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Compton Scattering: 

witnesses the development of QFT

• One of the fundamental processes in both quantum 
mechanics and quantum electrodynamics (QED)

 [wiki]e−γ → e−γ

• Thomson scattering: elastic scattering in classical EM

σ =
8πα2

3m2

• Compton effect (1923): quantum effect

λ′￼− λ =
h

mec
(1 − cos θ)

The photon always loses energy, unless  θ = 0

What’s the quantum version of cross section?

e−(p1) + γ(k1) → e−(p2) + γ(k2)



Compton Scattering: 

essential to prove Dirac equation

• Klein-Nishina formula (1929):
dσ

d cos θ
=

πα2

m2 ( ω′￼

ω )
2

( ω′￼

ω
+

ω
ω′￼

− sin2 θ)

σ = πα2
2 (3m4 + 6m2s − s2) log ( s

m2 )
(m2 − s)3 +

m6 − m4s + 15m2s2 + s3

s2 (m2 − s)2 + 𝒪(α3)

σ ∼
πα2

s [2 log ( s
m2 ) + 1]

At high energies, s ≫ m2

One of the first results in QED!
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Motivation for studying Compton scattering

• Important in many aspects of physics: from X-ray 
crystallography to astrophysics

• A luminosity monitor for the electron-photon collider

• A clean process: to measure the coupling constant

• In astrophysics: inverse Compton scattering
e.g. Sunyaev–Zeldovich effect

[Sunyaev, Zeldovich, 1980] 

Theoretical side:  

• the fundamental question: 

what is an electron?

• IR finite total cross sections in 

QED/QCD: forward scattering 
and resummation 



Motivation for studying Compton scattering:

Forward scattering

• There is already a single log at the tree-level.
[1810.10022, Frye, Hannesdottir, Paul, Schwartz, Yan]

• Usually we expect a log to show up at 1-loop, and it can be 
resummed with RG equations. For example, we introduce 
the running coupling to improve the efficiency in QED.

σ ∼
πα2

s [2 log ( s
m2 ) + 1], s ≫ m2

σt =
16πα2

Q2
Γd (−

1
2ϵ

+ 1), with Γd = ( 4πe−γEμ4

Q2 )
ϵ

IR divergence comes from the outgoing  collinear to the incoming γ e−

• Use dim reg instead and set , we see explicit divergence 
in the t-channel:

m = 0
d = 4 − 2ϵ

Collinear Logarithms



Motivation for studying Compton scattering:

Forward scattering

[1810.10022, Frye, Hannesdottir, Paul, Schwartz, Yan]

• IR finiteness requires the forward scattering included, where 
outgoing  collinear to the incoming γ γ

• Kinoshita-Lee-Nauenberg (KLN) theorem: Unitarity 
guarantees the cancellation of infrared divergences when 
all final states and initial states are summed over.


• However, one only need to sum over initial or final states 
once the forward scattering is included. 

A hard photon and electron become 
effectively indistinguishable at high energies

σt =
16πα2

Q2
Γd (−

1
2ϵ

+ 1)
σF =

16πα2

Q2
Γd ( 1

2ϵ
− 1)

cancel!

CF F?

17



Motivation for studying Compton scattering:

Resummation

• If we include forward scattering and redefine the cross 
section, we would get something correct but not 
interesting.

• Alternatively, we can try to resume the logs using SCET. 
But it is hard to write down a factorization formula for 
total cross section

e− + γ → e− + γ (+nγ)

• Do DGLAP equations 
reproduce all logarithms? 


• To see the logs and resum 
them, we need to calculate 
NLO.



Compton scattering beyond leading order
• There are very few analytic results of the total cross section 

beyond LO in QED. For Compton,

• Brown and Feynman (1951):

• Several developments: 

• real emissions: e−(p1) + γ(k1) → e−(p2) + γ(k2) + γ(k3)

• virtual corrections: e−(p1) + γ(k1)
1−loop

→ e−(p2) + γ(k2)

• pair productions:
e−(p1) + γ(k1) → e−(p2) + e+(k2) + e−(k3), e−(p2) + μ+(k2) + μ−(k3) . . .

the virtual differential cross section regulated 
by the photon mass

• Mandl and Skyrme (1952): double Compton scattering: the amplitudes 
for the hard-photonic bremsstrahlung

• Milton, Tsai, De Raad (1972), Gongora-T. and Stuart (1989), Veltman (1989), 
Swartz, hep-ph/9711447


• Denner and Dittmaier, hep-ph/9805443
polarized scattering

numerical total cross section 
(Monte Carlo)

• Lee, Lyubyakin, Stotsky, 2010.15430 first analytic result for real 
emissions and pair productions!



Failure: discontinuities of forward amplitude

Compton scattering beyond leading order

• The main difficulties:

• two-loop massive diagrams are hard to evaluate, even after 

region expansions

• cannot separate different processes (difficult to separate 

elliptical sectors)

78 the cancellation of the infrared divergence in the differ-
79 ential cross section was shown using a photon mass cutoff.
80 The double Compton process was studied by Mandl and
81 Skyrme in 1952 [16]. Recently, the total cross section for
82 double Compton scattering has been calculated in
83 Ref. [11]. The asymptotic behavior of Compton scattering
84 at high energy at the amplitude level has been examined
85 by numerous authors (e.g., Refs. [17–19]). Polarized
86 differential Compton scattering at NLO was studied by
87 Swartz [20] and by Denner and Dittmaier [21]. Although
88 numerical results for the total NLO cross section can be
89 obtained by integrating these differential cross sections
90 over the scattering angle, no analytic formula has yet been
91 produced. The result of this Letter is that final missing
92 analytic form.
93 To compute the total cross section, one approach
94 is to use the optical theorem to extract it from the
95 imaginary part of the e−γ → e−γ forward scattering
96 amplitude. However, rather than compute the full
97 two-loop forward amplitude and then take its imaginary
98 part, it is simpler to compute the cut diagrams
99 directly. These diagrams are shown in Fig. 1. The cuts

100 that put e−γ on shell are the virtual corrections, while
101 those putting e−γγ on shell correspond to real emission.
102 There are also contributions to the total e−γ cross section
103 at order α3 from final states with three charged particles.
104 These were computed in Ref. [11] so we do not consider
105 them here.
106 To compute the cuts, we apply integration by parts and
107 differential equations to two or three particle cuts sepa-
108 rately. For example, one of the two-particle cut master
109 integrals of interest looks like

ð1Þ

110Applying loop computation technology to cut graphs
111significantly simplifies the problem: the extra δ functions
112reduce the number of master integrals and, therefore, the
113size of the differential system. Even more important, the
114cuts relevant for the NLO correction to the Compton
115scattering cross section prevent the appearance of the
116nonpolylogarithmic master integrals—the massive sunrise
117graphs.
118The main tool we use for the IBP (integration-by-parts)
119reduction is LiteRed [22,23] which allows for the account of
120the individual cuts. For the reduction of the differential
121system to ϵ form we use the Libra package [24]. It is helpful
122to rewrite the integrals in terms of threshold variables like

x ¼ s −m2

m2
; y ¼

ffiffiffiffiffiffiffiffiffiffiffi
x

xþ 4

r
: ð2Þ

123124A variable like y can be used to rationalize the weights of
125the appearing iterated integrals. Both x and y vanish at
126threshold s → m2. We find that using the threshold limit to

F1:1 FIG. 1. Cut Feynman diagrams contributing to the NLO cross section. Cuts drawn in blue indicate double-Compton contributions
F1:2 and red cuts indicate loop contributions. The last eight diagrams involve an insertion of the mass counterterm and require
F1:3 separate integrals.
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Instead we use direct phase space integrations, 

and


evaluate the forward diagrams in Fiesta to check our phase 
space master integrals.



Introduction to multi-loop techniques

• As mentioned above, there are two kinds of integrals:

• loop integrals: amplitudes

• phase space integrals: cross sections, event shape 

observables

amplitudes sectors

topology 
classification/
decomposition

master 
integrals

Integration 
by parts 

(IBP)

analytic 
result

Differential 
equations (DE)

+boundary 
conditions

[Two loop integrals and QCD scattering, Anastasiou]
[Evaluating Feynman Integrals, Smirnov]

Next: leading order Compton as a warm-up example

[1111.0868, Pak] [Chetyrkin, Tkachov, 1981]
[0102033, Laporta]



Introduction to multi-loop techniques

amplitudes

∫
ddk1

iπd/2
⋯∫

ddkm

iπd/2

f(1; kμ
1 ; kμ

2 ; kμ
1 kν

2; ⋯)
Aν1

1 ⋯Aνn
n

2iπδ(p2 − m2) →
1

p2 − m2 + i0
−

1
p2 − m2 − i0

Loop:

Phase space:

[0207004, 
Anastasiou, Melnikov]
[0306192,Anastasiou, 

Dixon, Melnikov, Petriello]

Jet physics: Nontrivial constraints on the phase space; 
Nonlinear propagators; case by case

Make it “look like” a loop integral (only) for IBP reductions

e.g. Energy correlators: Measurement functions as nonlinear cut propagators

e−(p1) + γ(k1) → e−(p2) + γ(k2)

dLIPS2 =
dd−1k2

(2π)d−1(2ω2)
dd−1p2

(2π)d−1(2E2)
(2π)dδd(k1 + p1 − k2 − p2)

σ =
e4

2(s − m2)
×

1
4

× ∫ dLIPS2 ∑ |ℳ |2

• Squared amplitudes for LO: generated by QGRAF or FeynCalc

[1801.03219, Dixon, Luo, Shtabovenko, Yang, Zhu]                                [2108.01674, Li, Schrijnder van Velzen, Waalewijn, Zhu]                                



Introduction to multi-loop techniques
sectors

master 
integrals

• topology classification: different loop momentum shifts or external 
momentum renamings could give the same Feynman integrals. 


• This classifies the amplitudes into different sectors.

Integration by parts (IBP): a standard process that reduces 
the amplitude into a minimal set of integrals

∫
ddk1

iπd/2
⋯∫

ddkm

iπd/2

f(1; kμ
1 ; kμ

2 ; kμ
1 kν

2; ⋯)
Aν1

1 ⋯Aνn
n

1
[k2

2]ν1[(k1 + p1 − k2)2 − m2]ν2[(k2 − p1)2 − m2]ν3

• For Compton LO: 
decomposed into 1 sector

IBP packages: LiteRed2

∫ dLIPS2 ∑ |ℳ |2 = −
(d − 2)(3ds3 − 7ds2 + 5ds − d − 14s3 − 2s2 − 18s + 2)

(s − 1)2s
𝒥1

−
2(d − 2)(ds2 − 2ds + d − 2s2 − 4s − 10)

s − 1
𝒥2 with  m = 1

𝒥1 = ∫ dLIPS2 × 1, 𝒥2 = ∫ dLIPS2 ×
1

(p1 − k2)2 − m2• 2 master integrals:

[1111.0868, Pak]



Introduction to multi-loop techniques
master 

integrals
Analytic 
results

[Evaluating Feynman Integrals, Smirnov]

𝒥1 = ∫ dLIPS2 × 1 =
42−dπ

3
2 − d

2 s1− d
2 (s − m2)d−3

Γ ( d − 1
2 )

𝒥2 = ∫ dLIPS2 ×
1

(p1 − k2)2 − m2

= −
23−2dπ

3
2 − d

2 s1− d
2 (m2 + s) (s − m2)d−4

m2Γ ( d − 1
2 )

(d − 2) 2F1 −
1
2

,1;
d − 1

2
; (m2 − s)2

(m2 + s)2 − d + 3

• Differential Equations: The basic idea is to form a close differential equation 
system satisfied by these master integrals.


• With boundary conditions, we obtain the analytic results instead of 
calculating the integrals directly.

d
ds

⃗J (s; ⋯) = M(s; ⋯) ⋅ ⃗J (s; ⋯)

[1412.2296, Henn]



Differential equations (DE)

d
dy (𝒥1

𝒥2) =

2(2ϵy2 + 2ϵ + y2 − 1)
(y − 1)y(y + 1)(3y2 + 1)

0

2ϵ − 1
2y3

2
(y − 1)y(y + 1)

(𝒥1
𝒥2)First, introduce y =

s − 1
s + 3

⃗𝒥 = T ⃗𝒢, T =
e−γϵ(2π)ϵ−1

1 − 2ϵ

y2

3y2 + 1
0

0 (2ϵ − 1)(y − 1)(y + 1)
ϵy2

Perform the transformation:

-form / canonical 
form DE

ϵ d
dy (𝒢1

𝒢2) = ϵ
−

4(y2 + 1)
−3y5 + 2y3 + y

0
y

6y4 − 4y2 − 2
0 (𝒢1

𝒢2)

[1412.2296, Henn]

𝒢1 = c0,1 + ϵ(c0,1 log(1 + y) − 4c0,1 log(y) + c0,1 log(1 − y)

+c0,1 log (1 − i 3y) + c0,1 log (1 + i 3y) + c1,1) + 𝒪(ϵ2)𝒢i(y, ϵ) = ∑
n=0

ϵng(n)
i (y)

Solutions: (UT)

with ,  m = 1 d = 4 − 2ϵ

solve the equation 
order by order in ϵ In forms of Polylogarithms!



Boundary conditions
• The most difficult piece to use DE method: usually vary case by case

• In general, we pick a kinematic point and calculate the master 

integrals (numerically or analytically), and then determine the 
unknown constants in the solution.


• For Compton LO, we evaluate the integral at  or :s → m2 = 1 y → 0

𝒥1 = ∫ dLIPS2 × 1 ∼ ∫ dLIPS(soft)
2

𝒥2 = ∫ dLIPS2 ×
1

(p1 − k2)2 − m2
∼ ∫ dLIPS(soft)

2 ×
1

−4y2

(2π)2

2πd/2 ∫ ddk2ddp2δ+(k2
2)δ+(p2

2 − 1)δ(d)(p1 + k1 − p2 − k2) ≈
π3/221−2ϵ

Γ(3/2 − ϵ)
y2−4ϵ + 𝒪(y2)

The soft limit of 2-particle phase space:

The only integral we need to do:



Boundary conditions

𝒢1 =
π2−ϵ−1eγϵ(1 − 2ϵ)y−4ϵ

Γ ( 3
2 − ϵ)

−
π2−ϵeγϵϵ(2ϵ − 1)y2−4ϵ

Γ ( 3
2 − ϵ)

+ 𝒪(y3)

𝒢2 = −
π2−ϵ−3eγϵϵy2−4ϵ

Γ ( 3
2 − ϵ)

+ 𝒪(y3)

𝒢1 = 1 + ϵ (log(y + 1) − 4 log(y) + log(1 − y) + log (3y2 + 1) − log(8)) + 𝒪(ϵ2)

𝒢2 =
1
16

ϵ (log(y + 1) + log(1 − y) − log (3y2 + 1)) + 𝒪(ϵ2)

• The asymptotic results of the master integrals help determine the 
unknown constants in the solution of DE:

solution:



LO calculation

For NLO cross section, we have similar calculation setup, but with 
different boundary conditions

σ =
e4

2(s − m2)
×

1
4

× ∫ dLIPS2 ∑ |ℳ |2amplitudes

sectors
1

[k2
2]ν1[(k1 + p1 − k2)2 − m2]ν2[(k2 − p1)2 − m2]ν3

master 
integrals

∫ dLIPS2 ∑ |ℳ |2 = −
(d − 2)(3ds3 − 7ds2 + 5ds − d − 14s3 − 2s2 − 18s + 2)

(s − 1)2s
𝒥1

−
2(d − 2)(ds2 − 2ds + d − 2s2 − 4s − 10)

s − 1
𝒥2 with  m = 1

𝒢1 = 1 + ϵ (log(y + 1) − 4 log(y) + log(1 − y) + log (3y2 + 1) − log(8)) + 𝒪(ϵ2)

𝒢2 =
1
16

ϵ (log(y + 1) + log(1 − y) − log (3y2 + 1)) + 𝒪(ϵ2)

Summary

Analytic 
results



NLO total cross section
• Real emissions: e−(p1) + γ(k1) → e−(p2) + γ(k2) + γ(k3)
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• Virtual corrections: e−(p1) + γ(k1)
1−loop

→ e−(p2) + γ(k2)

σ(R) ∼ ∫ dLIPS3 ∑ |ℳ(R) |2

σ(V ) ∼ ∫ dLIPS2 ∫
ddk3

iπd/2 ∑ 2Re [ℳ(V ) × ℳ(T )*]
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2 sectors: 

14 master integrals

2 sectors: 

24 master integrals

IBP: LiteRed2; Differential equations: Libra



Boundary conditions for NLO
• Real emissions: only 1 nonzero boundary; similar to tree-level


• Virtual corrections: 4 nonzero boundaries


• Remarkably, the loop integral and phase space integral factorizes at 
threshold  or s → m2 = 1 y → 0

ℐ =
(2π)2

2iπd ∫ ddk3ddp2ddk2δ(p2
2 − m2)θ(p0

2)δ(k2
2)θ(k0

2)

× δd(p1 + k1 − p2 − k2)
1

k2
3[(p1 − k2 − k3)2 − m2]

no long depends on any 
outgoing momentum!

∫
ddk3

iπd/2

1
k2

3[(p1 − k2 − k3)2 − m2]
p1⋅k2→2y2

≈ ∫ dx1dx2δ(1 − x1 − x2)Γ(ϵ)(x1 + x2)2ϵ−2x−ϵ
2 (4x1y2 + x2)−ϵ

ℐ factorizes≈ (∫ dLIPS(soft)
2 ) × (feynman integral)



NLO total cross section

G(a, a1, …, an; x) = ∫
x

0
dwa(x′￼)G(a1, …, an; x′￼), dwy(x) =

ydx
x

, dwa(x) =
dx

x − a
(a = − 4, − 2, − 1,0)

where x =
s − m2

m2

on-shell renormalization scheme σNLO = σNLO
bare + (Z2

ψ Z2
AZ2

α − 1)σborn + δσm

y =
s − m2

s + 3m2

σNLO =
α3

m2x3 { −
x (273x3 − 982x2 − 2960x − 1744)

24(x + 1)2

+
37x4 − 54x3 − 339x2 − 428x − 184

4(x + 1)2
ln(x + 1)+

x2 (14x4 + 17x3 − 17x2 − 22x − 8)
2(1 − x)(1 + x)3

ln x

−
4x6 + 35x5 − 31x4 − 755x3 − 1765x2 − 1506x − 440

2(x + 1)2(x + 4)
ln2(x + 1)+(x2 − x + 2) [Li2(1 − x) −

π2

6 ]
−

x6 + 7x5 − 28x4 − 239x3 − 449x2 − 338x − 88
(x + 1)2(x + 4)

Li2(−x)+
x4 + 7x3 + x2 − 3x − 2

(x + 1)2
ln(x + 1)ln x

−
4 (x5 + 26x4 + 146x3 + 316x2 + 288x + 96)

(x + 1)2(x + 4)
G(−2, − 1; x)+

3x4 + 18x3 + 44x2 − 8x − 64
x

yG(y, − 1; x)

+T3(x)} + 𝒪(ϵ)
transcendental weight 3 



NLO total cross section
T3(x) = (x2 + 2x − 6) g1 −

1
3 (x2 − 16x − 23) g2 + 8 (x2 − 4x − 6) g3 + 4(2x2 − x − 6)g4

+2 (2x2 − 7x − 12) g5 − (5x2 + 32x − 8)g6 − 3(x − 2)(x + 4)yg7 + 3 (3x2 − 8) g10

−
8y (x4 + 3x3 − 18x2 − 68x − 24)

(x + 4)x
g8 +

3y (5x4 + 14x3 − 96x2 − 352x − 128)
(x + 4)x

g9

−
16y (x4 + 2x3 − 24x2 − 80x − 48)

(x + 4)x
g11 −

6y (x3 − 12x − 8)
x

g12

g1 = [Li3(x2) − Li2(x2)ln x], g2 = ln3(x + 1), g3 = G(−1, − 2, − 1; x), g4 = G(−1, − 1,0; x),

g5 = G(−1,0, − 1; x), g6 = G(0, − 1, − 1; x), g7 = [G(0,y, − 1; x) + 2G(y, − 1,0; x)],

g8 = G(y,0, − 1; x), g9 = G(y, − 1, − 1; x), g10 = G(y, y, − 1; x), g11 = G(y, − 2, − 1; x),
g12 = G(−4,y, − 1; x)

transcendental weight 3 bases 

G(a, a1, …, an; x) = ∫
x

0
dwa(x′￼)G(a1, …, an; x′￼), dwy(x) =

ydx
x

, dwa(x) =
dx

x − a
(a = − 4, − 2, − 1,0)

where x =
s − m2

m2
y =

s − m2

s + 3m2



• The alphabet from DE is

From GPLs to PolyLogs
y =

s − 1
s + 3

, m = 1

l0 =
1
s

, l1 =
1

s − 1
, l2 =

1
s + 1

, l3 =
1

s − 2
, l4 =

1
s + 3

, l5 =
y

s − 1
=

1
(s − 1)(s + 3)

• The general question is: 

How to write down the simplest solution to the differential equation? 

• For example, consider

I[l5, l0, s] = ∫
s

1
ds1

1
(s1 − 1)(s1 + 3) ∫

s1

1

ds2

s2
= {s + 1 + (s − 1)(s + 3)

2 } ⊗ s = r ⊗
1 − r + r2

r

r =
s + 1 + (s − 1)(s + 3)

2

r ⊗ (1 − r + r2) = r ⊗ (1 + r3) − r ⊗ (1 + r) =
1
3

r3 ⊗ (1 + r3) − r ⊗ (1 + r)

I[l5, l0, s] = −
1
3

Li2(−r3) + Li2(−r) −
1
2

ln2(r) +
π2

18

[Dersy, Schwartz, Zhang, in progress]
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I[l5, l0, s] = ∫

s

1
ds1

1
(s1 − 1)(s1 + 3) ∫

s1

1

ds2

s2
= {s + 1 + (s − 1)(s + 3)

2 } ⊗ s = r ⊗
1 − r + r2

r

I[l5, l0, s] = −
1
3

Li2(−r3) + Li2(−r) −
1
2

ln2(r) +
π2

18

• Direct integration gives rise to complex numbers , where we 
need an  identity to simplify the expression

(−1)1/3

Li2

[Dersy, Schwartz, Zhang, in progress]

Li2(e
2πi
3 r) + Li2(e

4πi
3 r) =

1
3

Li2(r3) − Li2(r)

• What do we mean by the simplest? 

At least get rid of the complex numbers


•  The main difficulties to automate this calculation: 

1. definition of the complexity; 2. change of the variables


• ML side: it is a tough game for reinforcement learning


• Alternatively, could we find a function version of PSLQ or Lattice reduction? 

Symbolic regression [AI Feynman, 1905.11481, Udrescu, Tegmark]



Asymptotic Behaviors
• Bloch-Nordsieck theorem: IR divergences cancel when both real and 

virtual contributions are summed over

• Thirring’s theorem: near the threshold , NLO cross section 

vanishes
s → m2

σ =
πα2

m2 [ 8
3

−
8
3

x + ⋯] +
α3

m2
x2 [−

16
9

ln x +
7
15

+ ⋯], x =
s − m2

m2

[9704368, Dittmaier]
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Asymptotic expansions

σ =
πα2

s [2 ln
s

m2
+ 1 + ⋯] +

α3

s [ 1
3

ln3 s
m2

−
1
2

ln2 s
m2

+
17
4

ln
s

m2
−

75
8

−
π2

2
+ 4ζ3 + ⋯]

Threshold:

High energy:



Total Cross Sections in QED
• Compton scattering: e−γ → e−γ

• Pair production: γγ → e+e−

σ =
2πα2

s
ln

s
m2 (1+

α
6π

ln2 s
m2

+⋯)
σ =

4πα2

s
ln

s
m2 (1+

α
12π

ln2 s
m2

+⋯)
• Photon production: e+e− → γγ σ =

2πα2

s
ln

s
m2 (1+

α
6π

ln2 s
m2

+⋯)
• DGLAP equations cannot reproduce all logarithms: 


PDFs predict  at NLO (collinear logarithms)


• Conceptually, naive factorization doesn’t work for the total cross 
section:


 ~ (PDFs/EDFs)  (soft)  (collinear)  (Hard)

since (off-shell) Glauber region is essential


• How to do resummation is not clear without a running scale

α3

s
ln2 s

m2

σ ⊗ ⊗ ⊗

[2110.02978, Bhattacharya, Manohar, Schwartz]



Summary
• Compton scattering is one of the first results in QED. It 

plays an important role in all aspects of physics, in 
particular, essential to study the infrared structures and 
forward scattering.


• The multi-loop techniques have promoted the development 
of both amplitudes and precision QCD/collider physics.

amplitudes sectors

topology 
classification/
decomposition

master 
integrals

Integration 
by parts 

(IBP)

analytic 
result

Differential 
equations (DE)

+boundary 
conditions

• The total cross section of Compton scattering can be computed 
with multi-loop techniques. We present the complete calculation 
at LO and highlight the key points at NLO.


