CRD ECal design and performance

Fangyi Guo

Outline

Introduction

Geometry construction

Simulation and digitalization

Reconstruction

- Single shower reconstruction
- Di-photon events
- \circ π^0 reconstruction with Pandora(not finished)
- $H \rightarrow \gamma \gamma$ events reconstruction with Pandora(not finished)

Summary and Next step

Geometry construction

A full BGO crystal barrel:

- $R_0 = 1.8m, Z = 4.6m, \text{ Height=28cm}$
- 8 same trapezoidal modules.
- Crystal bar: 1cm*1cm*~40cm.

Ideal detector without readout, supporting, etc.

Geometry construction

In each trapezoidal module:

- 28 layers, counting 2 layers as a super-layer.
- In each super-layer, **layer0** goes horizontal(ϕ -direction), **layer1** goes longitudinal(z-direction).
- Basic unit for reconstruction: ~40cm*~40cm*2cm block.
- Each block has ~40(layer0)+~40(layer1) crystal bars.
- 4 blocks in ϕ , 10 blocks in z direction.
- *Left a ~2 cm blank at the edge of module.

40cm*40cm*2cm block

A module in x-y plane, with part of bars.

Simulation and digitalization

Construct the geometry in DD4hep.

Simulation could be performed with Geant4 in CEPCSW.

Digitalization for one long crystal bar:

- Readout information: 2-side Q and T.
- Contribution from G4step i:

$$Q_{\pm}^{i} = E_0 \cdot e^{-\frac{\frac{L}{2} \pm z_i}{L_{Att}}}, T_{\pm}^{i} = Gaus(z_{\pm}^{i}/v, \sigma_T).$$

For the full bar:

$$Q_{\pm} = \sum_{step} Q_{\pm}^i$$
 , $T_{\pm} = \min(T_{\pm}^i)$

• Simplified condition: $L_{Att} = \infty$, so $Q_{\pm} = E_{tot}$.

Hit reconstruction

Digitalized hit reconstruction is based on bar cross-locating.

Truth-level Simulated hit: merge G4steps in 1*1*1 cm³ cube as a truth hit.

Reconstructed hit:

• Hit position:
$$(u_{layer0}^i, v_{layer1}^j, \frac{w_{layer0}^i + w_{layer1}^j}{2})$$
 Based on bar position. Get hit size: 1*1*2 cm³

• Hit energy: Get energy deposition in each u-bar/v-bar $E_{bar1}[Nbars]$, $E_{bar2}[Nbars]$.

Hit.E =
$$E_{bar1} \frac{E_{bar2}}{\Sigma E_{bar2}} + E_{bar2} \frac{E_{bar1}}{\Sigma E_{bar1}}$$
.

Position from time:

•
$$x_T = x_{bar} + \frac{T1-T2}{2}v$$
, $\sigma_x = \frac{\sigma_T}{\sqrt{2}}v$. Ghost hit removal.
• $\mathbf{N} = \infty \Rightarrow \mathbf{No}$ time information

• If($|x_T - x_{bar2}| > N\sigma_x$) remove this hit.

u

Hit reconstruction single photon

Check performance with 30GeV single photon.

- $L_{Att} = \infty$, $N = \infty$
- Energy threshold for a crystal bar: 3GeV.
- Vertical shoot at the central of one block in first super-layer.

Hit reconstruction single photon

Position and energy comparison for RecHit and truth hit.

 $E_{truth} - E_{rec}$ in one super-layer.

Hit reconstruction single photon

Reconstructed energy resolution

~20% for 100MeV photon

Hit reconstruction di-photon

Diphoton events

- 2 10GeV photon from vertex: (0, 260, 260), (0, 200, 200).
- Vertical shoot at the block.

Hit reconstruction di-photon

u/mm

reconstruction

 γ_1 (200, 200), γ_2 (260, 260)

Block center: (230, 230)mm

reconstruction

 γ_1 (180, 180), γ_2 (240, 240)

u/mm

Hit reconstruction

Pi0: in different energy point(1/2/5/8/10/15/20/30 GeV). Hit map and Nreco in Pandora.

Hit reconstruction

Higgs->yy sample, higgs mass resolution.

backup

Q2: ghost hit removal

Reconstruct 100 di-photon events with Pandora

Energy: 5GeV

• Direction: $\theta \in [91^{\circ}, 100^{\circ}], \phi \in [-10^{\circ}, 0^{\circ}].$

 ΔR for 2 recPart

$$\Delta R = 0.05 \sim$$

$$\Delta u/v = 6cm$$

Q2: ghost hit removal

Reconstruct 200 pi0 events with Pandora in full detector.

8GeV π^0 , $\theta \in [60, 120]$, $\phi \in [0, 360]$

