtained through the
radiative return method [28]. The ultimate precision on ∆α that could be reached by this
method is not yet clear, but in view of the importance of the quantity ∆α for EW pro-
cesses it would be highly desirable to have independent results on ∆α for a firm uncertainty
assessment.

In addition, the expected high luminosity may, for the first time, enable the possibility
to measure α(MZ) directly from e+e− → f f̄ at

√
s± = MZ ± 3 GeV [29]. In Ref. [29] it was

evaluated that from an analysis of the FB asymmetry of e+e− → µ+µ− one can determine
α(MZ) with an experimental uncertainty of 3 × 10−5. However, this also requires theory
input for the subtraction of other electroweak corrections from the pure s-channel photon
exchange contribution, which is the part that directly depends on α(MZ). In particular,
one needs to subtract contributions from s-channel Z exchange, box diagrams, and correc-
tions to the γff vertex. All of these contributions are currently at the one-loop level (see
for example Ref. [30]) and have an impact of O(10−3) on the extracted value of α(MZ).
This value is relatively small due to partial cancellations between AFB at s+ and s−, but
still large compared to the experimental target. With existing loop calculation methods, it
is possible to compute complete fermionic two-loop corrections, as well as O(αα2

s) correc-
tions. After inclusion of these contribution, the remaining theory uncertainty is estimated
to amount to O(10−4). If additionally the full O(α2), O(α2αs) and double-fermionic O(α3)
corrections become available, this uncertainty may be reduced to the level of a few times
10−5. These calculations (which include two- and three-loop box diagrams) would require
new developments for loop integration techniques, but may be achievable in the future.

There are also important QED effects in AFB(s+) − AFB(s−) due to initial-final state
interference, examined in the recent study of Ref. [31]. They are numerically much bigger
than non-QED EW corrections – amounting to about 0.5%, in spite of the partial cancellation
in the difference. It was shown in Ref. [31], that thanks to an advanced technique for
soft photon resummation, it can be controlled theoretically with a precision of O(0.01%).
Another factor∼ 10 improvement is needed in order to match FCC-ee experimental precision
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improved by a factor of 3~10



Challenges of EW corrections at 3-loops and beyond
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✦ Ingredients for 3-loop calculations of Z decay; challenges due to both large number of diagram/
integrals, multi-mass scales, as well as high numerical precision required I. Dubovyk, A.M. Freitas, J. Gluza, K. Grzanka, S. Jadach, T. Riemann, J. Usovitsch

Table B.6: Number of topologies and diagrams for Z ! f f̄ decays in the Feynman gauge. Statistics for
planarity, QCD, and EW-type diagrams are also given. Label ‘A’ denotes statistics after elimination of
tadpoles and wavefunction corrections, and label ‘B’ denotes statistics after elimination of topological
symmetries of diagrams.

Z ! bb̄ 1 loop 2 loops 3 loops

Number of topologies 1 14
(A)! 7

(B)! 5 211
(A)! 84

(B)! 51

Number of diagrams 15 2383
(A,B)! 1074 490 387

(A,B)! 120 472

Fermionic loops 0 150 17 580

Bosonic loops 15 924 102 892

Planar / non-planar 15 / 0 981/133 84 059/36 413

QCD / EW 1 / 14 98 / 1016 10 386/110 086

Z ! e
+
e
�
, . . .

Number of topologies 1 14
(A)! 7

(B)! 5 211
(A)! 84

(B)! 51

Number of diagrams 14 2012
(A,B)! 880 397 690

(A,B)! 91 472

Fermionic loops 0 114 13104

Bosonic loops 14 766 78 368

Planar / non-planar 14 / 0 782/98 65 487/25 985

QCD / EW 0 / 14 0 / 880 144/91 328

For a safe interpretation of FCC-ee-Z measurements, the theoretical error must be subdominant relative
to the experimental uncertainties. Comparing the TH2 scenario with the EXP2 numbers, one can see that it does
not yet fit this bill. This implies that calculation of four-loop corrections, or at least the leading parts thereof,
will be necessary to fully match the planned precision of the FCC-ee experiments. Since estimates of future
theoretical errors are highly uncertain, and four-loop contributions are two orders beyond the current state of
the art, we do not attempt to make a quantitative estimate of the achievable precision, but it seems plausible that
the remaining uncertainty will be well below the EXP2 targets.

Let us now come back to the prospects for computing the missing three-loop contributions. Two basic
factors play a role: the number of Feynman diagrams (or, correspondingly, the number of Feynman integrals)
and the precision with which single Feynman integrals can be calculated. Some basic bookkeeping concerning
the number of diagram topologies and different types of diagrams is given in Table B.6. First, let us compare
the known number of diagram topologies and individual diagrams at two and three loops. Comparing the
genuine three-loop fermionic diagrams, which are simpler than the bosonic ones, with the already known two-
loop bosonic diagrams, there is about an order of magnitude difference in their number: 17 580 diagrams
for Z ! bb (and 13 104 diagrams for Z ! e

+
e
�) at O(↵3

ferm) versus 964 (and 766) diagrams at O(↵2
bos).

In general, however, the number of diagrams is, of course, not equivalent to the number of integrals to be
calculated. At O(↵3

ferm), we expect O(10
3
)�O(10

4
) distinct three-loop Feynman integrals before a reduction

to a basis, because different classes of diagrams often share parts of their integral bases.
Second, the accuracy with which three-loop diagrams can be calculated must be estimated. For two-

loop bosonic vertex integrals, results have been obtained with a high level of accuracy; eight digits in most
cases and at least six digits for the few worst integrals, with some room for improvement. The final accuracy
of the complete results for the bosonic two-loop corrections to the EWPOs was at the level of at least four
digits [20, 21]. To achieve this goal, the Feynman integrals have been calculated numerically, directly in the
Minkowskian region, using two main approaches: (i) SD, as implemented in the packages FIESTA3 [76] and
SecDec3 [77], and (ii) MB integrals, as implemented in the package MBsuite [78–83]. Because fermionic

14



Higgs boson production and decays
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✦ The tiny width (Γ/M~3×10-5) and 0 spin of the Higgs boson ensure a simple factorization of production 
and decay of the Higgs boson in most theory calculations

M. Spira

Table B.12.1: Estimated theoretical uncertainties from missing higher orders and the perturb-
ative orders (QCD/elw) of the results included in the analysis.

Partial width QCD Electroweak Total On-shell Higgs
(%) (%) (%)

H æ bb̄/cc̄ ≥0.2 ≥0.5 ≥0.5 N4LO / NLO
H æ t+t≠/µ+µ≠ — ≥0.5 ≥0.5 — / NLO
H æ gg ≥3 ≥1 ≥3 N3LO / NLO
H æ gg <1 <1 ≥1 NLO / NLO
H æ Zg <1 ≥5 ≥5 LO / LO
H æ WW/ZZ æ 4f <0.5 ≥0.5 ≥0.5 NLO/NLO

Fig. B.12.3: Higgs boson branching ratios and their uncertainties for Higgs masses around
125 GeV. Figure courtesy ref. [11].
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Figure 2: Γ(H → hadrons)/Abb̄(µ = MH) as a function of the renormalization scale µ.

(short-dashed) curve we have Γ(H → hadrons)/Abb̄(µ = MH) = 1 for µ = MH . The six
curves represent (from bottom to top, i.e. from the short-dashed to the solid curve) the
predictions of order α0

s, . . . , α
5
s, where α5

s terms are only included for ∆mb=0
gg . µ is varied

between 10 GeV and 500 GeV which is significantly larger than the usual range spanned
between MH/2 and 2MH . Nevertheless, one observes a steady flattening of the curves
when including higher order corrections; the result represented by solid line is almost
µ-independent.

4 Conclusions

We complete the corrections of order α4
s to the hadronic decay rate of the Standard Model

Higgs boson by computing the top quark–induced contributions in an effective field-theory
framework. This requires the calculation of four-loop propagator-type integrals. Our
new corrections are numerically of the same order of magnitude as the purely massless
contribution [8], however they have an opposite sign. We provide all analytic results
presented in this paper in a computer-readable format [41], making it straightforward

10

known to O(αs4) neglecting certain mass corrections 
from Higgs effective theory in heavy top limit

hadronic width of the Higgs boson vs QCD scaledecay branching ratios vs. mass

[Davies, Steinhauser, Wellmann, 2017]

[Herzog, Ruijl, Ueda, Vermaseren, Vogt, 2017]



Theory uncertainty on Higgs partial width
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✦ Theory uncertainty can be under FCC-ee precision goal, giving the projected improvement on SM input 
parameters and some straight forward works on the perturbative calculations

Partial width QCD electroweak total

H → bb̄/cc̄ ∼ 0.2% < 0.3% < 0.4%
H → τ+τ−/µ+µ− – < 0.3% < 0.3%

H → gg ∼ 3% ∼ 1% ∼ 3.2%
H → γγ < 0.1% < 1% <1%
H → Zγ ! 0.1% ∼ 5% ∼ 5%

H → WW/ZZ → 4f < 0.5% < 0.3% ∼ 0.5%

Table 3: Current intrinsinc uncertainties in the various Higgs-boson decay width calcula-
tions, see text and Refs. [19, 53].

(e.g. in H → WW → 2#2ν) Higgs off-shell contributions have to be taken into account
(which is straightforward at NLO).

At FCC-ee with
√
s = 240 GeV (or other e+e− machines near this center-of-mass energy),

the Higgs-boson production cross-section is strongly dominated by e+e− → ZH , and e+e− →
νν̄H contributes less than 20% [1, 5]. For these two processes full one-loop corrections in
the SM are available [50, 51]. For the dominating ZH production mode they are found at
the level of ∼ 5−10%. It can be expected that missing two-loop corrections in the SM lead
to an intrinsic uncertainty of O(1%)7. This number has to be compared to the anticipated
experimental accuracy of 0.4% [1,2]. It becomes clear that with a full two-loop calculation of
e+e− → ZH the intrinsic uncertainty will be sufficiently small. Calculational techniques for
2 → 2 processes at the two-loop level exist, and it is reasonable to assume that, if required,
this calculation within the SM can be incorporated for the FCC-ee Higgs precision studies.

For WBF production, the calculation of the full two-loop corrections will be significantly
more difficult, since this is a 2 → 3 process. However, one may assume that a partial
result based on diagrams with closed light-fermion loops and top-quark loops (in a large-
mt approximation) can be achieved, which should reduce the intrinsic theory uncertainty to
below the 1% level. Given the fact that the WBF process is less crucial than the HZ channel
for the Higgs physics program FCC-ee with

√
s = 240 GeV, this will probably be adequate

for most practical purposes.

4.3.2 Higgs-boson decays

The current intrinsic uncertainties for the various Higgs-boson decay widths are given in
Tab. 3. They have been evaluated as follows [19]:

The QCD uncertainty for H → qq̄ is assumed to be equal to the magnitude of the O(α4
s)

corrections [54]. The uncertainty due to missing O(α2) contributions is estimated to be
smaller than the known one-loop corrections [55], which themselves are unusually small due
to accidental cancellations. Two-loop corrections of O(ααs) are also available [56] and the
uncertainty from 3-loop mixed QCD-weak corrections is estimated to be of similar size as

7This estimate is corroborated by the recent calculation of the two-loop O(ααs) corrections to ZH cross-
section [52], which were found to amount to 1.3%.
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M. Spira
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available order

decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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intrinsic/perturbative uncertainty on partial width vs. exp. precision

due to current available 
QCD and EW corrections

~13% for CEPC

only a few channels need some 
additional works 



Theory uncertainty on Higgs partial width

13

✦ Theory uncertainty can be under FCC-ee precision goal, giving the projected improvement on SM input 
parameters and some straight forward works on the perturbative calculations

decay para. mq para. αs para. MH

H → bb̄ 1.4% 0.4% –
H → cc̄ 4.0% 0.4% –

H → τ+τ− – – –
H → µ+µ− – – –
H → gg < 0.2% 3.7% –

H → γγ < 0.2% – –
H → Zγ – – 2.1%

H → WW – – 2.6%
H → ZZ – – 3.0%

Table 4: Current parametric uncertainties in the various Higgs-boson decay width predic-
tions [19] (see text). “–” indicates a negligible source of uncertainty.

the partial result in Ref. [57].
For H → gg, the QCD uncertainty is estimated from the scale variation of the available

N3LO corrections [58]. The electroweak uncertainty for this channel is estimated based on
the observation that the NLO result [59] is dominated by light-fermion loops, and thus the
NNLO contribution is expected to be suppressed by a factor Nlfα ∼ 0.1−0.2. The same
procedure has been employed for H → γγ, using the results from Ref. [60]. Based on
the experience from existing results for H → gg and H → γγ, the currently unavailable
electroweak NLO corrections to H → Zγ are estimated to be less than 5%. Off-shell effects
for H → Z∗γ are known at the LO one-loop level [61] and the NLO corrections are expected
to be small compared to the experimental uncertainty.8

The uncertainty due to the missing QCD and electroweak two-loop corrections for h →
WW,ZZ is estimated by (i) taking square of the known one-loop corrections [62] and, alter-
natively, (ii) doubling the numerical result of the known leading two-loop corrections in the
large-mt limit [63].

Also the parametric uncertainties can play a non-negligible role for the evaluation of the
partial widths. The most important parameters are the bottom quark mass and the strong
coupling constant. In Ref. [53] the current uncertainties of αs and mb have been assumed
to be δαs = 0.0015 and δmb = 0.03 GeV. Additionally, we consider δmc = 0.025 GeV,
δmt = 0.85 GeV and δMH = 0.24 GeV [64]. The effect on the various partial widths has
been evaluated as in Ref. [19] and is shown in Tab. 4.

When comparing the combined intrinsic and parametric uncertainties with the target
precision of FCC-ee [1,2], see Tab. 5, it is clear that improvements are necessary. Concerning
the intrinsic theory uncertainty, the available predictions for the f f̄ and γγ channels are
already sufficiently precise to match the expected FCC-ee experimental uncertainty. With
available calculational techniques, the evaluation of complete two-loop corrections to H →
f f̄ can be achieved. This would reduce the uncertainty of the electroweak contributions to

8 We assume that a proper experimental definition of this decay mode w.r.t. Dalitz decays [61] will be
agreed upon.
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When comparing the combined intrinsic and parametric uncertainties with the target
precision of FCC-ee [1,2], see Tab. 5, it is clear that improvements are necessary. Concerning
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H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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H → gg < 0.2% 3.7% –

H → γγ < 0.2% – –
H → Zγ – – 2.1%

H → WW – – 2.6%
H → ZZ – – 3.0%

Table 4: Current parametric uncertainties in the various Higgs-boson decay width predic-
tions [19] (see text). “–” indicates a negligible source of uncertainty.

the partial result in Ref. [57].
For H → gg, the QCD uncertainty is estimated from the scale variation of the available

N3LO corrections [58]. The electroweak uncertainty for this channel is estimated based on
the observation that the NLO result [59] is dominated by light-fermion loops, and thus the
NNLO contribution is expected to be suppressed by a factor Nlfα ∼ 0.1−0.2. The same
procedure has been employed for H → γγ, using the results from Ref. [60]. Based on
the experience from existing results for H → gg and H → γγ, the currently unavailable
electroweak NLO corrections to H → Zγ are estimated to be less than 5%. Off-shell effects
for H → Z∗γ are known at the LO one-loop level [61] and the NLO corrections are expected
to be small compared to the experimental uncertainty.8

The uncertainty due to the missing QCD and electroweak two-loop corrections for h →
WW,ZZ is estimated by (i) taking square of the known one-loop corrections [62] and, alter-
natively, (ii) doubling the numerical result of the known leading two-loop corrections in the
large-mt limit [63].

Also the parametric uncertainties can play a non-negligible role for the evaluation of the
partial widths. The most important parameters are the bottom quark mass and the strong
coupling constant. In Ref. [53] the current uncertainties of αs and mb have been assumed
to be δαs = 0.0015 and δmb = 0.03 GeV. Additionally, we consider δmc = 0.025 GeV,
δmt = 0.85 GeV and δMH = 0.24 GeV [64]. The effect on the various partial widths has
been evaluated as in Ref. [19] and is shown in Tab. 4.

When comparing the combined intrinsic and parametric uncertainties with the target
precision of FCC-ee [1,2], see Tab. 5, it is clear that improvements are necessary. Concerning
the intrinsic theory uncertainty, the available predictions for the f f̄ and γγ channels are
already sufficiently precise to match the expected FCC-ee experimental uncertainty. With
available calculational techniques, the evaluation of complete two-loop corrections to H →
f f̄ can be achieved. This would reduce the uncertainty of the electroweak contributions to

8 We assume that a proper experimental definition of this decay mode w.r.t. Dalitz decays [61] will be
agreed upon.
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Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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Table 4: Current parametric uncertainties in the various Higgs-boson decay width predic-
tions [19] (see text). “–” indicates a negligible source of uncertainty.

the partial result in Ref. [57].
For H → gg, the QCD uncertainty is estimated from the scale variation of the available

N3LO corrections [58]. The electroweak uncertainty for this channel is estimated based on
the observation that the NLO result [59] is dominated by light-fermion loops, and thus the
NNLO contribution is expected to be suppressed by a factor Nlfα ∼ 0.1−0.2. The same
procedure has been employed for H → γγ, using the results from Ref. [60]. Based on
the experience from existing results for H → gg and H → γγ, the currently unavailable
electroweak NLO corrections to H → Zγ are estimated to be less than 5%. Off-shell effects
for H → Z∗γ are known at the LO one-loop level [61] and the NLO corrections are expected
to be small compared to the experimental uncertainty.8

The uncertainty due to the missing QCD and electroweak two-loop corrections for h →
WW,ZZ is estimated by (i) taking square of the known one-loop corrections [62] and, alter-
natively, (ii) doubling the numerical result of the known leading two-loop corrections in the
large-mt limit [63].

Also the parametric uncertainties can play a non-negligible role for the evaluation of the
partial widths. The most important parameters are the bottom quark mass and the strong
coupling constant. In Ref. [53] the current uncertainties of αs and mb have been assumed
to be δαs = 0.0015 and δmb = 0.03 GeV. Additionally, we consider δmc = 0.025 GeV,
δmt = 0.85 GeV and δMH = 0.24 GeV [64]. The effect on the various partial widths has
been evaluated as in Ref. [19] and is shown in Tab. 4.

When comparing the combined intrinsic and parametric uncertainties with the target
precision of FCC-ee [1,2], see Tab. 5, it is clear that improvements are necessary. Concerning
the intrinsic theory uncertainty, the available predictions for the f f̄ and γγ channels are
already sufficiently precise to match the expected FCC-ee experimental uncertainty. With
available calculational techniques, the evaluation of complete two-loop corrections to H →
f f̄ can be achieved. This would reduce the uncertainty of the electroweak contributions to

8 We assume that a proper experimental definition of this decay mode w.r.t. Dalitz decays [61] will be
agreed upon.
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boson decay width predictions (see text). The last column shows the target of FCC-ee
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less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the

14

decay para. mq para. αs para. MH

H → bb̄ 1.4% 0.4% –
H → cc̄ 4.0% 0.4% –

H → τ+τ− – – –
H → µ+µ− – – –
H → gg < 0.2% 3.7% –

H → γγ < 0.2% – –
H → Zγ – – 2.1%

H → WW – – 2.6%
H → ZZ – – 3.0%

Table 4: Current parametric uncertainties in the various Higgs-boson decay width predic-
tions [19] (see text). “–” indicates a negligible source of uncertainty.

the partial result in Ref. [57].
For H → gg, the QCD uncertainty is estimated from the scale variation of the available

N3LO corrections [58]. The electroweak uncertainty for this channel is estimated based on
the observation that the NLO result [59] is dominated by light-fermion loops, and thus the
NNLO contribution is expected to be suppressed by a factor Nlfα ∼ 0.1−0.2. The same
procedure has been employed for H → γγ, using the results from Ref. [60]. Based on
the experience from existing results for H → gg and H → γγ, the currently unavailable
electroweak NLO corrections to H → Zγ are estimated to be less than 5%. Off-shell effects
for H → Z∗γ are known at the LO one-loop level [61] and the NLO corrections are expected
to be small compared to the experimental uncertainty.8

The uncertainty due to the missing QCD and electroweak two-loop corrections for h →
WW,ZZ is estimated by (i) taking square of the known one-loop corrections [62] and, alter-
natively, (ii) doubling the numerical result of the known leading two-loop corrections in the
large-mt limit [63].

Also the parametric uncertainties can play a non-negligible role for the evaluation of the
partial widths. The most important parameters are the bottom quark mass and the strong
coupling constant. In Ref. [53] the current uncertainties of αs and mb have been assumed
to be δαs = 0.0015 and δmb = 0.03 GeV. Additionally, we consider δmc = 0.025 GeV,
δmt = 0.85 GeV and δMH = 0.24 GeV [64]. The effect on the various partial widths has
been evaluated as in Ref. [19] and is shown in Tab. 4.

When comparing the combined intrinsic and parametric uncertainties with the target
precision of FCC-ee [1,2], see Tab. 5, it is clear that improvements are necessary. Concerning
the intrinsic theory uncertainty, the available predictions for the f f̄ and γγ channels are
already sufficiently precise to match the expected FCC-ee experimental uncertainty. With
available calculational techniques, the evaluation of complete two-loop corrections to H →
f f̄ can be achieved. This would reduce the uncertainty of the electroweak contributions to

8 We assume that a proper experimental definition of this decay mode w.r.t. Dalitz decays [61] will be
agreed upon.

13

decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).

More theoretical work is needed for H → WW,ZZ, gg, which are currently limited
by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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decay intrinsic para. mq para. αs para. MH FCC-ee prec. on g2HXX

H → bb̄ ∼ 0.2% 0.6% < 0.1% – ∼ 0.8%
H → cc̄ ∼ 0.2% ∼ 1% < 0.1% – ∼ 1.4%

H → τ+τ− < 0.1% – – – ∼ 1.1%
H → µ+µ− < 0.1% – – – ∼ 12%
H → gg ∼ 1% 0.5% (0.3%) – ∼ 1.6%

H → γγ < 1% – – – ∼ 3.0%
H → Zγ ∼ 1% – – ∼ 0.1%

H → WW ! 0.3% – – ∼ 0.1% ∼ 0.4%
H → ZZ ! 0.3%† – – ∼ 0.1% ∼ 0.3%

Γtot ∼ 0.3% ∼ 0.4% < 0.1% < 0.1% ∼ 1%
† From e+e− → HZ production

Table 5: Projected intrinsic and parametric uncertainties for the partial and total Higgs-
boson decay width predictions (see text). The last column shows the target of FCC-ee
precisions on the respective coupling squared.

less than 0.1%. Similarly, the complete NLO corrections to H → Zγ can be carried out
with existing methods, resulting in an estimated precision of about 1% (see above for our
estimate on the Dalitz decays).
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by QCD uncertainties. For H → WW,ZZ, the required QCD corrections are essentially
identical to those for e+e− → WW , and as explained on page 10 it is straightforward to
improve them to a practically negligible level. Further significant progress would require the
calculation of two-loop electroweak corrections, which for a 1 → 4 process is beyond reach
for the forseeable future.

Note, however, that the HZZ coupling will be mostly constrained by the measurement of
the e+e− → HZ production process at FCC-ee with

√
s = 240 GeV, rather than the decay

H → ZZ∗. As discussed in section 4.3.1, it may be assumed that full two-loop corrections
(for on-shell Z and H bosons) will eventually be carried out for this process, leading to a
remaining intrinsic uncertainty of less than 0.3%.

For H → gg, the NNLO QCD corrections [65] and N3LO QCD corrections in the large-
mt limit [58] are currently available. The leading uncertainty stems from the missing N4LO
corrections in the large-mt limit. These require the calculation of massless four-loop QCD
diagrams, which may be within reach [54, 66]. If these contributions become available,
together with three-loop corrections involving bottom loops, the intrinsic uncertainty for
H → gg is expected to be reduced to the level of about 1%.

Also shown in Tab. 5 are the projected parametric uncertainties, assuming FCC-ee pre-
cisions, see Tab. 1. For inputs, we use δαs = 0.0002 and δmt = 50 MeV from eq. (1),
δMH ∼ 10 MeV [67], and δmb ∼ 13 MeV and δmc ∼ 7 MeV [19].

The corresponding uncertainties (intrinsic, parametric from quark masses, αs and MH)
for the total width are shown in the last line of Tab. 5. They are obtained by adding the
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✦ Input of Higgs boson decay are more than just numbers of partial width/BRs, modeling on kinematics 
including NP QCD effects will be crucial in precision measurement of hadronic channels  

Chinese Physics C Vol. 43, No. 4 (2019) 043002

(a) (b)

(c) (d)

Fig. 11. ZH production with H ! bb̄/cc̄/gg: the recoil mass distributions of (a) Z ! e
+
e
� and (b) Z ! µ

+
µ
�;

the dijet mass distributions of Higgs boson candidates for (c) Z ! qq̄ and (d) Z ! ⌫⌫̄. The markers and their
uncertainties represent expectations from a CEPC dataset of 5.6ab�1 whereas the solid blue curves are the fit
results. The dashed curves are the signal and background components. Contributions from other decays of the
Higgs boson are included in the background.

Combining all Z boson decay modes studied, a rela-
tive statistical precision for �(ZH)⇥BR of 0.3%, 3.3%
and 1.3% can be achieved for the H ! bb̄, cc̄ and gg
decays, respectively.

5.2 H !WW ⇤

For a 125 GeV SM Higgs boson, the H !WW ⇤ de-
cay has the second largest branching ratio of 21.5% [33].
The sensitivity of the �(ZH)⇥BR(H !WW ⇤) measure-
ment is estimated by combining results from the studies
of a few selected final states (Table 7) of the H !WW ⇤

decay of ZH production. SM diboson production is the
main background source in all cases.

For Z ! `+`�, the H ! WW ⇤ decay final states

studied are `⌫`0⌫ and `⌫qq̄. The ZH candidate events
are selected by requiring the dilepton invariant mass in
the range of 80–100 GeV and their recoil mass in 120–
150 GeV. For Z ! ⌫⌫̄, the `⌫qq̄ and qq̄qq̄ final states
are considered for the H ! WW ⇤ decay. The presence
of neutrinos in the event results in large missing mass,
which is required to be in the range of 75–140 (75–150)
GeV for the `⌫qq̄ (qq̄qq̄) final state. The total visible
mass of the event must be in the range of 100–150 GeV
for both `⌫qq̄ and qq̄qq̄ final states. In addition, the total
transverse momentum of the visible particles must be in
the range of 20–80 GeV. Additional requirements are ap-
plied to improve the signal-background separations. For
Z ! qq̄, the H ! WW ⇤

! qq̄qq̄ decay is studied. Can-
didate events are reconstructed into 6 jets. Jets from

043002-14

bb cc gg

heavy-flavor tagging

multi-jets final state

[Bai+, 1905.12903]

[JG, to appear soon]

Figure 17: Decay branching ratio of the Higgs boson to four b-jets as a function of the jet

resolution parameter via either Yukawa couplings (left plot) or the electroweak couplings

(right plot), at both LO and NLO.

Figure 18: Decay branching ratio of the Higgs boson to four b-jets as a function of the jet

resolution parameter via either Yukawa couplings (left plot) or the electroweak couplings

(right plot), at both LO and NLO.
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Figure 17: Decay branching ratio of the Higgs boson to four b-jets as a function of the jet

resolution parameter via either Yukawa couplings (left plot) or the electroweak couplings

(right plot), at both LO and NLO.

Figure 18: Decay branching ratio of the Higgs boson to four b-jets as a function of the jet

resolution parameter via either Yukawa couplings (left plot) or the electroweak couplings

(right plot), at both LO and NLO.
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✦ Higgs boson pair production has been calculated to (approximated) N3LO in QCD by Long-Bin Chen 
(Guang Zhou Univ.), Hai Tao Li, Hua-Sheng Shao and Jian Wang (Shangdong Univ.)  
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Figure 11. The �hhh dependencies of the total inclusive cross sections for the Higgs boson pair
production in proton-proton collisions with

p
s = 13, 14, 27, 100 TeV. The bands represent the scale

uncertainties. The red, green, brown and blue bands correspond to the LO, NLO, NNLO and N3LO
predictions, respectively. The bottom panel shows the ratios to the N3LO distribution.

2.4.4 Other differential distributions

In order to carry out N3LO calculations for other differential distribution, we have to take
some approximations, because the fully-differential N3LO corrections to single Higgs pro-
duction are still unknown. Therefore, at the moment, we have to approximate the N3LO
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the single-Higgs data have been set in the range �hhh/�SM
hhh 2 [�3.2, 11.9] at 95% CL with

79.8 fb�1 Run-2 data by ATLAS [23]. These constraints are already comparable with the
direct ones and impact the final bounds with the combinations of the direct and indirect
measurements [24]. As opposed to the direct bounds, the improvements of the indirect
bounds are limited by the systematics and thus will be harder at the HL-LHC. Neverthe-
less, these indirect approaches feature different systematics than direct measurements and
can be thought as independent cross checks. On the other hand, the extraction of the
quartic Higgs self-coupling from the triple Higgs production is much difficult (though not
hopeless) at hadron colliders, because the corresponding cross sections are three orders of
magnitude smaller than the double-Higgs production [25].

g

g

h

h

g

g

h

h

(a) (b)

(c) (d)

Figure 1. The LO Feynman diagrams of the process gg ! hh with full top-quark mass dependence
(first row) and in the infinite top-quark mass limit (second row).

Similar to the single Higgs hadroproduction, the dominant di-Higgs production chan-
nel at a high-energy hadron collider is via the gluon-gluon fusion (ggF) [3, 26, 27]. Other
channels are at least one order of magnitude lower in their yields. Due to the absence of the
tree-level interactions between the Higgs boson and gluons in the SM, the leading order (LO)
cross section �(gg ! hh) was computed from one-loop amplitude squared [28–30], where
two representative LO Feynman diagrams can be seen in the first row of figure 1. Further
improvements of the fixed-order perturbative calculations without any approximation are
quite challenging. The full next-to-leading order (NLO) QCD calculations involving com-
plicated two-loop Feynman integrals were carried out only recently [31–34] thanks to the
new advances of the numerical approaches [35–37]. The NLO results were complemented
with soft-gluon resummation [38] or parton-shower (PS) effects [39–41]. The ggF NLO pre-
dictions are plagued with the large theoretical uncertainties from the scale variations [31]
and the top-quark mass scheme dependence [33]. Moreover, at NLO+PS, some differential
distributions (e.g. the distribution at large transverse momentum of the Higgs boson pair)
differ significantly by adopting different matching schemes [39] or shower scales [40].

Instead of starting from the loop-induced process, one can also carry out the heavy
top-quark mass mt expansions in the amplitudes. We refer to the leading expansion term
in 1/m2

t as the infinite top-quark mass limit mt ! +1. In such an approximation, the
two Higgs bosons can be generated by the two gluon scatterings at tree level (see the sec-
ond row of figure 1), which makes the higher-order perturbative calculations more feasible.
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These particular energies are either the LHC energies (13 and 14 TeV) or the nominated
energies for the future hadron colliders [18, 21]. The cross sections from

p
s = 7 TeV to

p
s = 100 TeV are also displayed in the left panel of figure 9, where the bands represent the

scale uncertainties. Similarly to the case of single Higgs production, the QCD corrections in
the di-Higgs process are very prominent. The NLO QCD corrections increase the LO cross
sections by 87% (85%) at

p
s = 13 (100) TeV. The NNLO QCD corrections improve the

NLO cross sections further by 18% (16%), reducing the scale uncertainties by a factor of
two to three to be below 8%. The N3LO QCD corrections enhance the NNLO cross section
by 3.0% (2.7%). The cross sections lie well within the scale uncertainty bands of the NNLO
results, and the N3LO scale uncertainties are less than 3% and 2% at 13 and 100 TeV
respectively. In addition, the PDF parameterisation uncertainties are almost independent
of the QCD corrections. Their relative sizes amount to ±3.3%,±3.1%,±2.2% and ±1.4%

with respect to the central values at 13, 14, 27 and 100 TeV, overwhelming the remaining
N3LO scale uncertainties. We have also shown the contribution from three different classes
separately in the right panel of figure 9, where the class-b contribution has been multiplied
by a factor of -1 in order to make it visible in the frame. There is a strong hierarchy among
the three classes. Typically, the class-b part is only a few percent of the class-a, while
the class-c is a few percent of the class-b. Such a behaviour can be understood from the
effective Lagrangian eq.(2.1). One more effective vertex in the squared amplitude results in
one more factor of ↵s

3⇡ ⇠ 1% suppression instead of the usual ↵s suppression.
p
s 13 TeV 14 TeV 27 TeV 100 TeV

LO 13.80+31%
�22% 17.06+31%

�22% 98.22+26%
�19% 2015+19%

�15%

NLO 25.81+18%
�15% 31.89+18%

�15% 183.0+16%
�14% 3724+13%

�11%

NNLO 30.41+5.3%
�7.8% 37.55+5.2%

�7.6% 214.2+4.8%
�6.7% 4322+4.2%

�5.3%

N3LO 31.31+0.66%
�2.8% 38.65+0.65%

�2.7% 220.2+0.53%
�2.4% 4439+0.51%

�1.8%

Table 3. The inclusive total cross sections (in unit of fb) of Higgs boson pair production in the
infinite top-quark mass limit at different centre-of-mass energies

p
s from LO to N3LO. The quoted

relative uncertainties are from the 9-point scale variations. The errors due to the numerical Monte
Carlo integration are well below 1h.

It was proposed in ref. [120] to use the ratios of cross sections with the same final state
between different centre-of-mass energies to perform precision studies (e.g. determining
PDFs) and to improve the BSM sensitivities 3. The success of such a programme relies on
the large cancellations of theoretical systematic uncertainties in the ratios. In particular,
the usually dominant scale uncertainties in the cross sections can be significantly reduced
by fully correlating the renormalisation and factorisation scales between numerators and
denominators. Such a reasonable working assumption, however, should be carefully checked
when higher-order calculations become available. With the N3LO calculations we have
done, we can readily check such a hypothesis in the double-Higgs process. In figure 10, we
have plotted the cross section ratios in six different

p
s pairs from LO to N3LO. The scale

correlation assumption in the cross section ratios is indeed verified in this process.
3A similar idea but using different final states instead of different

p
s was also introduced in ref. [121].
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✦ QCD Resummed calculation for top quark production at threshold to next-to-leading power accuracy by 
Li Lin Yang (Zhejiang Univ.) et al. [2004.03088]
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Figure 9. Top-quark-mass dependence of the absolute (left) and normalized (right) Mtt̄ di↵erential
cross sections in the threshold region. Only central values of the NLO and NLO+NLP results are
shown here. The NNLO and NNLO+NLP predictions at mt = 172.5 GeV are given for reference.

measured without referring to a particular mt value. They can be the total cross section as

well as single, double and triple di↵erential cross sections in each bin. For each observable

Oi, one has a theoretical prediction OTH
i (mt) and an experimental measurement OEXP

i .

The top quark mass can then be determined by varying mt in the theoretical results and

requiring a best fit between the set {OTH
i (mt)} and the set {OEXP

i }.4 It can be understood

that in such a procedure, the observables most sensitive to mt are the main driving force

to decide the outcome. These include, in particular, the Mtt̄ distribution near threshold

and related double/triple di↵erential cross sections.

From the above description, it is clear that the outcome of the procedure strongly

depends on the theoretical predictions entering the fit. Especially, the theoretical inputs

for the mt-sensitive observables are of crucial importance. For illustration, we calculate the

averaged Mtt̄ di↵erential cross sections in the range [300, 380] GeV using di↵erent top quark

masses. The results are shown as functions of mt in Fig. 9 for the absolute distribution (left

plot) and the normalized distribution (right plot). As expected, we observe a strong (and

nearly linear) dependence of the di↵erential cross sections on mt, and a large horizontal

gap between the NLO and the NLO+NLP curves.

Ref. [14] has used the NLO predictions for the normalized di↵erential cross sections to

fit the top quark mass, with the outcome mt ⇡ 171 GeV. From the horizontal dashed line

in Fig. 9, one can see that the NLO result with mt = 171 GeV is roughly the same as the

NLO+NLP result with mt ⇡ 172.4 GeV. This 1.4 GeV shift caused by the threshold e↵ects

is much more significant than that estimated in [14]. Given that the normalized NLO+NLP

and NNLO+NLP results are rather close to each other, we expect a similar shift in the

outcome of the fit if one uses the NNLO+NLP result as the theoretical input. We have

also check that similar conclusions can be draw if the first bin is chosen as [300, 400] GeV.

Therefore, we see that the impact of the resummation e↵ects on the top mass fit is rather

4This can be done in any mass renormalization scheme. We will only discuss the pole mass here.
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Figure 5. Di↵erences between NLP and nLO (left), and between NLP and nnLO (right). These
represent the corrections induced by resummation upon the NLO and NNLO results.
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Figure 6. The NLO+NLP and NNLO+NLP predictions for the absolute Mtt̄ distribution against
the CMS data in the di-lepton channel [39]. Fixed-order results are shown for comparison. The left
plot shows the first bin Mtt̄ 2 [300, 380] GeV, while the right plot shows the full Mtt̄ range.

o↵ beyond 380 GeV. From Fig. 5, it should be clear that the results are insensitive to the

the exact switch-o↵ point, as long as it is larger than ⇠ 360 GeV.

We are now ready to present the matched results combining the resummation and

fixed-order calculations, namely, the NLO+NLP and NNLO+NLP predictions. We show

the results for the absolute di↵erential cross sections in Fig. 6, where the NLO and NNLO

results are also given for comparison. The uncertainties estimated from scale variations

are shown as the vertical bars. At central scales µr = µf = HT /4, resummation e↵ects

increase the cross section in the first bin by 13% with respect to NLO, and by 9% with

respect to NNLO. It should be noted that the uncertainty bar of the NNLO result does not

overlap with that of the NNLO+NLP one. This shows that scale variations alone cannot

faithfully account for the uncertainties of fixed-order calculations in this situation, due to
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✦ Single top-quark production at LHC including decay of the top quark has been calculated to NNLO in 
QCD by JG (SJTU), Hua-Xing Zhu (Zhejiang Univ.) et al. [2005.12936, 1708.09405]

2

+ higher orders, (1)

where µ is the factorization scale and ↵s(µ) is the strong
coupling constant; mt andmb are masses of the top quark
and bottom quark respectively. Coe�cients ai, ci, and di

are independent of the bottom quark mass. Calculations
in the 4FS are performed order by order in ↵s and include
exact bottom quark mass dependence like power correc-
tion term d1 in Eq.(1) which is otherwise neglected in
5FS. We include only the leading power correction term
for the purpose of this illustration. On another hand,
calculations in the 5FS resum potential large logarithms
of bottom quark mass due to gluon splitting into bottom
quarks in the initial state through all orders in ↵s, as
in terms associated with ai. The NLO and NNLO pre-
dictions have a resummation accuracy of next-to-leading
and next-to-next-to-leading logarithms.

We focus on results for top quark production at 13
TeV though results are similar for either top anti-quark
or top quark production at 8 TeV. We use CT14 NNLO
PDFs [53] of corresponding flavor numbers throughout
the comparison and a bottom quark mass of 4.75 GeV
and a top quark mass of 172.5 GeV accordingly. We set
the QCD renormalization scale and factorization scale
to be the same, unless otherwise specified, and choose
di↵erent values in the comparisons.

In Fig. 1 we plot the total inclusive cross sections for
single top-quark production at 13 TeV as functions of
QCD scales. In 5FS the choice of QCD scale µ5F deter-
mines size of the quasi-collinear logarithms that are re-
summed through the bottom quark parton distribution.
Resummation leads to fast convergence of the cross sec-
tions and stability against scale choice at higher orders in
5FS. For instance the NNLO cross section varies between
134.3 pb to 136.4 pb for the range of scales considered.
On another hand, predictions in 4FS exhibits larger scale
dependence owing to missing higher order contributions,
e.g., with a variation between 112.1 pb to 132.6 pb at
NLO. We note a fair comparison of predictions from the
two schemes should be NNLO(NLO) in 5FS to NLO(LO)
in 4FS since contributions from gluon splitting at large
angles are only included starting from NLO in 5FS. Pre-
dictions of the two schemes do approach each other at
high orders as resummed contributions from even higher
orders diminish. From Fig. 1 we conclude a preferable
scale choice for the 5FS of either µ5F = mt/4 or mt/2
where the NNLO corrections are small and meanwhile
the series show a good convergence, similar to the case of
top quark pair production [54]. Indeed a lower value of
the QCD scale in 5FS was suggested in Ref. [10] which
shows those quasi-collinear logarithms to be resummed
are accompanied by a universal suppression from phase
space integration. Unlike the case of 5FS we cannot find
a strong motivation for an optimal scale choice in 4FS
though a lower value leads to better agreement with 5FS
on the total cross sections. We use a nominal scale of

µ4F = mt in the following comparisons.
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FIG. 1. Inclusive cross sections for single top-quark pro-
duction at the LHC at 13 TeV at various orders in QCD,
as functions of the renormalization and factorization scale in
both 5FS and 4FS.

Kinematic distributions. Comparison of the predic-
tions of the two schemes for various kinematic distri-
butions of the top quark can be enlightening, in part
since there have been recommendations in the literature
that the 4FS provides better modeling at the exclusive
level [10]. We examine first the transverse momentum of
the top quark at 13 TeV. In Fig. 2 (a) we show normal-
ized cross sections at various orders with nominal scale
choices for both schemes, i.e. µ5F = mt/4 and µ4F = mt.
In the 5FS the LO prediction (not shown in the figure)
tends to have soft spectrum for the transverse momen-
tum of the top quark. Gluon splitting at large angles can
boost the top quark in the transverse direction. Those
contributions are included at LO in the 4FS but only
starting at NLO in the 5FS. In the 5FS, we see only a
modest change in shape and normalization of the distri-
bution in going from NLO to NNLO. In Fig. 2 (b) and (c)
we show results for the 5FS and 4FS respectively. The ra-
tio is shown of NNLO absolute cross section to the NLO
predictions in Fig. 2 (b) for di↵erent choices of the scale
µ5F . In Fig. 2 (c), the ratio is presented of the NLO and
LO absolute cross sections, for various choices of µ4F .
We again find that µ5F = mt/4 or mt/2 are the optimal
choices that provide fastest convergence in general for the
transverse momentum distribution. Larger scales lead to
enhancement of the quasi-collinear contributions thus a
softer spectrum at NLO until they are replaced by the full
NNLO corrections and vice versa. An alternative choice
could be a dynamic scale of µ5F = HT /4 with the trans-

CMS measurement at 13 TeV, 36 fb-1
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the total cross section is found to be

st-ch,t+t = 207 ± 2 (stat) ± 6 (prof) ± 29 (sig-mod) ± 5 (lumi) pb

= 207 ± 2 (stat) ± 31 (syst) pb
= 207 ± 31 pb,

where the statistical uncertainties are treated as uncorrelated and the systematic uncertainties
as correlated between the st-ch,t and st-ch,t measurements. The total cross section is used to
calculate the absolute value of the CKM matrix element Vtb . Neglecting |Vtd | and |Vts | as they
are significantly smaller than |Vtb |, and assuming that the top quark exclusively decays to a b
quark and a W boson, leads to

| fLVVtb | =

vuut
st-ch,t+t

stheo
t-ch,t+t

,

with the predicted SM value stheo
t-ch,t+t = 217.0+6.6

�4.6 (scale)± 6.2 (PDF+aS) pb [10, 11, 16] assuming
|Vtb | = 1. The anomalous form factor fLV takes the possible presence of an anomalous W t b
coupling into account, with fLV = 1 for the case in which the Wtb interaction is a left-handed
weak SM coupling and fLV 6= 1 for physics beyond the SM [63]. The measured cross section
translates to

| fLVVtb | = 0.98 ± 0.07 (exp) ± 0.02 (theo).

The first uncertainty considers all uncertainties of the cross section measurement, while the
second uncertainty is derived from the uncertainty of the theoretical SM prediction. Assuming
the unitarity of the CKM matrix, a lower limit of 0.82 is determined in the Feldman–Cousins
unified approach [64] for |Vtb | at 95% confidence level.

The ratio of the cross sections for the production of single top quarks and antiquarks in the t
channel is measured as

Rt-ch = 1.68 ± 0.02 (stat) ± 0.02 (prof) ± 0.05 (sig-mod)
= 1.68 ± 0.02 (stat) ± 0.05 (syst)
= 1.68 ± 0.06.

The measured ratio is compared to the predictions using different PDF sets as shown in Fig. 8.
Good agreement between the measurement and most predictions is found.

9 Summary
Events with one muon or electron and multiple jets in the final state are used to measure the
cross sections for the t-channel production of single top quarks and antiquarks, and their ra-
tio. The measured cross sections are 130 ± 1 (stat) ± 19 (syst) pb for the production of single
top quarks, 77 ± 1 (stat) ± 12 (syst) pb for the production of single top antiquarks, and 207 ±
2 (stat) ± 31 (syst) pb for the total production. The latter result is used to calculate the abso-
lute value of the Cabibbo–Kobayashi–Maskawa matrix element | fLVVtb | = 0.98 ± 0.07 (exp) ±
0.02 (theo), including an anomalous form factor fLV. The measured ratio of the cross sections
of the two processes Rt-ch = 1.68± 0.02 (stat)± 0.05 (syst) is compared to recent predictions us-
ing different parton distribution functions (PDFs) to describe the inner structure of the proton.
Good agreement with most PDF sets is found within the uncertainties of the measurement.

The statistical uncertainty plays only a minor role for the achieved precision of the measure-
ments, which are limited by the systematic uncertainties in the modeling of the signal process.
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Table 2: Estimated relative impact of uncertainties in percent of the measured cross sections or
cross section ratio.

DRt-ch/Rt-ch Ds/s(t) Ds/s(t)
Nonprofiled uncertainties

µR/µF scale t channel 1.5 6.1 5.0
ME-PS scale matching t channel 0.5 7.1 7.8
PS scale t channel 0.9 10.1 9.6
PDF t channel 3.0 3.1 5.8
Luminosity — 2.5 2.5

Profiled uncertainties
JES 0.9 1.5 1.8
JER 0.2 < 0.1 0.2
Unclustered energy < 0.1 0.1 0.2
b tagging 0.1 1.1 1.2
Muon and electron efficiencies 0.2 0.8 0.6
Pileup 0.1 0.9 1.0
QCD bkg. normalization < 0.1 0.1 0.1
MC sample size 2.5 2.2 3.2
tt bkg. model and normalization 0.2 0.6 0.6
Top quark pT < 0.1 < 0.1 < 0.1
tW bkg. normalization 0.1 0.5 0.6
W/Z+jets bkg. normalization 0.3 0.6 0.9
µR/µF scale tt , tW, W/Z+jets 0.1 0.2 0.3
PDF tt, W/Z+jets < 0.1 0.2 0.2

tive uncertainties and their impact on the two cross sections. For instance, the nonprofiled
signal modeling uncertainties are highly correlated between the two cross sections and the
only remaining uncertainty contribution in the ratio comes from the differences in the size of
the impacts on the individual cross sections. The dominant uncertainty contributions in the
ratio measurement are the uncertainty due to the choice of the PDF set for the t-channel signal
model and the uncertainty due to the size of the simulation samples.

8 Results
The measured cross sections for the t-channel production of single top quarks and antiquarks
are

st-ch,t = 130 ± 1 (stat) ± 4 (prof) ± 18 (sig-mod) ± 3 (lumi) pb

= 130 ± 1 (stat) ± 19 (syst) pb
= 130 ± 19 pb,

st-ch,t = 77 ± 1 (stat) ± 2 (prof) ± 11 (sig-mod) ± 2 (lumi) pb

= 77 ± 1 (stat) ± 12 (syst) pb
= 77 ± 12 pb.

Here, the uncertainty sources that are profiled in the fit, are labeled as “prof”, the uncertainties
on the signal modeling are labeled as “sig-mod”, and the uncertainty due to the integrated
luminosity measurement is labeled as “lumi”. The total systematic uncertainty is obtained by
adding the three uncertainty contributions in quadrature. Adding the st-ch,t and st-ch,t results,
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Revised August 2019 by T.M. Liss (City Coll. of New York), F. Maltoni (CP3 U. catholique de
Louvain; Bologna U.) and A. Quadt (Göttingen U.).

60.1 Introduction
In the Standard Model (SM), the left-handed top quark is the Q = 2/3, T3 = +1/2 member

of the weak-isospin doublet containing the bottom quark, while the right-handed top is an SU(2)L

singlet (see, e.g., the review “Electroweak Model and Constraints on New Physics” ). Its phe-
nomenology is driven by its large mass. Being heavier than a W boson, it is the only quark that
decays semi-weakly, i.e., into a real W boson and a b quark. Therefore, it has a very short lifetime
and decays before hadronization can occur. In addition, it is the only quark whose Yukawa coupling
to the Higgs boson is of order unity. For these reasons, the top quark plays a special role in the
Standard Model and in many extensions thereof. Top quark physics provides a unique laboratory
where our understanding of the strong interactions, both in the perturbative and non-perturbative
regimes, can be tested. An accurate knowledge of its properties (mass, couplings, production cross
sections, decay branching ratios, etc.) can bring key information on fundamental interactions at
the electroweak symmetry-breaking scale and beyond. This review provides a concise discussion of
the experimental and theoretical issues involved in the determination of the top-quark properties.

60.2 Top-quark production at the Tevatron and LHC
In hadron collisions, top quarks are produced dominantly in pairs through the processes qq æ tt

and gg æ tt, at leading order in QCD. Approximately 85% of the production cross section at the
Tevatron (pp̄ at 1.96 TeV) is from qq annihilation, with the remainder from gluon-gluon fusion,
while at LHC (pp) energies about 90% of the production is from the latter process at

Ô
s = 14 TeV

(¥ 80% at
Ô

s = 7 TeV).
Predictions for the top-quark production total cross sections are available at next-to-next-to

leading order (NNLO) [1, 2], also including next-to-next-to-leading-log (NNLL) soft gluon resum-
mation. Assuming a top-quark mass of 173.3 GeV/c2, close to the Tevatron + LHC average [3], the
resulting theoretical prediction of the top-quark pair cross-section at NNLO+NNLL accuracy at the
Tevatron at

Ô
s = 1.96 TeV is ‡tt̄ = 7.16+0.11

≠0.20
+0.17
≠0.12 pb where the first uncertainty is from scale depen-

dence and the second from parton distribution functions. At the LHC, assuming a top-quark mass of
172.5 GeV/c2 the cross sections are: ‡tt̄ = 177.3+4.6

≠6.0
+9.0
≠9.0 pb at

Ô
s = 7 TeV, ‡tt̄ = 252.9+6.4

≠8.6
+11.5
≠11.5 pb

at
Ô

s = 8 TeV, ‡tt̄ = 831.8+19.8
≠29.2

+35.1
≠35.1 pb at

Ô
s = 13 TeV, and ‡tt̄ = 984.5+23.2

≠34.7
+41.3
≠41.3 pb atÔ

s = 14 TeV [1].
Electroweak single top-quark production mechanisms, namely from qq

Õ æ tb [4], qb æ q
Õ
t [5],

mediated by virtual s-channel and t-channel W -bosons, and Wt-associated production, through
bg æ W

≠
t, lead to somewhat smaller cross sections. For example, t-channel production, while sup-

pressed by the weak coupling with respect to the strong pair production, is kinematically enhanced,
resulting in a sizeable cross section both at Tevatron and LHC energies. At the Tevatron, the t- and
s-channel cross sections for top quarks are identical to those for antitop quarks , while at the LHC
they are not, due to the charge-asymmetric initial state. Approximate NNLO cross sections for
t-channel single top-quark production (t + t̄) are calculated for mt = 173.3 GeV/c2 to be 2.06+0.13

≠0.13
pb in pp collisions at

Ô
s = 1.96 TeV (scale and parton distribution functions uncertainties are com-

bined in quadrature) [6]. Recently, calculations at NNLO accuracy for the t-channel cross section at
the LHC have appeared [7,8], predicting (mt = 172.5 GeV/c2): ‡t+t̄ = 64.0+0.77

≠0.38 pb at
Ô

s = 7 TeV,
‡t+t̄ = 84.6+1.0

≠0.51 pb at
Ô

s = 8 TeV, ‡t+t̄ = 215+2.1
≠1.3 pb at

Ô
s = 13 TeV, and ‡t+t̄ = 245+2.7

≠1.3 pb
at

Ô
s = 14 TeV, where the quoted uncertainties are from scale variation only. For the s-channel,
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1st June, 2020 8:30am



Higgs boson production at e+e- machine 

18

✦ Mixed electroweak-QCD corrections (two-loops) are calculated independently by two groups, Yu Jia et 
al. (IHEP) and Li Lin Yang (Zhejiang Univ.), Zhao Li (IHEP) et al., amount to a correction of 1.3%  
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FIG. 1: LO diagram for e+e− → HZ and examples of QED
O(α) corrections and weak one-loop corrections, consisting of
eeH vertex corrections, box diagrams, and corrections to the
eeZ vertex, the γ/Z self-energy and V ZH vertex. The latter
three types of corrections also include O(ααs) corrections as
shown in Fig. 2.

=

=

=

γ, Z Z

W l, q q δmq

tW t δmt

νe

W

W

W

νe

νe

Z

γ, Z

Z

Z

H

e−

e+

+ + +

+ + + +

+ + + +

FIG. 2: Representative diagrams for the weak O(α) and
O(ααs) corrections to the eeZ vertex, γ/Z self-energy, and
V ZH vertex. The cross represents the quark mass countert-
erm in QCD, a cap denotes the electroweak counterterm.

Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,−σ) + e−(k2,σ) →
H(pH) + Z(pZ ,λ) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s−M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with λ = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1− c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
λ

dcos θ
=

πα2β

16c2Ws2W

M2
Z

(s−M2
Z)

2
(2)

×

{

(1± cos θ)2 g−e
2
+ (1∓ cos θ)2 g+e

2
, for λ = ±1,

2 sin2 θ
(

g−e
2
+ g+e

2
)(

1 + β2s
4M2

Z

)

, for λ = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:

σ(0)
λ =

πα2β
(

g−e
2
+ g+e

2
)

6c2W s2W

M2
Z

(s−M2
Z)

2

(

1 + δλ,0
β2s

4M2
Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = −Mσ,λ

0

(

Σ̂ZZ
T (s)

s−M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.
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Leading-order results. By safely neglecting the electron
mass owing to its exceedingly tiny Yukawa coupling,
there is only a single s-channel Feynman diagram for the
LO Higgsstrahlung process, as depicted in Fig. 1. In the
CM frame, the amplitude for e+(k1,−σ) + e−(k2,σ) →
H(pH) + Z(pZ ,λ) reads:

Mσ,λ
0 = e2gσe

MZ

sW cW

1

s−M2
Z

v̄(k1)/ε
∗
λPσu(k2), (1)

where P± = 1±γ5

2 are chirality projectors, εµλ denotes the
polarization vector of the Z boson, with λ = 0(±1) being
the longitudinal(transverse) polarization. σ = ± 1

2 repre-
sents the helicity of the incoming electron or positron
(often we use the shorthand σ = ± for brevity). To war-
rant a nonvanishing amplitude, the positron must carry
the opposite helicity with respect to the electron. We fol-
low the conventions in [20] to define the Weinberg angle
as cW ≡ MW

MZ
, and sW ≡

√

1− c2W . The Zff̄ couplings

g±f are defined following [19].
For simplicity, we will consider the unpolarized e+(e−)

beams, which is the case for CEPC and FCC-ee. The LO

differential cross section for polarized Z then reads

dσ(0)
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dcos θ
=

πα2β
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(
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, for λ = 0,

with θ being the angle between pZ and k1 in the CM
frame, β = 2|pZ|√

s
. Upon angular integration, the LO

integrated cross section for polarized Z reads:
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Z

)

.

(3)

The total unpolarized cross section σ(0)unpol = σ(0)
L +

σ(0)
T ≡ σ(0)

0 + 2σ(0)
±1 . In the high energy limit, the

cross section for producing longitudinally-polarized Z (∝
1/s) dominates the one associated with the transversely-
polarized Z (∝ 1/s2),

The outline of calculation for radiative corrections. As
far as the O(α) +O(ααs) corrections are concerned, the
higher-order diagrams can be grouped into several dis-
tinct topologies as shown in Fig. 1 and Fig. 2.
It is conventional to separate the O(α) corrections into

the electromagnetic and weak corrections in a gauge-
invariant manner. The NLO QED corrections as shown
in Fig. 1 are usually encoded in the so-called Initial State
Radiation (ISR) effect, which has been well-understood
and implemented in Monte Carlo event generators. A re-
cent study using the package WHIZARD [21] reveals that,
including the ISR effect reduces the Born order σ(HZ)
at

√
s = 250 GeV by 10% [22]. A more careful anal-

ysis of the ISR effect for this process will be presented
elsewhere.
The O(α) and O(ααs) corrections to the amplitude

can be decomposed as follows:

δMσ,λ = δMσ,λ
eeH + δMσ,λ

Box + δMσ,λ
eeZ + δMσ,λ

S.E.

+δMσ,λ
ZZH + δMσ,λ

γZH , (4)

as can be recognized from Fig. 1. The first two terms
corresponding to the eeH vertex corrections and box di-
agrams are UV-finite at O(α).
The amplitude arising from the eeZ vertex corrections

can be written as δMσ,λ
eeZ = Mσ,λ

0 Γ̂σ
eeZ , where the one-

loop expression of the renormalized vertex form factor
Γ̂σ
eeZ is given in [19]. The amplitude also receives correc-

tions from both ZZ and mixed γZ self-energies:

δMσ,λ
S.E. = −Mσ,λ

0

(

Σ̂ZZ
T (s)

s−M2
Z

+
1

gσe

Σ̂γZ
T (s)

s

)

, (5)

where Σ̂T implies the renormalized transverse part of the
gauge boson self-energy.

[Sun+, 1609.03995; Gong+, 1609.03955]

inclusive cross sections at various orders 
and its scheme dependence

5

√
s (GeV)

LO (fb) NLO Weak (fb) NNLO mixed electroweak-QCD (fb)

σ(0) σ(α) σ(0) + σ(α) σ(ααs)
Z σ(ααs)

γ σ(ααs) σ(0) + σ(α) + σ(ααs)

Total 223.14 6.64 229.78 2.42 0.008 2.43 232.21
240 L 88.67 3.18 91.86 0.96 0.003 0.97 92.82

T 134.46 3.46 137.92 1.46 0.005 1.46 139.39
Total 223.12 6.08 229.20 2.42 0.009 2.42 231.63

250 L 94.30 3.31 97.61 1.02 0.004 1.02 98.64
T 128.82 2.77 131.59 1.40 0.005 1.40 132.99

TABLE I: The (un)polarized Higgsstrahlung cross sections at
√
s = 240 GeV and 250 GeV in the α(0) scheme. Provided are

the LO, NLO weak and NNLO O(ααs) predictions as well as individual contributions for the O(α) corrections σ(α), and for
the O(ααs) corrections in (13).

√
s schemes σLO (fb) σNLO (fb) σNNLO (fb)

α(0) 223.14 ± 0.47 229.78 ± 0.77 232.21+0.75+0.10
−0.75−0.21

240 α(MZ) 252.03 ± 0.60 228.36+0.82
−0.81 231.28+0.80+0.12

−0.79−0.25

Gµ 239.64 ± 0.06 232.46+0.07
−0.07 233.29+0.07+0.03

−0.06−0.07

α(0) 223.12 ± 0.47 229.20 ± 0.77 231.63+0.75+0.12
−0.75−0.21

250 α(MZ) 252.01 ± 0.60 227.67+0.82
−0.81 230.58+0.80+0.14

−0.79−0.25

Gµ 239.62 ± 0.06 231.82±0.07 232.65+0.07+0.04
−0.07−0.07

TABLE II: The unpolarized Higgsstrahlung cross sections at√
s = 240(250) GeV in three different input schemes. To

estimate the uncertainties caused by the input parameters
(first entry), we take MW = 80.385±0.015 GeV, mt = 174.2±
1.4GeV and∆α(5)

had(MZ) = 0.02764±0.00013. We also change
the strong coupling constant from αs(MZ) to αs(

√
s) (second

entry) with its central value taken as αs = αs(
√
s/2). For

the conversion from the α(0) scheme to the α(MZ) and Gµ

schemes, we use ∆α(MZ)|NLO = ∆α(MZ)|NNLO = 0.059 and
∆r|NLO = 0.0293,∆r|NNLO = 0.0331, respectively.

Summary and Outlook. Stimulated by the anticipated
exquisite accuracy of the σ(HZ) measurements in the
next-generation e+e− Higgs factory, for the first time we
calculated the mixed electroweak-QCD O(ααs) correc-
tions for the Higgsstrahlung process. It is found that
this mixed electroweak-QCD corrections are quite siz-
able, about 1.1% of the LO result in α(0) and α(MZ)
schemes, well above the projected experimental (sub-
)percent accuracy for the σ(ZH) measurement. In the
Gµ scheme, we find that the NNLO electroweak-QCD
corrections amount to 0.3% of the LO result. A compre-
hensive study of parametric and QCD scale uncertainties
exhibits large uncertainties in the NNLO electroweak-
QCD predictions in the α(0) and α(MZ) schemes, which
however are considerably reduced in the Gµ scheme. It
is important to note that to make closer contact with
the actual experimental measurement, it is also useful to
conduct a careful analysis on the ISR effects, as well as
to study the process e+e− → µ+µ−+H by including the
effect of finite Z width.

Note added. After this work was submitted, there
also appeared an independent computation on mixed
electroweak-QCD corrections to Higgsstrahlung pro-
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FIG. 3: Differential unpolarized/polarized cross sections for
Higgsstrahlung at

√
s = 240 GeV at NLO O(α) and NNLO

O(ααs). The green band indicates the uncertainties from
the input parameters as adopted in Table II and the three
different input schemes.

cess [42].
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2

ization scheme. One often argues that the inclusion of
higher-order terms will suppress the scale uncertainty;
however, estimating unknown higher-order terms by sim-
ply varying the renormalization scale within an arbi-
trary range is unreliable since it is only sensitive to the
β terms. In fact, the resulting pQCD series diverges
strongly as αn

s β
n
0 n!, the “renormalon” divergence [5].

Moreover, the conventional procedure of guessing the
renormalization scale is inconsistent with the Gell-Mann-
Low procedure [6] which determines the scale unam-
biguously in QED. pQCD predictions must analytically
match Abelian theory in the NC → 0 limit [7].
The Principle of Maximum Conformality (PMC) [8–

12] provides a systematic way to eliminate the renormal-
ization scheme-and-scale ambiguities. The PMC scales
are fixed by absorbing the β terms that govern the be-
havior of the running coupling via the Renormalization
Group Equation (RGE). Since the PMC predictions do
not depend on the choice of the renormalization scheme,
PMC scale setting satisfies the principles of RGI [13–15].
Since the β terms do not appear in the pQCD series after
the PMC, there is no renormalon divergence. The PMC
method extends the Brodsky-Lepage-Mackenzie (BLM)
scale-setting method [16] to all orders, and it reduces in
the Abelian limit to the Gell-Mann-Low method [6].
In this paper, we will apply the PMC to make compre-

hensive analyses for two classic event shapes: the thrust
(T ) [17, 18] and the C-parameter (C) [19, 20]. The PMC
renormalization scale depends dynamically on the virtu-
ality of the underlying quark and gluon subprocess and
thus the specific kinematics of each event. We then can
determine αs(Q2) over a large range of Q2 by comparing
the PMC predictions with the experimental data.

II. NUMERICAL RESULTS AND DISCUSSIONS

FOR THE THRUST AND C-PARAMETER

The thrust and C-parameter are defined as

T = max
!n

(
∑

i |#pi · #n|
∑

i |#pi|

)

, (1)

C =
3

2

∑

i,j |#pi||#pj | sin
2 θij

(
∑

i |#pi|)
2

, (2)

where #pi denotes the three-momentum of particle i. For
the thrust, the unit vector #n is varied to define the thrust
direction #nT by maximizing the sum on the right-hand
side. For the C-parameter, θij is the angle between #pi
and #pj . The range of values is 1/2 ≤ T ≤ 1 for the
thrust, and for the C-parameter it is 0 ≤ C ≤ 1.
For our numerical computations, we use the EVENT2

program [21] to precisely calculate the perturbative co-
efficients at the next-to-leading order (NLO). The per-
turbative coefficients at the next-to-next-to-leading or-
der (NNLO) can be calculated using the EERAD3 pro-
gram [22], and are checked using the results of Ref.[23].

We use the RunDec program [24] to evaluate the MS
scheme running coupling from αs(MZ) = 0.1181 [1].
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FIG. 1: The C-parameter differential distributions using con-
ventional (Conv.) and PMC scale settings at

√
s = MZ .

The dot-dashed, dashed and dotted lines are the conventional
scale-fixed results at LO, NLO and NNLO [22, 23], respec-
tively, and the corresponding error bands are obtained by
varying µr ∈ [MZ/2, 2MZ ]. The solid line is the PMC result,
and its error band is the squared averages of the errors for
αs(MZ) = 0.1181 ± 0.0011 [1] and the estimated unknown
higher-order contributions ±0.2 Cn. The data are taken from
the ALEPH [26] experiment.

A detailed PMC analysis for the thrust has been given
in Ref.[25]. We calculate the C-parameter following a
similar procedure and present its differential distribu-
tions at

√
s = MZ in Fig.(1). Figure(1) shows that the

conventional predictions – even up to NNLO pQCD cor-
rections – substantially deviate from the precise experi-
mental data. The conventional predictions are plagued
by the scale uncertainty. Since the variation of the scale
is only sensitive to the β terms, the estimate of unknown
higher-order terms by varying µr ∈ [

√
s/2, 2

√
s] is unreli-

able: the NLO calculation does not overlap with the LO
prediction, and the NNLO calculation does not overlap
with NLO prediction. In addition, the perturbative se-
ries for the C-parameter distribution shows slow conver-
gence because of the renormalon divergence. In contrast,
Fig.(1) shows that PMC prediction for the C-parameter
distribution is in excellent agreement with the experi-
mental data. There is some deviation near the two-jet
and multi-jet regions, which is expected since pQCD be-
comes unreliable due to the presence of large logarithms
in those kinematic regions. The resummation of large
logarithms is thus required, and this topic has been ex-
tensively studied in the literature.
It should be emphasized that the PMC eliminates

the scale µr uncertainty; the conventional estimate of
unknown higher-order terms obtained by varying µr ∈
[
√
s/2, 2

√
s] is not applicable to the PMC predictions.

An estimate of the unknown higher-order contributions
can be characterized by the convergence of the per-
turbative series and the magnitude of the last-known
higher-order term. We note that the relative magni-
tude of the corrections for the C-parameter distribution
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the thrust, the unit vector #n is varied to define the thrust
direction #nT by maximizing the sum on the right-hand
side. For the C-parameter, θij is the angle between #pi
and #pj . The range of values is 1/2 ≤ T ≤ 1 for the
thrust, and for the C-parameter it is 0 ≤ C ≤ 1.
For our numerical computations, we use the EVENT2

program [21] to precisely calculate the perturbative co-
efficients at the next-to-leading order (NLO). The per-
turbative coefficients at the next-to-next-to-leading or-
der (NNLO) can be calculated using the EERAD3 pro-
gram [22], and are checked using the results of Ref.[23].

We use the RunDec program [24] to evaluate the MS
scheme running coupling from αs(MZ) = 0.1181 [1].
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FIG. 1: The C-parameter differential distributions using con-
ventional (Conv.) and PMC scale settings at

√
s = MZ .

The dot-dashed, dashed and dotted lines are the conventional
scale-fixed results at LO, NLO and NNLO [22, 23], respec-
tively, and the corresponding error bands are obtained by
varying µr ∈ [MZ/2, 2MZ ]. The solid line is the PMC result,
and its error band is the squared averages of the errors for
αs(MZ) = 0.1181 ± 0.0011 [1] and the estimated unknown
higher-order contributions ±0.2 Cn. The data are taken from
the ALEPH [26] experiment.

A detailed PMC analysis for the thrust has been given
in Ref.[25]. We calculate the C-parameter following a
similar procedure and present its differential distribu-
tions at

√
s = MZ in Fig.(1). Figure(1) shows that the

conventional predictions – even up to NNLO pQCD cor-
rections – substantially deviate from the precise experi-
mental data. The conventional predictions are plagued
by the scale uncertainty. Since the variation of the scale
is only sensitive to the β terms, the estimate of unknown
higher-order terms by varying µr ∈ [

√
s/2, 2

√
s] is unreli-

able: the NLO calculation does not overlap with the LO
prediction, and the NNLO calculation does not overlap
with NLO prediction. In addition, the perturbative se-
ries for the C-parameter distribution shows slow conver-
gence because of the renormalon divergence. In contrast,
Fig.(1) shows that PMC prediction for the C-parameter
distribution is in excellent agreement with the experi-
mental data. There is some deviation near the two-jet
and multi-jet regions, which is expected since pQCD be-
comes unreliable due to the presence of large logarithms
in those kinematic regions. The resummation of large
logarithms is thus required, and this topic has been ex-
tensively studied in the literature.
It should be emphasized that the PMC eliminates

the scale µr uncertainty; the conventional estimate of
unknown higher-order terms obtained by varying µr ∈
[
√
s/2, 2

√
s] is not applicable to the PMC predictions.

An estimate of the unknown higher-order contributions
can be characterized by the convergence of the per-
turbative series and the magnitude of the last-known
higher-order term. We note that the relative magni-
tude of the corrections for the C-parameter distribution
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FIG. 5: The running coupling αs(Q
2) extracted from the

thrust and C-parameter mean values by comparing PMC pre-
dictions with the JADE and OPAL data [35, 36] in the MS
scheme. The error bars are the squared averages of the exper-
imental and theoretical errors. The three lines are the world
average evaluated from αs(M2

Z) = 0.1181 ± 0.0011 [1].

tical at LO after applying the relation between PMC
scales: Q2

QCD/Q
2
QED = e−5/3; this factor converts the

scale underlying predictions in the MS scheme used in
QCD to the scale of the V scheme conventionally used in
QED [38]. The running of the QED coupling α(Q2) can
be determined from events at a single energy of

√
s [39].

Thus one can use the measured event shape distribution
in e+e− → Z0 → X(QED) to measure the QED coupling
α(Q2) over a large range of Q2.

IV. SUMMARY

In summary, the strong running coupling αs(Q2) of
QCD and its property of asymptotic freedom is fun-

damental to all QCD analyses; its determination from
event-shape distributions is an essential input. The PMC
predictions for pQCD are independent of the choice of the
initial renormalization scale and the choice of renormal-
ization scheme. Renormalon divergences are eliminated.
The PMC procedure is identical in the NC → 0 Abelian
limit to the standard Gell-Mann-Low method for QED.
It is thus also essential for renormalization scale-setting
for grand-unified theories. We have shown that a com-
prehensive and self-consistent analysis for both the differ-
ential distributions and the mean values for event shapes
is obtained by using PMC scale setting. The highly con-
sistent results for the T and C event-shape distributions
verify the applicability of the PMC to pQCD. The PMC
provides a rigorous method for unambiguously setting the
renormalization scale as function of the event-shape kine-
matics, reflecting the virtuality of the underlying QCD
subprocesses. Thus the PMC provides a remarkable way
to verify the running of αs(Q2) from the event shape dif-
ferential measurement at a single energy of

√
s. These

new results for αs(M2
Z) are consistent with the world av-

erage and are more precise than the values conventionally
obtained from the analysis of event shapes currently used
in the world average.
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The PMC renormalization scales corresponding to the
mean values for the thrust and C-parameter are

µpmc
r |〈1−T 〉 = 0.0695

√
s, and µpmc

r |〈C〉 = 0.0656
√
s,

respectively. The PMC scales satisfy µpmc
r "

√
s reflect-

ing the virtuality of the underlying QCD subprocesses
and the effective number of quark flavors nf . We note
that the analysis of Ref.[26] using conventional scale set-
ting leads to an anomalously large value of αs, demon-
strating again that the correct description for the mean
values requires µr "

√
s.

In the case of the center-of-mass energy at the Z0

peak,
√
s = MZ = 91.1876 GeV, the PMC scales are

µpmc
r |〈1−T 〉 = 6.3 GeV and µpmc

r |〈C〉 = 6.0 GeV for
the thrust and C-parameter, respectively. The PMC
scales of the differential distributions for the thrust and
C-parameter are also very small. The average of the
PMC scales 〈µpmc

r 〉 of the differential distributions for
the thrust and C-parameter are close to the PMC scales
µpmc
r |〈1−T 〉 and µpmc

r |〈C〉, respectively. This shows that
PMC scale setting is self-consistent with the differential
distributions for the event shapes and their mean values.
We present the mean values for the thrust and C-

parameter versus the center-of-mass energy
√
s in Fig.(4).

It shows that in the case of conventional scale setting,
the predictions are plagued by the renormalization scale
µr uncertainty and substantially deviate from measure-
ments even up to NNLO [33, 34]. In contrast, after us-
ing PMC scale setting, the mean values for the thrust
and C-parameter are increased, especially for small

√
s.

The scale-independent PMC predictions are in excellent
agreement with the experimental data over the wide
range of center-of-mass energies

√
s. Thus, PMC scale

setting provides a rigorous, comprehensive description of
the measurements without artificial parameters.
Since a high degree of consistency between the PMC

predictions and the measurements is obtained, we can
extract αs(Q2) with high precision; the results in the MS
scheme are presented in Fig.(5). The values obtained
for αs(Q2) are mutually compatible and are in excellent
agreement with the world average in the range 1 GeV
< Q < 15 GeV. The results are not plagued by the renor-
malization scale µr uncertainty. In addition, unlike the
αs extracted from the differential distributions, the αs ex-
tracted from the mean values are not afflicted with large
logarithmic contributions nor non-perturbative effects.
We can also obtain a highly precise determination

of the value of αs(M2
Z) from a fit of the PMC pre-

dictions to the measurements. We adopt the method
similar to [37] and the χ2-fit is defined by χ2 =
∑

i

(

(〈y〉exp.i − 〈y〉theo.i )/σi

)2
, where 〈y〉exp.i is the value

of the experimental data, σi is the corresponding experi-
mental uncertainty, 〈y〉theo.i is the theoretical prediction.
The χ2 value is minimized with respect to αs(M2

Z) for
the thrust and C-parameter separately. We obtain

αs(M
2
Z) = 0.1185± 0.0011(Exp.)± 0.0005(Theo.)

= 0.1185± 0.0012, (4)
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FIG. 4: The mean values for the thrust (up) and C-parameter
(down) versus the center-of-mass energy

√
s using conven-

tional (Conv.) and PMC scale settings. The dot-dashed,
dashed and dotted lines are the conventional results at LO,
NLO and NNLO [33, 34], respectively, and the correspond-
ing error bands are obtained by varying µr ∈ [MZ/2, 2MZ ].
The solid line is the PMC result, and its error band is ob-
tained by the squared averages of the errors for αs(MZ) =
0.1181 ± 0.0011 [1] and the estimated unknown higher-order
contributions ±0.2 Cn. The data are from the JADE and
OPAL experiments, taken from [35, 36].

with χ2/d.o.f.= 27.3/20 for the thrust mean value, and

αs(M
2
Z) = 0.1193+0.0009

−0.0010(Exp.)
+0.0019
−0.0016(Theo.)

= 0.1193+0.0021
−0.0019, (5)

with χ2/d.o.f.= 43.9/20 for the C-parameter mean value,
where the first (Exp.) and second (Theo.) errors are
the experimental and theoretical uncertainties, respec-
tively. Both values are consistent with the world average
of αs(M2

Z) = 0.1181 ± 0.0011 [1]. Since the dominant
scale µr uncertainty is eliminated and the convergence of
pQCD series is greatly improved after using the PMC, the
precision of the extracted αs values is largely improved.
In particular, since a strikingly much faster pQCD con-
vergence is obtained for the thrust mean value [25], the
theoretical uncertainty is even smaller than the experi-
mental uncertainty.
We can also apply the PMC analysis to QED event

shapes, where the final-state particles in e+e− → γ∗ →
X(QED) are restricted to leptons and photons. The
PMC scales for QCD and QED event shapes are iden-

C parameter, theory vs. ALEPH data extraction of QCD coupling constant and 
its running behavior
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✦ Pioneering works on heavy quark production at e+e- machine as well as at LHC lead by Zong Guo Si 
(Shangdong Univ.) and Wen-Gan Ma, Ren-You Zhang (USTC)
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we stick to mb = 4.78 GeV.) With the above value of mb(µ = mb) we get, using (3.17),
the values mb(µ) = 2.97 GeV, 2.80 GeV, and 2.65 GeV at µ = mh/2,mh, and 2mh, respec-
tively. With these values we compute the MS Yukawa couplings yb(µ). As in section 4 we
use ↵(5)

s (mZ) = 0.118. The displayed digits of our numerical results given below are not
affected by our numerical integration errors.

5.1 Inclusive decay width

First, we determine the inclusive decay width of h(125) ! bb̄X at NNLO QCD using the
antenna subtraction framework of section 2. We have to take into account also h ! bb̄bb̄

whose contribution is IR finite. We represent our result for the inclusive decay width at
NNLO QCD in the form (3.12):

�
bb̄
NNLO = �

bb̄
LO

2

41 + g1
↵(5)

s

⇡
+ g2

 
↵(5)

s

⇡

!2
3

5 , (5.1)

where
�
bb̄
LO = y2b(µ)�̂

bb̄
0 , g1 = �bb̄1 + r1, g2 = �bb̄2 + r1�

bb̄
1 + r2 , (5.2)

and �̂bb̄
0

is defined in eq. (3.3). Our results for g1, g2, �
bb̄
LO, �bb̄

NLO, and �
bb̄
NNLO are given in

table 2 for µ = mh/2,mh, and 2mh.

Table 2. The coefficients g1, g2 defined in eqs. (5.1) and (5.2) and the inclusive h(125) ! bb̄X
decay width at LO, NLO, and NNLO QCD for three renormalization scales µ.

µ = mh/2 µ = mh µ = 2mh

g1 3.024 5.796 8.569

g2 3.685 37.371 86.112

�
bb̄
LO [MeV] 2.153 1.910 1.717

�
bb̄
NLO [MeV] 2.413 2.307 2.196

�
bb̄
NNLO [MeV] 2.425 2.399 2.353

The numbers in table 2 show that the order ↵2
s correction increases the NLO bb̄ decay

width by 4% for µ = mh. Inclusion of these corrections reduces the renormalization scale
uncertainties significantly. The values of the MS Yukawa couplings yb(µ), which are deter-
mined by the MS masses mb(µ) given above, have of course a decisive impact on the values
of �bb̄

I (I=LO,NLO, NNLO) given in table 2. Moreover, we point out that the top-quark
triangle contribution to h ! bb̄ and h ! bb̄g shown in figure 1 constitute an important
part of the order ↵2

s corrections. This contribution, which is µ-independent, to g2 listed in
table 2 is g2(t) = 6.898.

As a check of our computational set-up in the case of h ! bb̄X we determine the QCD
correction coefficients g1 and g2 in the limit of small b-quark mass and compare with the
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Table 3. The unexpanded version of the top-quark forward-backward asymmetry (4.4) for several
c.m. energies. The numbers are given in percent.

p
s [GeV] ALO

FB
[%] ANLO

FB
[%] ANNLO

FB
[%]

360 14.94 15.31+0.02
�0.02 15.82+0.08

�0.06

400 28.02 28.77+0.05
�0.04 29.42+0.10

�0.09

500 41.48 42.32+0.06
�0.05 42.83+0.08

�0.07

700 51.34 51.78+0.03
�0.03 52.03+0.04

�0.04

corrections. Alternatively, one may add the scale uncertainties and the uncertainties due
to �mt = ±0.5 GeV of the expanded version (cf. table 2) linearly and take this residual
uncertainty of our prediction of ANNLO

FB
. This yields an uncertainty of 0.4% and 0.2% at

p
s = 400 and 500 GeV, respectively. This uncertainty is in accord with the spread between

the expanded and unexpanded results listed in tables 2 and 3. This uncertainty is signifi-
cantly smaller than the projected experimental precision of top-quark AFB measurements
at future electron-positron colliders [77, 81]. This observable has a high sensitivity to pre-
cisely determine the neutral current couplings of the top quark and probe for anomalous
couplings [77–81].

5 Summary

We have formulated, within the antenna subtraction framework, the set-up for calculating
the production of a massive quark-antiquark pair in electron-positron collisions at NNLO
QCD. Our approach is fully differential in the phase-space variables and can be used to
compute any infrared-safe observable. We have applied this formalism to tt̄ production in
the continuum and we have calculated, besides the tt̄ cross section also several distributions
in order to signify the usefulness of this approach, namely the cos ✓t and transverse momen-
tum distribution of the top quark, the transverse momentum of the tt̄ system and the tt̄

invariant mass distribution. The NNLO QCD corrections are sizable for c.m. energies not
too far away from the tt̄ threshold. We have also computed the top-quark forward-backward
asymmetry, which is an important observable for determining the neutral-current couplings
of the top quark at future lepton colliders, at NNLO QCD. Our result agrees with previous
calculations [26, 74] of this asymmetry at order ↵2

s.

Our set-up may be used to investigate a number of other reactions at NNLO QCD
where a massive quark-pair is produced by an uncolored initial state. Of interest for future
lepton colliders would be the production of tt̄ pairs with spin correlations included. Other
applications include the production of charm and bottom quarks, in particular at the Z-
boson resonance.
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FIG. 1: The box (upper row) and pentagon diagrams (the
lower two rows) for qq̄ → tt̄H subprocess containing a gluon
in loop, where V = Z, γ. For box diagrams, the graphs with a
Higgs boson radiated off the external anti-top are not drawn.
For pentagon diagrams, the graphs by exchanging the initial
quark and anti-quark are not drawn.
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FIG. 2: Some representative tree-level diagrams for gluon
bremsstrahlung subprocess qq̄ → tt̄H + g at the O(α3/2

s α
1/2
ew )

(upper row) and O(α1/2
s α

3/2
ew ) (lower row, where V = Z, γ).

(photonic) collinear singularities into the PDFs by us-
ing the MS (DIS) factorization scheme. The value of
the strong coupling constant quoted as αs(MZ) = 0.119
dictated by the PDF set in five flavor scheme. The renor-
malization and the factorization scales are set to be equal,
µR = µF = mt + 1

2MH .
The total NLO QCD plus NLO EW corrected inte-

grated cross section at a hadron collider is defined as the
summation of four pieces,

σNLO = σ(1)
LO(α

2
sαew) +∆σQCD(α3

sαew)

+∆σEW (α2
sα

2
ew) + σgγ(αsα

2
ew), (1)

where ∆σQCD contains the NLO QCD corrections,
∆σEW is the summation of the corrections at O(α2

sα
2
ew)

described in the last section, and σgγ denotes the con-
tribution from the LO gluon-photon fusion subprocess

gγ → tt̄H , σ(1)
LO and all other pieces in Eq.(1) are evalu-

ated by using the NNPDF2.3QED NLO PDFs. We de-
fine the cross section at QCD/EW NLO as σQCD/EW =

σ(1)
LO+∆σQCD/EW . The corresponding relative QCD cor-

rection is given as δQCD = σQCD/σLO−1, where the σLO

is the cross section at LO by adopting NNPDF2.3QED
LO PDFs, and the corresponding relative genuine EW

correction is defined as δEW = σEW /σ(1)
LO − 1.

In the EW NLO numerical calculations, we applied
both the DS and TCPSS methods to isolate the IR sin-
gularities, and verified the consistence of the results from
these two methods. In employing DS method, we also
verified the independence on the parameter α ∈ (0, 1],
originally proposed in Refs.[52, 53], which essentially con-
trols the region of phase space over the subtracted terms,
such as α = 1 means the full dipole subtraction has been
considered. The formulae needed in this work have been
presented in Ref.[54].
In Table I, we provide the LO, NLO QCD plus NLO

EW corrected integrated cross sections for tt̄H produc-
tion at the

√
s = 14, 33 and 100 TeV hadron colliders.

There the corresponding relative QCD and EW correc-
tions are also listed in the last two columns. The cross
sections contributed by the gγ → tt̄H subprocess are
listed too. We can see that the LO cross section at a
hadron collider is enhanced by the NLO QCD corrections
while suppressed by the NLO EW corrections, and the
absolute relative NLO EW corrections are smaller than
those of the NLO QCD corrections.

√
s TeV σLO(pb) σNLO(pb) σgγ(pb) δQCD(%) δEW (%)

14 0.49442(7) 0.5862(23) 0.00659 22.6 −1.03

33 3.3687(7) 4.335(23) 0.02930 33.0 −0.45

100 26.973(7) 35.65(23) 0.13475 36.8 −0.54

TABLE I: The LO, NLO QCD plus NLO EW corrected in-
tegrated cross sections for tt̄H production at the

√
s = 14, 33

and 100 TeV hadron colliders. The cross sections contributed
by the subprocess gγ → tt̄H are provided too. The relative
NLO QCD and NLO EW corrections are listed in the last two
columns.

In the following, we investigate the kinematic distri-
butions of final particles after the subsequential on-shell
(anti-)top quark decays (t → Wb → lνb where l = e, µ).
In analysing the pp → tt̄H → W+bW−b̄H + X →
l+l−bb̄νν̄H + X events, we use the NWA method and
take the relevant branch ratios as Br(t → Wb) = 100%
and Br(W → lν) = 10.80% (l = e, µ) [50].
In Fig.3(a) and Fig.4(a), we depict the LO, NLO

QCD and NLO EW corrected distributions of final pos-
itive charged lepton transverse momentum, pl

+

T (l+ =
e+, µ+), and Higgs boson transverse momentum, sepa-
rately. Since the CP is conserved at parton level, the
distribution of the l+ transverse momentum should be

[Wen-Gan Ma, Ren-You Zhang, 1407.1110]

NNLO QCD calculations for bottom quark pair from 
Higgs decay with full mass dependence

NNLO QCD calculations for top quark pair 
production at e+e- machine

NLO calculations for top quark pair associated 
production with Higgs at LHC
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✦ A new approach on evaluating multi-loop Feynman integral has been developed by Yan Qing Ma (Peking 
Univ.) et al. [1912.09294]

2

is e�cient and general, it can be straightforwardly ap-
plied to any other process, thus providing a practical so-
lution for the bottleneck problem of reducing Feynman
integrals.

II. FEYNMAN INTEGRALS IN TWO-LOOP
FIVE-LIGHT-PARTON SCATTERING

AMPLITUDES

To obtain the very much needed reduction of Feynman
integrals in two-loop five-light-parton scattering ampli-
tudes, we only need to consider integrals originated from
the four topologies shown in Fig. 1. All the other Feyn-
man integrals are one-loop-like, and can be dealt with
much easier.

FIG. 1. All 8-propagator families: (a) double-pentagon; (b)
hexa-box; (c) penta-box; (d) hexa-triangle.

Let us consider the most complicated case, topology
(a) in Fig. 1, as an example that will explain what kind of
Feynman integrals do we need to reduce. There are five
external momenta p1, · · · , p5 flowing into the diagram,
satisfying on-shell conditions p

2
i = 0 (i = 1, . . . , 5) and

momentum conservation
P5

i=1 pi = 0. As a result, this
problem contains five independent mass scales, which can
be chosen as ~s = {s1, s2, s3, s4, s5} with si ⌘ 2pi·pi+1 and
p6 ⌘ p1. With two loop momenta `1 and `2, a complete
set of Lorentz scalars can be chosen as

D1 = `
2
1, D2 = (`1 + p1)

2
, D3 = (`1 + p1 + p2)

2
,

D4 = `
2
2, D5 = (`2 + p3)

2
, D6 = (`1 + `2 + p1 + p2 + p3)

2
,

D7 = (`1 + `2 � p4)
2
, D8 = (`1 + `2)

2
,

D9 = (`2 + p1)
2
, D10 = (`2 + p2)

2
, D11 = (`2 + p4)

2
,

(1)

where the first eight are inverse propagators and the last
three are introduced to make the set complete. Then
the family of integrals defined by topology (a) can be
expressed as

I~⌫(✏,~s ) =

Z
d4�2✏

`1 d
4�2✏

`2

(i⇡2�✏)2
D

�⌫9
9 D

�⌫10
10 D

�⌫11
11

D
⌫1
1 ... D

⌫8
8

, (2)

where the indexes ⌫1, · · · , ⌫8 are integers, ⌫9, ⌫10 and ⌫11

are nonpositive integers. Two integrals in this family
are said to be in the same sector if the positions of their
positive indexes are the same. The degree of an integral is
defined by the opposite value of the summation of all its
negative indexes. Finally, we call a degree-m integral is
m
n -type if it has n positive indexes and all these positive
indexes are 1. For example, I{1,1,1,1,1,1,1,1,�4,0,�1} is a
degree-5 integral in the top sector, and it is 5

8 -type.
For later convenience, we define operators m̂

± (for a
non-negative integer m), which generate a set of integrals
in the same sector or its subsectors when acting on an

integral. For any integral I~⌫ , 0̂±I~⌫ = I~⌫ , \m+ 1
±
I~⌫ =

m̂
±1̂±I~⌫ , 1̂�I~⌫ generates a set of integrals with one index

decreased by 1, and 1̂+I~⌫ generates a set of integrals with
one nonzero index increased by 1. For example, we have

1̂+I{1,1,1,1,1,1,1,1,�4,0,�1} = {I{2,1,1,1,1,1,1,1,�4,0,�1},

I{1,2,1,1,1,1,1,1,�4,0,�1}, I{1,1,2,1,1,1,1,1,�4,0,�1},

I{1,1,1,2,1,1,1,1,�4,0,�1}, I{1,1,1,1,2,1,1,1,�4,0,�1},

I{1,1,1,1,1,2,1,1,�4,0,�1}, I{1,1,1,1,1,1,2,1,�4,0,�1},

I{1,1,1,1,1,1,1,2,�4,0,�1}, I{1,1,1,1,1,1,1,1,�3,0,�1},

I{1,1,1,1,1,1,1,1,�4,0,0}} , (3)

and

1̂�I{1,1,1,1,1,1,1,1,�4,0,�1} = {I{0,1,1,1,1,1,1,1,�4,0,�1},

I{1,0,1,1,1,1,1,1,�4,0,�1}, I{1,1,0,1,1,1,1,1,�4,0,�1},

I{1,1,1,0,1,1,1,1,�4,0,�1}, I{1,1,1,1,0,1,1,1,�4,0,�1},

I{1,1,1,1,1,0,1,1,�4,0,�1}, I{1,1,1,1,1,1,0,1,�4,0,�1},

I{1,1,1,1,1,1,1,0,�4,0,�1}, I{1,1,1,1,1,1,1,1,�5,0,�1},

I{1,1,1,1,1,1,1,1,�4,�1,�1}, I{1,1,1,1,1,1,1,1,�4,0,�2}} . (4)

We also define operators m̂
�, which can generate a

set of integrals as a union of integrals generated by

{m̂�
, \m� 1

�
, · · · , 0̂�} when acting on an integral.

As is well-known, the most complicated2 integrals in
the amplitudes are those with the highest number of
propagators, i.e., ⌫i = 1 (i = 1, · · · , 8), and the highest
numerator degree, i.e., �(⌫9 + ⌫10 + ⌫11). By studying
the two-loop five-gluon scattering amplitude diagram by
diagram, we find the highest numerator degree is 5 for
all integrals. Therefore we define an integral set

S(a) = 5̂�I{1,1,1,1,1,1,1,1,0,0,0}, (5)

which contains 3914 nonzero integrals with all the most
complicated integrals in five-gluon scattering amplitude

2
The definition of complexity is a consequence of a convention

to order integrals. In our convention, integrals are thought to

be more complicated if they have more propagators, integrals in

the same sector are more complicated if they have higher total

denominator powers or if they have higher degree, and so on.

3

being included. Because the five-gluon scattering am-
plitude is su�ciently general, all the most complicated
integrals (if not all integrals) belonging to topology (a)
appearing in five-light-parton scattering amplitudes are
included in the set S(a). In fact, for two-loop five-gluon
all-plus helicity amplitude, integrals in topology (a) form
a subset of S(a) [5]. Therefore, for the purpose of re-
ducing integrals in physical amplitudes, the main job for
topology (a) is to reduce integrals in set S(a).

For topologies (b), (c) and (d) in Fig. 1, we define sets
of target integrals S(b), S(c) and S(d), similar to S(a).

III. SEARCH FOR BLOCK-TRIANGULAR
RELATIONS

Before presenting our method for reducing two-loop
five-light-parton integrals, let us first point out that for
multiscale problems, expressing general integrals in terms
of MIs explicitly is not preferred, even at the one-loop
level. Instead, one usually sets up a system of block-
triangular relations that can numerically relate all of the
integrals to MIs (see [54] and references therein).

The advantage of a system of block-triangular relations
over the explicit solution can be understood based on the
integrals’ singularities. If we express a complicated inte-
gral as a linear combination of simpler MIs, powers of
Gram determinants will appear in the denominators of
the coe�cients of these MIs, which is necessary because
only thus the linear combination of MIs can generate cor-
rect singularities of the target integral. Then, the numer-
ators of these coe�cients will have high mass dimensions
and thus will have very long expressions. This di�culty
can be nicely resolved using a system of block-triangular
relations. Relations in each block can be very simple, but
their solution can naturally generate Gram determinants
in the denominator. Furthermore, correctly choosing the
blocks may result in the solution involving only one Gram
determinant.

Because reduction at multiloop level is much more
complicated than for the one-loop case, the above dis-
cussion implies that constructing a system of block-
triangular relations may be the best way to reduce mul-
tiloop multiscale integrals. Unlike one-loop case, where
block-triangular systems can be achieved easily by ana-
lytically solving the IBP relations, block-triangular sys-
tems at multiloop level are in general di�cult to obtain.

In Ref. [52], based on our proposed series representa-
tion of Feynman integrals [52, 53] as input information,
we constructed an algorithm that searched for block-
triangular relations to reduce multiloop multiscale inte-
grals. However, we found the method to be very time-
consuming for physical problems, although it was e�-
cient for reducing integrals with integrands containing
only denominators. To deal with physical problems such
as two-loop five-light-parton integrals, we propose here a
two-step search strategy.

In the first step, we set up a system of relations that

can numerically express all target integrals in terms of
MIs. The system is allowed to be somewhat ine�cient in
numerical calculations; thus, the system is not required
to be block-triangular. This system can be obtained ei-
ther by using our series representation of Feynman inte-
grals [52], or simply by using the well-known IBP system.
In the second step, we search for a system of block-

triangular relations, which needs to be very e�cient for
numerical computations. The algorithm is the same as
that proposed in Ref. [52] except that, instead of using
our series representation of Feynman integrals, we use
the numerical solution obtained in the first step as input
information.
More details about the search strategy can be found in

appendix.

IV. REDUCTION SCHEME AND RESULTS

To apply the above proposed search strategy on phys-
ical problems, we still need to introduce the reduction
scheme, which amounts to choosing target integrals and
other integrals that are allowed to appear in each block.
In this paper, integrals in each block are defined by op-
erator m̂

� acting on a proper integral. For example, to
reduce the integrals in S(a), all of the integrals are allowed
to appear in the first block, and the target integrals in
this block are all the 21 most complicated integrals in
the top sector with degree 5. The first block enables
us to express all the 21 most complicated integrals in
terms of simpler integrals. Then, in the second block,
we choose the most complicated integrals among the rest
of the integrals as target integrals, and use operator m̂�

acting on a proper integral to generate a set of integrals
that covers all the target integrals. Then, the process is
repeated. Eventually, any integral can be expressed in
terms of simpler integrals.

top. #int. #MIs tsearch (h) tsolve (s) size(MB)

(a) 3914 108 112 0.17 66

(b) 3584 73 31 0.090 40

(c) 3458 61 56 0.075 31

(d) 2634 28 8 0.035 11

TABLE I. Main information of the obtained reduction rela-
tions. tsearch represents the CPU time required to search for
these relations in the unit of CPU-core hours. tsolve represents
the time spent to solve these relations numerically using one
CPU.

Using the above method, we successfully determined
systems of block-triangular relations for integrals in the
four topologies in Fig. 1. The file sizes of all these rela-
tions are acceptable, ⇠148 MB. To obtain these results
required ⇠200 central processing unit (CPU) core hours
to search for relations in the second step of the two-step

✦ Yang Zhang (USTC) et al. work towards solving the two-loop 5-point amplitude for scattering of massless 
particles

[1812.11057]
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Analytic result for a two-loop five-particle amplitude

D. Chicherina, T. Gehrmannb, J. M. Henna, P. Wasserc, Y. Zhanga, S. Zoiaa
a Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, D-80805 München, Germany
b Physik-Institut, Universität Zürich, Wintherturerstrasse 190, CH-8057 Zürich, Switzerland

c PRISMA Cluster of Excellence, Johannes Gutenberg University, D-55099 Mainz, Germany

We compute the symbol of the full-color two-loop five-particle amplitude in N = 4 super Yang-
Mills, including all non-planar subleading-color terms. The amplitude is written in terms of permu-
tations of Parke-Taylor tree-level amplitudes and pure functions to all orders in the dimensional reg-
ularization parameter, in agreement with previous conjectures. The answer has the correct collinear
limits and infrared factorization properties, allowing us to define a finite remainder function. We
study the multi-Regge limit of the non-planar terms, analyze its subleading power corrections, and
present analytically the leading logarithmic terms.

PACS numbers: 12.38Bx

The study of scattering amplitudes in maximally su-
persymmetric Yang-Mills theory (N = 4 sYM) has
brought about many advances in quantum field theory
(QFT). Experience shows that having analytical ‘data’,
i.e. explicit results, for amplitudes available is vital to
find structures and patterns in seemingly complicated
results, and to test new ideas. Cases in point are dual-
conformal symmetry [1–3], the symbol analysis [4], in-
sights of Regge limits in perturbative QFT [5], and the
structure of infrared divergences [6, 7], just to name a
few.

Thanks to recent progress, an abundant wealth of data
is available for planar scattering amplitudes in N = 4
sYM. Up to five particles, the functional form of the lat-
ter is fixed by dual conformal symmetry [8, 9], in agree-
ment with previous conjectures [7, 10]. Starting from six
particles, there is a freedom of a dual conformally invari-
ant function [1, 11, 12], which has been the subject of
intense study.

Conjecturally, the function space of the latter is known
in terms of iterated integrals, or symbols. Using boot-
strap ideas, perturbative results at six and seven particles
have been obtained at high loop order [13–18]. This led
in particular to insight into how the Steinmann relations
are realized in perturbative QFT [19], and to intriguing
observations about a possible cluster algebra structure of
the amplitudes [20].

On the other hand, few results are available to date
beyond the planar limit. The four-particle amplitude is
known to three loops [21], and no results are available
beyond one loop for more than four particles. In order
to study whether properties such as integrability, hidden
dual conformal symmetry, and properties of the function
space generalize to the full theory, it is crucial to have
more data. In this letter, we newly compute, in terms of
symbol, a full five-particle scattering amplitude in QFT.
While all the required planar master integrals are already
known analytically in the literature, one non-planar in-
tegral family was still missing, up to now. We fill this
gap, and discuss its calculation in a dedicated parallel
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Figure 1. Diagrams in the representation of [23] of the inte-
grand of the two-loop five-point amplitude in N = 4 sYM.
We omit the associated numerators and color factors.

paper [22].

CALCULATION OF THE MASTER INTEGRALS

The integral topologies needed for massless five-
particle scattering at two loops are shown in Fig. 1.
The integrals in four-point kinematics, Fig. 1 (d)-(f), are
known from refs. [24, 25]. The master integrals of the
planar topology depicted in Fig. 1 (a) were computed
in ref. [26–28], whereas the non-planar integral family
shown in Fig. 1 (b) was computed in ref. [29]. (See also
[30–33]). We devote a parallel paper [22] to the cal-
culation of the missing non-planar family, depicted in
Fig. 1 (c), which we will refer to as double-pentagon.
Here we will content ourselves with the details that are
directly relevant for the computation of the symbol of the
N = 4 sYM amplitude.
Genuine five-point functions depend on five indepen-

dent Mandelstam invariants, s12, s23, s34, s45, s51, with
sij = 2pi · pj . We will also find the parity-odd invariant
ε5 = tr[γ5/p4/p5/p1/p2] useful. Its square can be expressed

in terms of the sij through ∆ = (ε5)2, with the Gram
determinant ∆ = |2pi · pj |, with 1 ≤ i, j ≤ 4.
The integrals of the double-pentagon topology can be
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Analytic form of the full two-loop five-gluon all-plus helicity amplitude
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We compute the full-color two-loop five-gluon amplitude for the all-plus helicity configuration. In
order to achieve this, we calculate the required master integrals for all permutations of the external
legs, in the physical scattering region. We verify the expected divergence structure of the amplitude,
and extract the finite hard function. We further validate our result by checking the factorization
properties in the collinear limit. Our result is fully analytic and valid in the physical scattering
region. We express it in a compact form containing logarithms, dilogarithms and rational functions.

PACS numbers: 12.38Bx

The abundant amount of data to be collected by the
ATLAS and CMS collaborations in future runs of the
Large Hadron Collider at CERN opens up a new era of
precision physics. Some of the most prominent preci-
sion observables are related to three-jet production [1, 2],
which allows in-depth studies of the strong interaction
up to the highest energy scales, including precision mea-
surements of the QCD coupling constant αs and its scale
evolution. The physics exploitation of these precision
data requires highly accurate theory predictions, which
are obtained through the computation of higher orders
in perturbation theory. Second-order corrections (next-
to-next-to-leading order, NNLO) were computed recently
for many two-to-two scattering processes, including two-
jet production [3]. A comparable level of theoretical ac-
curacy could up to now not be obtained for genuine two-
to-three processes, especially since the relevant matrix
elements for processes involving five external partons in-
cluding full color are known only up to one loop [4–6].

The evaluation of these two-loop five parton matrix el-
ements faces two types of challenges: to relate the large
number of two-loop integrands to a smaller number of
master integrals, and to compute these master integrals
(two-loop five-point functions). Important progress was
made most recently on both issues, with the develop-
ment and application of efficient integral reduction tech-
niques, either analytical [7–14] or semi-numerical [15, 16],
as well as with the computation of the two-loop five-point
functions for planar [17–19] and non-planar [20, 21] inte-
gral topologies. The latter developments already have led
to first results for two-loop five-point amplitudes in su-
persymmetric Yang-Mills theory [22, 23] and supergrav-
ity [24, 25].

The recent progress enabled the computation of the
full set of the leading-color two-loop corrections to the
five-parton amplitudes, represented in a semi-numerical
form [10, 26–28]. These results are establishing the tech-
nical methodology, their evaluation is however too ineffi-
cient for practical use in the computation of collider cross

sections. Towards this aim, analytic results are prefer-
able, which were obtained so far only at leading color
for the five-parton amplitudes [17, 29–31]. Besides the
more efficient numerical evaluation, these results also al-
low for detailed investigations of the limiting behavior in
kinematical limits, thereby elucidating the analytic prop-
erties of scattering in QCD.
The leading-color corrections consist only of planar

Feynman diagrams. At subleading color level, non-planar
diagrams and integrals contribute as well, leading to a
considerable increase in complexity, both in the reduc-
tion of the integrand and in the evaluation of the master
integrals. In this Letter, we make the first step towards
the fully analytic evaluation of two-loop five-point am-
plitudes, by exploiting the recently derived non-planar
two-loop five-point master integrals [20, 21] to obtain an
analytic expression for the two-loop five-gluon amplitude
with all-plus helicities [32].
Kinematics. We study the scattering of five gluons

in the all-plus helicity configuration. The corresponding
amplitude has a complete permutation symmetry under
exchange of external gluons. The five light-like momenta
pi are subject to on-shell and momentum conservation
conditions, p2i = 0, and

∑5
i=1 pi = 0, respectively. They

give rise to the following independent parity-even Lorentz
invariants

X = {s12 , s23 , s34 , s45 , s15} , (1)

with sij = 2 pi · pj , as well as to the parity-odd invariant
ε5 = tr(γ5/p1/p2/p3/p4). The latter is related to the Gram

determinant ∆ = det(sij |4i,j=1) through ε25 = ∆.
Without loss of generality, we take the kinematics to

lie in the s12 scattering region. The latter is defined by
all s-channel invariants being positive, i.e.

s12 > 0 , s34 > 0 , s35 > 0 , s45 > 0 , (2)

and t-channel ones being negative, i.e.

s1j < 0 , s2j < 0 , for j = 3, 4, 5 , (3)

[1905.03733]
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All master integrals for three-jet production at NNLO
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We evaluate analytically all previously unknown nonplanar master integrals for massless five-
particle scattering at two loops, using the differential equations method. A canonical form of the
differential equations is obtained by identifying integrals with constant leading singularities, in D

space-time dimensions. These integrals evaluate to Q-linear combinations of multiple polylogarithms
of uniform weight at each order in the expansion in the dimensional regularization parameter, and
are in agreement with previous conjectures for nonplanar pentagon functions. Our results provide
the complete set of two-loop Feynman integrals for any massless 2 → 3 scattering process, thereby
opening up a new level of precision collider phenomenology.

PACS numbers: 12.38Bx

INTRODUCTION

The ever improving experimental precision at the LHC
challenges theoretical physicists to keep up with the accu-
racy of the corresponding theoretical predictions. In or-
der for this to be possible, analytic expressions for higher-
loop amplitudes play a crucial role. Among the processes
that are investigated at hadron colliders, jet production
observables offer unique opportunities for precision mea-
surements. In particular, the ratio of three- and two-jet
cross sections gives a measure of the strong coupling con-
stant αS(Q2) at high energy scales Q2 [1–6].
While many results for next-to-next-to leading order

(NNLO) cross sections are available for 2 → 2 processes,
higher multiplicity reactions are only beginning to be ex-
plored [7–15], so far mostly in the planar limit.
The situation was somewhat similar about fifteen years

ago at NLO, when novel theoretical ideas led to what is
now called the “NLO revolution” [16]. Thanks to recent
progress in quantum field theory methods, we are today
at the brink of an NNLO revolution.
The new ideas include cutting-edge integral reduction

techniques based on finite fields and algebraic geome-
try [17–19], a systematic mathematical understanding of
special functions appearing in Feynman integrals [20, 21],
and their computation via differential equations [22] in
the canonical form [23]. The latter in fact lead to simple
iterated integral solutions that have uniform transcen-
dental weight (UT), also called pure functions.
It is particularly interesting that many properties of

the integrated functions can be anticipated from proper-
ties of the simpler Feynman loop integrands through the
study of the so-called leading singularities [24]. A useful
conjecture [23, 24] allows one to predict which Feynman
integrals satisfy the canonical differential equation by an-
alyzing their four-dimensional leading singularities. This
can be done algorithmically [25].
It turns out that in complicated cases, especially when

many scales are involved, the difference between treating
the integrand as four- or D-dimensional can become rele-
vant. In particular, integrands whose numerators contain
Gram determinants that vanish in four dimensions may
spoil the UT property.
In this Letter we propose a new, refined criterion for

finding the canonical form of the differential equations,
and hence UT integrals. The method involves computing
leading singularities in Baikov representation [26].
We apply our novel technique to the most complicated

nonplanar massless five-particle integrals at NNLO. We
explain how the UT basis is obtained, and derive the
canonical differential equation. We determine analyti-
cally the boundary values by requiring physical consis-
tency. The solutions are found to be in agreement with
a previous conjecture for nonplanar pentagon functions,
and also with a previously conjectured second entry con-
dition [27].
This result completes the analytic calculation of all

master integrals required for three-jet production at
hadron colliders to NNLO in QCD. We expect that our
method will have many applications for multi-jet calcu-
lations in the near future.

INTEGRAL FAMILIES

Figure 1 shows the integral topologies needed for
studying the scattering of five massless particles at two
loops. The master integrals of the planar topology shown
in Fig. 1a were computed in Ref. [9, 28, 29]. The non-
planar integral family depicted in Fig. 1b was computed
in [30]. (See also [27, 31–33]). In this Letter, we compute
the previously unknown master integrals of the double-
pentagon family shown in Fig. 1c.
Genuine five-point functions depend on five

independent Mandelstam invariants, X =
{s12 , s23 , s34 , s45 , s15}, where sij = 2pi · pj , and

[1812.11160]

demonstration of the efficiency for 5-point massless scattering at two-loops

directly applicable to 3-jets or 3-photon production 
at the LHC
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