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GW discovery in 2015 by LIGO / VIRGO. Future ground-based and space-based detectors
offer much higher sensitivity.

Motivation

Theoretical predictions for waveforms need orders of magnitude improvement in precision!

Other gravitational amplitudes in which IBP played an important role: 

IBP is an essential technique.

 - N=8 amplitudes for 3-loop 4-point [Henn, Mistlberger], 2-loop 5-point [Abreu, Dixon, Page,
    Herrmann, MZ '19; Chicherin, Gehrmann, Henn, Wasser, Zhang, '19] 

(Same type of integrals as in current frontier in QCD)

(IBP for vacuum integrals)

  - 5-loop UV behavior of N=8 supergravity. [Bern, Carrasco, Chen, Edison, Johansson,
    Parra-Martinez, Roiban, MZ, '18]

in (3− 2�)

- post-Newtonian expansion of binary dynamics. Need multi-loop proagator integrals

IBP for gravitational wave physics

dimensions.

Black hole approximated
as point particle when the
distance is large.

Systematized by EFT
expansion.

scalar (m1) + scalar (m2)  --> scalar(m1) + scalar(m2), via graviton exchange.

Conservative dynamics (non-spinning black holes):

What amplitudes do we need for post-Minkowskian gravity?

New approach: scattering amplitudes. Especially suited for post-Minkowskian expansion.
(see extra slides for definition.)



Radiative / dissipative dynamics:

scalar (m1) + scalar (m2)  --> scalar(m1) + scalar(m2) + n gravitons

Conservative dynamics: scalar+scalar --> scalar+scalar, at 3 loops (only potential region).

[Bern, Roiban, Ruf, Shen, Solon, MZ, '21 (PRL)]

[Herrmann, Parra-Martinez, Ruf, MZ, '21 (PRL)]

Radiative energy loss: scalar+scalar --> scalar+scalar+graviton, at 2 loops

4 kinematic scales,
3 nontrivial parameters

Number of scales comparable to e.g. q + q̄ → W + Z

But the tensor rank is very high.

What's the current frontier?

Vast field: radiation reaction, spin effects, finite-size (tidal) effects...

How challenging are the Feynman integrals?



2 powers of loop momenta per vertex (for QCD, only 1 power).

Example 3-loop diagram: 8 vertices.
Numertor has degree / rank 16!

Twice as much as QCD.

A simpler problem: scattering of black holes in N=8 supergravity.

Suitable for testing new ideas about integration etc, like N=4 SYM for QCD calculations.

[Caron-Huot, Zahraee, '18; Parra-Martinez, Ruf, MZ, '20]

Degree=0, i.e. only scalar integrals for 2 loops. Degree=2 for 3 loops.

We only need the amplitude as an expansion in small �.
Need to carefully set up the expansion to eliminate as many scales as possible.

lim
|q|�|pi|

Exchanged momenta in t channel ∼ �/R � mi, |pi|.

Method of regions: the full integral is a sum over two contributions.
[Beneke, Smirnov, '98]

Simplification from asymptotic expansion



|q| � |l| ∼ |p|.

Taylor expansion in small then integrate over ALL|q|/|p|, |l|/|p|, l.

(will fine-tune the expansion strategy later)

Taylor expansion in small |q|/|p|, then integrate over ALL l.

(2) hard region Gives Taylor series in    . Contact interaction in position space.

In each region, the integrand is integrated over the entire domain.
Overlap betweeen regions vanishes in dimensional regularization.

q

u1 · q = u2 · q = 0, u1 · u1 = u2 · u2 = 1,

u1 · u2 = y, q2 = −t

[Glauber; Polkinghorne; Neill & Rothstein]

dependence fixed by mass dimension

The only nontrivial parameter which the master integrals depend on.

Function of 3 variables ⟶ Function of 1 variable. Enormous reduction in complexity.

|q|, |l| � |p|.(1) soft region Contains non-analytic behavior, e.g.

Symmetric parametrization for soft region



Higher orders in the expansion: will have e.g.

squared linear
propagator

Recall that the more complicated integrals evarporate after IBP reduction.

a master
integral

All masters at one loop

bubble

Ibub =

linearized box linearized triangle

1

l2
1

(q − l)2
1

(2u1 · l + i0)

1

(−2u2 · l + i0)
+ . . .

Double line =
linear propagator

Ibox = Itri =

Example for soft expansion at one loop
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2p1 · l + l2
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2m1u1 · l + (l2 − q · l)

=
1
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1

2u1 · l
− 1
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(2u1 · l)2

Mass dependence factored out! No need
for             in IBP



Therefore, we need to do IBP for integrals with linearized propagators, with only one
scaleless kinematic variable u1 · u2 ≡ y.

linearized box

p2 = m2u2 + q/2

p1 = m1u1 − q/2

(dependence on     from trivial dimensional analysis)

This is not any different from usual Feynman integrals with quadratic propagators.
Look at 2 loop example.

9 independent scalar products are

u1 · l1, u2 · l1, q · l1,
u1 · l2, u2 · l2, q · l2,
l21, l

2
2, l1 · l2.

They can be expressed as linear combinations of propagators (quadratic & linear ones)
and ISPs - must have at least one quadratic propagator depending on
but other propagators can be linear.

1. Choice of irreducible scalar products (ISPs)

IBP considerations

2. Decoupling of integrals by q-parity

1/(q − l)2|li| ∼ |q|,Under soft expansion quadratc propagators, e.g. scale as 1/|q|2,
1/(2u1 · l)

��
d4li

�
1/|q|,linear propagators, e.g. scale as integration measure 

scales as |q|4.

But IBP reduction coefficients are analytic in q2 =⇒ q-even and q-odd integrals decouple.

The L-loop classical potential between two black holes behave like
�
GM

R

�L+1

∼ (GM |q|)L−2

after Fourier transform from position space to momentum space.

Only need to IBP-reduce q-even / q-odd terms at even / odd loop orders.

Differential equations also decouple into two separate systems. For example, only
attempt to find the canonical form for one system.



Back to one-loop example. If we cancel the propagator (q − l)2,

Then the remaining propagators have homogeneous scaling weights under lµ → λ lµ =⇒
scaleless integrals, vanish in dimensional regularization.

�This is ultimately a consequence of the soft     expansion. Inituitively, contact interactions
are irrelevant for long-range classical physics.

3-loop example

All non-scaleless integrals have support on a set of spanning cuts. Can perform IBP on cuts
and then perform cut merging. [Larsen, Zhang, '15]

Cannot cancel propagators to make m1 line and m2 line touch each other. For example,
(1, 8),  (4, 9),  (10, 2, 8).

3-loop IBP cut merging (work in progress):

10 propagators +
5 ISPs

3. Scaleless sectors and spanning cuts

. . .
For the potential region, in which graviton momenta are off-shell and dominated by
spatial components, also need one matter cut per loop, further simplifying calculation.



4. partial fractioning (algebraic reduction) after soft expansion

Recall that p1 = m1u1 − q/2,

(p1 + l1)
2 ≈ 2m1u1 · l1, (p1 + l1 + l2)

2 ≈ 2m1(u1 · l1 + u1 · l2), (p1 + l2)
2 ≈ 2m1u1 · l2

Linearly dependent, because of
soft expansion

ρ1 = ρ2 − ρ3 =⇒ 1

ρ1ρ2ρ3
=

1

ρ21ρ3
− 1

ρ21ρ2
.

scaleless

O(G3)

This diagram contributes to radiative
dynamics, e.g. energy loss, in binary
dynamics at 

Virtual diagram Real emission diagramM(2) M(1)M∗(1)

Phase space integrals and reverse unitarity

Setup: classical limit of observables from S-matrix. [Kosower, Maybee, O'Connell '18]

contributes to impulse on scattered
black hole (deflection angle)

contributes to impluse & energy loss



(uncut) Feynman propagator

cut propagtor for phase space 
2π θ(p0)δ(p2 −m2)

from picking up only the +ve energy residue
in Feynman propagator Re(p0)

Im(p0)

Only change boundary conditions for DEs, known as method
of Reverse Unitarity.

IBP & Differential equations unchanged!

1/(p2 −m2 + i0)

Important in perturbative QCD for Higgs cross sections at NNLO and N3LO, and
energy correlations in electron-positron collider event shapes.

First application of reverse unitarity to gravitational physics in [Herrmann, Parra Martinez,
Ruf, MZ, 2101.07255 (PRL), 2104.03957].

We re-used DEs in canonical basis for virtual integrals in [Parra-Martinez, Ruf, MZ, '20].

= 2 Im

(only one Cutkosky cut, optical
theorem enough)

(Virtual integrals computed via
differential equations)

Example use of reverse unitarity

More than one Cutkosky cut. Need serious
use of reverse unitarity, including DEs
on cut.



[Herrmann, Parra-Martinez, Ruf, MZ, '21 (PRL)

The only needed master integrals:

Result for radaiated energy at 3rd-post-Minkowskian order

Future challenges

Precision at GW detectors motivate studying the post-Minkowskian expansion at one
loop higher - i.e. 4 loops, involving one-parameter IBP problem. Challenging but
within reach.

Function space: 2 loops - weight 1 (poly)log. 3 loops - weight 2 polylog + elliptic integrals.
4 loops? Do we need to investigate numerical techniques?

Explore other IBP methods, e.g. using syzygy equations. [Gluza, Kajda, Kosower;
Ita; Larsen, Zhang]

simple weight-1
result at 2 loops!

See next pages for extra material
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POST-NEWTONIAN (PN) EXPANSION

(1980)0PN, Newton

1PN, Einstein, Infeld, Hoffman, 1938

Conservative Hamiltonian in c.o.m. frame:

Joint expansion in                     locked by Virial theorem.

(2000) (2014)
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Expansion in coupling              exact velocity dependence

POST-MINKOWSKIAN (PM) EXPANSION

[Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez,
 Martin, Ledvinka, Scaefer, Bicak...]

Most accurate PM scattering angle until ~ 2019 [Westpfahl, '85]

Similar to expansion in relativistic QFT - can QFT help push it further?

Scattering angle of two black holes, as function of

where
θ



4PM BINDING ENERGY VS. NUMERICAL RELATIVITY
[Khalil, Buonanno, Steinhoff, Vines, preliminary]

4PM (potential region)
4PN
NR

Preliminary

25


