IBP for gravitational wave physics

Mao Zeng, University of Oxford

Motivation

GW discovery in 2015 by LIGO / VIRGO. Future ground-based and space-based detectors offer much higher sensitivity.

Theoretical predictions for waveforms need orders of magnitude improvement in precision! New approach: scattering amplitudes. Especially suited for post-Minkowskian expansion.

IBP is an essential technique.

(see extra slides for definition.)

Other gravitational amplitudes in which IBP played an important role:

- 5-loop UV behavior of N=8 supergravity. [Bern, Carrasco, Chen, Edison, Johansson, Parra-Martinez, Roiban, MZ, '18]
- (IBP for vacuum integrals)

- N=8 amplitudes for 3-loop 4-point [Henn, Mistlberger], 2-loop 5-point [Abreu, Dixon, Page, Herrmann, MZ '19; Chicherin, Gehrmann, Henn, Wasser, Zhang, '19]

(Same type of integrals as in current frontier in QCD)

- post-Newtonian expansion of binary dynamics. Need multi-loop proagator integrals in $(3-2\epsilon)$ dimensions.

What amplitudes do we need for post-Minkowskian gravity?

Conservative dynamics (non-spinning black holes):

scalar (m1) + scalar (m2) --> scalar(m1) + scalar(m2), via graviton exchange.

Example for soft expansion at one loop

(uncut) Feynman propagator $1/(p^2 - m^2 + i0)$
cut propagtor for phase space $2\pi \theta(p^0)\delta(p^2 - m^2)$
from picking up only the +ve energy residue in Feynman propagator $\xrightarrow{\mathbf{X}} \operatorname{Re}(p^0)$
IBP & Differential equations unchanged! Only change boundary conditions for DEs, known as method of Reverse Unitarity.
Important in perturbative QCD for Higgs cross sections at NNLO and N3LO, and energy correlations in electron-positron collider event shapes.
First application of reverse unitarity to gravitational physics in [Herrmann, Parra Martinez, Ruf, MZ, 2101.07255 (PRL), 2104.03957].
 We re-used DEs in canonical basis for virtual integrals in [Parra-Martinez, Ruf, MZ, '20].
$= 2 \operatorname{Im} $
(only one Cutkosky cut, optical theorem enough) (Virtual integrals computed via differential equations)
$\frac{\partial}{\partial v} \left[v^2 \right] = simpler integrals tetc.$
More than one Cutkosky cut. Need serious use of reverse unitarity, including DEs on cut.

Future challenges

Precision at GW detectors motivate studying the post-Minkowskian expansion at one loop higher - i.e. 4 loops, involving one-parameter IBP problem. Challenging but within reach.

Explore other IBP methods, e.g. using syzygy equations. [Gluza, Kajda, Kosower; Ita; Larsen, Zhang]

Function space: 2 loops - weight 1 (poly)log. 3 loops - weight 2 polylog + elliptic integrals. 4 loops? Do we need to investigate numerical techniques?

See next pages for extra material

POST-NEWTONIAN (PN) EXPANSION

Joint expansion in $GM/r \sim v^2$, locked by Virial theorem.

Conservative Hamiltonian in c.o.m. frame:

1PN, Einstein, Infeld, Hoffman, 1938

POST-MINKOWSKIAN (PM) EXPANSION

Expansion in coupling GM/r, exact velocity dependence

[Bertotti, Kerr, Plebanski, Portilla, Westpfahl, Gollder, Bel, Damour, Derulle, Ibanez, Martin, Ledvinka, Scaefer, Bicak...]

Most accurate PM scattering angle until ~ 2019 [Westpfahl, '85]

Similar to expansion in **relativistic QFT** - can QFT help push it further?

4PM BINDING ENERGY VS. NUMERICAL RELATIVITY

[Khalil, Buonanno, Steinhoff, Vines, preliminary]

