IBP for gravitational wave physics

Mao Zeng, University of Oxford

Motivation

GW discovery in 2015 by LIGO / VIRGO. Future ground-based and space-based detectors offer much higher sensitivity.

Theoretical predictions for waveforms need orders of magnitude improvement in precision! New approach: scattering amplitudes. Especially suited for post-Minkowskian expansion. (see extra slides for definition.)

IBP is an essential technique.

Other gravitational amplitudes in which IBP played an important role:

- 5-loop UV behavior of N=8 supergravity. [Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, MZ, '18]
(IBP for vacuum integrals)

- N=8 amplitudes for 3-loop 4-point [Men, Mistlberger], 2-loop 5-point [Abreu, Dixon, Page, Herman, MZ '19; Chicherin, Gehrmann, Men, Wasser, Chang, '19]

(Same type of integrals as in current frontier in QCD)
- post-Newtonian expansion of binary dynamics. Need multi-loop proagator integrals in $(3-2 \epsilon)$ dimensions.

What amplitudes do we need for post-Minkowskian gravity?

Conservative dynamics (non-spinning black holes):
scalar (mi) + scalar (m2) --> scalar(m1) + scalar (mi), via graviton exchange.

BH with spin; fermion/vector/higher-spin particles.

Radiative / dissipative dynamics:
scalar $(\mathrm{m} 1)+$ scalar $(\mathrm{m} 2)$--> scalar (mi) + scalar $(\mathrm{m} 2)+\mathrm{n}$ gravitons

What's the current frontier?

Conservative dynamics: scalar+scalar --> scalar+scalar, at 3 loops (only potential region).
[Bern, Roiban, Ruf, Chen, Solon, MZ, '21 (PRL)]
i.e. $O\left(G^{4}\right)$, 4th-post Minkowskian order

Radiative energy loss: scalar+scalar --> scalar+scalar+graviton, at 2 loops
[Herrmann, Parra-Martinez, Ruff, MZ, '21 (PRL)]
leading $O\left(G^{3}\right)$ energy loss, exact velocity dependence in V.
Vast field: radiation reaction, spin effects, finite-size (tidal) effects...
How challenging are the Feynman integrals?

$$
\left.\begin{array}{l}
S=\left(P_{1}+P_{2}\right)^{2}, \\
t=\left(P_{2}-P_{3}\right)^{2}, \\
m_{1}^{2}=P_{1}^{2}=P_{4}^{2}, \\
m_{2}^{2}=P_{2}^{2}=P_{3}^{2} .
\end{array}\right\} \begin{aligned}
& 4 \text { kinematic scales } \\
& 3 \text { nontrivial parameters }
\end{aligned}
$$

Number of scales comparable to e.g. $q+\bar{q} \rightarrow W+Z$
But the tensor rank is very high.

$$
\begin{aligned}
& g_{\mu \nu}=\eta_{\mu \nu}+h_{\mu \nu}, g^{\mu \nu} \sim g_{\mu \nu}^{-1}=\eta^{\mu \nu}-h^{\mu \nu}+O\left(h^{2}\right)_{\ldots} \\
& L=\int d^{4} x \sqrt{g}[R+\underbrace{\frac{1}{2} g^{\pi} \partial_{\mu} \phi \partial_{2} \phi}-\frac{1}{2} m^{2} \phi^{2}]
\end{aligned}
$$

2 powers of loop momenta per vertex (for QCD, only 1 power).

Example 3-loop diagram: 8 vertices. Numertor has degree / rank 16!

Twice as much as QCD.

A simpler problem: scattering of black holes in $N=8$ supergravity.
[Caron-Huot, Zahraee, '18; Parra-Martinez, Ruf, MZ, '20]
Degree $=0$, ie. only scalar integrals for 2 loops. Degree $=2$ for 3 loops.
Suitable for testing new ideas about integration etc, like N=4 SYM for QCD calculations.

Simplification from asymptotic expansion

Exchanged momenta in t channel $\sim \hbar / R \ll m_{i},\left|p_{i}\right|$.
We only need the amplitude as an expansion in small \hbar.
Need to carefully set up the expansion to eliminate as many scales as possible.
[Beneke, Smirnov, '98]
Method of regions: the full integral is a sum over two contributions.
(1) soft region $|q|,|l| \ll|p|$. Contains non-analytic behavior, egg. $1 / 9^{2}, \log \left(-9^{2}\right)$.

Taylor expansion in small $|q| /|p|,|l| /|p|$, then integrate over ALL l.
e.g. $\quad 1 /\left[\left(l+p_{1}\right)^{2}-m_{1}^{2}\right]=1 /\left[2 p_{1}, l+l^{2}\right]=1 /\left(2 p_{1}, l\right)+\cdots$

$$
|q| \ll|l| \sim|p| . \quad \text { (will fine-tune the expansion strategy later) }
$$

(2) hard region Gives Taylor series in 9^{2}. Contact interaction in position space.

Taylor expansion in small $|q| /|p|$, then integrate over ALL l.
e.g. $\quad 1 /\left[\left(l+p_{1}\right)^{2}-m_{1}^{2}\right]$ is unexpanded.

$$
\begin{gathered}
\text { while } 1 /(9-l)^{2}=1 / l^{2}+\cdots \\
{ }_{\text {small }}
\end{gathered}
$$

In each region, the integrand is integrated over the entire domain.
Overlap betweeen regions vanishes in dimensional regularization.

Symmetric parametrization for soft region

[Glauber; Polkinghorne; Veil \& Rothstein]

$u_{1} \cdot q=u_{2} \cdot q=0, u_{1} \cdot u_{1}=u_{2} \cdot u_{2}=1$,
$u_{1} \cdot u_{2}=y, \quad q^{2}=-t$
dependence fixed by mass dimension

The only nontrivial parameter which the master integrals depend on.

$$
\text { Used to be } s / t, m_{1}^{2} / t, m_{2}^{2} / t \text {. }
$$

Function of 3 variables \rightarrow Function of 1 variable. Enormous reduction in complexity.

Example for soft expansion at one loop

Recall that the more complicated integrals evarporate after IBP reduction.

All masters at one loop

Therefore, we need to do IBP for integrals with linearized propagators, with only one scaleless kinematic variable $u_{1} \cdot u_{2} \equiv y$.
(dependence on 9^{2} from trivial dimensional analysis)

IBP considerations

1. Choice of irreducible scalar products (ISPs)

This is not any different from usual Feynman integrals with quadratic propagators. Look at 2 loop example.

9 independent scalar products are

$$
\begin{aligned}
& u_{1} \cdot l_{1}, u_{2} \cdot l_{1}, q \cdot l_{1}, \\
& u_{1} \cdot l_{2}, u_{2} \cdot l_{2}, q \cdot l_{2}, \\
& l_{1}^{2}, l_{2}^{2}, l_{1} \cdot l_{2} .
\end{aligned}
$$

They can be expressed as linear combinations of propagators (quadratic \& linear ones) and ISPs - must have at least one quadratic propagator depending on l_{1}, l_{2}, and $l_{1}+l_{2}$, but other propagators can be linear.
2. Decoupling of integrals by q-parity

Under soft expansion $\left|l_{i}\right| \sim|q|$, quadratc propagators, e.g. $1 /(q-l)^{2}$ scale as $1 /|q|^{2}$, linear propagators, e.g. $1 /\left(2 u_{1} \cdot l\right)$ scale as $1 /|q|$, integration measure $\left(\int d^{4} l_{i}\right)$ scales as $|q|^{4}$.

But IBP reduction coefficients are analytic in $q^{2} \Longrightarrow q$-even and q-odd integrals decouple. The L-loop classical potential between two black holes behave like

$$
\left(\frac{G M}{R}\right)^{L+1} \sim(G M|q|)^{L-2}
$$

after Fourier transform from position space to momentum space.
Only need to IBP-reduce q-even / q-odd terms at even / odd loop orders.
Differential equations also decouple into two separate systems. For example, only attempt to find the canonical form for one system.

3. Scaleless sectors and spanning cuts

Back to one-loop example. If we cancel the propagator $(q-l)^{2}$,

Then the remaining propagators have homogeneous scaling weights under $l^{\mu} \rightarrow \lambda l^{\mu} \Longrightarrow$ scaleless integrals, vanish in dimensional regularization.

This is ultimately a consequence of the soft \hbar expansion. Inituitively, contact interactions are irrelevant for long-range classical physics.

3-Ioop example

Cannot cancel propagators to make m1 line and m2 line touch each other. For example, $(1,8),(4,9),(10,2,8)$.

All non-scaleless integrals have support on a set of spanning cuts. Can perform IBP on cuts and then perform cut merging. [Larsen, Zhang, '15]

3-loop IBP cut merging (work in progress):

For the potential region, in which graviton momenta are off-shell and dominated by spatial components, also need one matter cut per loop, further simplify ing calculation.

This diagram contributes to radiative dynamics, e.g. energy loss, in binary dynamics at $\mathcal{O}\left(G^{3}\right)$

Recall that $p_{1}=m_{1} u_{1}-q / 2$,

$\left(p_{1}+l_{1}\right)^{2} \approx 2 m_{1} u_{1} \cdot l_{1},\left(p_{1}+l_{1}+l_{2}\right)^{2} \approx 2 m_{1}\left(u_{1} \cdot l_{1}+u_{1} \cdot l_{2}\right),\left(p_{1}+l_{2}\right)^{2} \approx 2 m_{1} u_{1} \cdot l_{2}$

Linearly dependent, because of
soft expansion
$\rho_{1}=\rho_{2}-\rho_{3} \Longrightarrow \frac{1}{\rho_{1} \rho_{2} \rho_{3}}=\frac{1}{\rho_{1}^{2} \rho_{3}}-\frac{1}{\rho_{1}^{2} \rho_{2}}$.

Phase space integrals and reverse unitarity

Setup: classical limit of observables from S-matrix. [Kosower, Maybee, O'Connell '18]

Virtual diagram $\mathcal{M}^{(2)}$

contributes to impulse on scattered black hole (deflection angle)

Real emission diagram $\mathcal{M}^{(1)} \mathcal{M}^{*(1)}$

(uncut) Feynman propagator $1 /\left(p^{2}-m^{2}+i 0\right)$
cut propagator for phase space
$2 \pi \theta\left(p^{0}\right) \delta\left(p^{2}-m^{2}\right)$
from picking up only the +eve energy residue
in Feynman propagator
IBP \& Differential equations unchanged!
Only change boundary conditions for DEs, known as method
 of Reverse Unitarity.

Important in perturbative QCD for Riggs cross sections at NNLO and N3LO, and energy correlations in electron-positron collider event shapes.

First application of reverse unitarity to gravitational physics in [Herrmann, Mara Martinez, Ruf, MZ, 2101.07255 (PRL), 2104.03957].

We re-used LEs in canonical basis for virtual integrals in [Parra-Martinez, Ruf, MZ, '20].

Example use of reverse unitarity

(only one Cutkosky cut, optical theorem enough)

(Virtual integrals computed via differential equations)

More than one Cutkosky cut. Need serious use of reverse unitarity, including PEs on cut.

Known!

Result for radaiated energy at 3rd-post-Minkowskian order

The only needed master integrals:

simple weight-1 result at 2 loops!

Future challenges

Precision at GW detectors motivate studying the post-Minkowskian expansion at one loop higher - i.e. 4 loops, involving one-parameter IBP problem. Challenging but within reach.

Explore other IBP methods, e.g. using syzygy equations. [Gluza, Kajda, Kosower; Ita; Larsen, Zhang]

Function space: 2 loops - weight 1 (poly)log. 3 loops - weight 2 polylog + elliptic integrals. 4 loops? Do we need to investigate numerical techniques?

POST-NEWTONIAN (PN) EXPANSION

Joint expansion in $G M / r \sim v^{2}$, locked by Virial theorem.
Conservative Hamiltonian in c.o.m. frame:

1PN, Einstein, Infeld, Hoffman, 1938

POST-MINKOWSKIAN (PM) EXPANSION

Expansion in coupling $G M / r$, exact velocity dependence
[Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez, Martin, Ledvinka, Scaefer, Bicak...]

Most accurate PM scattering angle until ~ 2019 [Westpfahl, '85]

Scattering angle of two black holes, as function of $m_{1}, m_{2}, b, E_{\mathrm{cm}}$.

$$
\begin{aligned}
2 \sin \left(\frac{\theta}{2}\right)= & \frac{4 G\left(m_{1}+m_{2}\right)}{b}\left(\frac{\hat{E}^{4}-2 m_{1}^{2} m_{2}^{2}}{\hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}\right. \\
& \left.+\frac{3 \pi}{16} \frac{G\left(m_{1}+m_{2}\right)}{b} \frac{5 \hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}{\hat{E}^{4}-4 m_{1}^{2} m_{2}^{2}}\right) \\
\text { where } \hat{E}^{2} \equiv & E_{\mathrm{cm}}^{2}-\left(m_{1}^{2}+m_{2}^{2}\right), c=1
\end{aligned}
$$

Similar to expansion in relativistic QFT - can QFT help push it further?

4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

[Khalil, Buonanno, Steinhoff, Vines, preliminary]

GW cycles before merger

