
JSUB – A Tool for Job Submission and Management

Yang Yifan

IHEP

November 13, 2020

1 / 21



JSUB - Job submission utility bundle

A frontend software to make users’ lives easier.

Ease the procedure of using DIRAC, and potentially other
heterogeneous resources.

Automatically manage massive jobs.

Highly extensible for other experiments.

What JSUB can support for JUNO

User simulation and analysis.

Executing multi-steps in one task, including
detsim/elecsim/calib/rec/ana

User customized scripts.

Task based monitoring and rescheduling

2 / 21



Functionality design of JSUB

3 / 21



Using JSUB

4 / 21



Installation/Activation

Currently, a test version has already been installed on CVMFS.
The software is installed in an isolated Pythonic virtualenv, which can be
activated with the following commands:

source /cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/activate.sh

source .../activate.sh -e juno

source .../activate.sh -v 0.3.0

And the environment can be deactivated with:

deactivate

Also, the source code is available on github (https://github.com/jsubpy).
The Python packages can be installed with pip.

5 / 21

https://github.com/jsubpy


Configuration

By default, JSUB looks for configuration file at ./.jsubrc.
An example configuration file is shown below:

The most important setting here includes:

package: from which Python modules to look for JSUB extensions.

taskDir: where to store JSUB files including task info, logfiles, and (in some
cases) runtime files as well as output files.

backend: Universal backend settings. Can be overridden by task-specific
settings.

6 / 21



Preparing task description files

To create a task, users should
provide a task definition file (TDF),
which can be in the format of YAML
or JSON.
The following parts shall be
addressed in task description:

General Settings: task name,
experiment, input sandbox, ...

Backend: output folder, job
group, site, banned sites, ...

Splitter: how the task splits
into subjobs.

Workflow: list of action steps
and their settings.

7 / 21



Task description - general settings and backend settings

General settings

taskName

experiment: decides the parser of this yaml file; experiment-specific
parsers expand user settings with auto-fill, while “common” parser is
for raw format.

softVersion: the version of the experiment-specific application.

Backend settings

JSUB supports backend such as DIRAC, IHEPCondor, and local (login
nodes), and these backend each can use different settings. For example,
on DIRAC backend, users may define the sites (or banned sites) to send
jobs to, target SE to send output data, and job groups, etc.

8 / 21



Task description - splitter

A splitter defines how a JSUB task can be splitted into multiple subjobs
that each can run on a single backend worknode and how the values of
subjob-specific variables should be assigned.
Currently, JSUB supports two splitter modes – splitByEvent and
splitByJobvars.

SplitByEvent splitter

This splitter is for jobs that
use uniform settings.

Users only need to define the
number of jobs and events
per job, and the splitter
would handle the seeds and
filenames.

9 / 21



Task description - splitter

SplitByJobvars splitter

The splitter uses jobvar extensions to generate parameter lists, combine
these parameters into job variable sets. The number of subjobs are
decided by the length of value sets list.
This splitter gives user more control over the details of subjobs by allowing
referencing jobvar values in settings.

10 / 21



Task description - workflow settings

Workflow settings

This part describes the list of action steps in the task workflow and their
settings.
With SplitByJobvars splitter, some settings in the workflow may reference
the value of jobvars.

11 / 21



Job management with command lines

Given a TDF, users can create a JSUB task with the following command
line, and a task ID would be returned after successful creation.

jsub create <TDF>

The task can then be submitted to backend for running.

jsub submit <task-id>

The job statuses of a task can be queryed.

jsub status <task-id> // statistics

jsub status <task-id> -s <status> // list subjobs in given status

The brief info of all tasks can be listed.

jsub ls

jsub ls -u // to update backend status info

12 / 21



Job Management with command lines

Bad jobs can be rescheduled, or the whole task can be resubmitted.

jsub reschedule <task-id> [-dfrw] // for given states

jsub resubmit <task-id> // resubmit the whole task

Log files of selected jobs can be downloaded from DIRAC server.

jsub getlog <task-id> -i SUB IDS [-n NJOBS]

jsub getlog <task-id> -s STATUS

13 / 21



JSUB is ready for user test

Available on IHEP-CVMFS.

/cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/

Testing examples are distributed.

/cvmfs/dcomputing.ihep.ac.cn/frontend/jsub/0.3.0/install/jsub/examples

More details on guide

https://jsubpy.github.io/

14 / 21



Thanks!

15 / 21



Backup

16 / 21



Yaml example with DetSim

17 / 21



Multi-steps of sim/rec

18 / 21



Job variable splitter

19 / 21



Elecsim (input data from DFC)

20 / 21



User Analysis

21 / 21


	Backup

